Therapeutic Insights into Rubus ulmifolius Schott Leaf Extract: In Vitro Antifungal, Enzyme Inhibition, and Anticancer Activities Integrated with Network Pharmacology and Molecular Docking Analyses of Colorectal and Ovarian Cancer
Abstract
1. Introduction
2. Results and Discussion
2.1. R. ulmifolius Leaves EtOAc Extract Exhibits Antifungal Activities
2.2. R. ulmifolius Leaves EtOAc Extract Has a Moderate AChE and BChE Inhibitory Activity
2.3. R. ulmifolius Leaves EtOAc Extract Has a Modest Urease Inhibitory Assay
2.4. R. ulmifolius Leaves EtOAc Extract Has a Potent Cytotoxic Activity Against Cancerous Human Cell Lines
2.5. In Silico Analyses of the Anticancer Mechanisms of R. ulmifolius
2.5.1. Identification of Potential Targets of Bioactive Compounds in Colorectal and Ovarian Cancer
2.5.2. Analysis of PPI and Core Target Networks
2.5.3. KEGG Enrichment of Core Targets
2.5.4. Molecular Docking of Core Targets and Compounds
3. Materials and Methods
3.1. Chemical Composition of R. ulmifolius EtOAc Extract
3.2. Antifungal Activity
3.3. AChE and BChE Inhibition Assay
3.4. Urease Inhibition Assay
3.5. Cell Culture and Cytotoxic Assay
3.6. Statistical Analysis
3.7. In Silico Study
3.7.1. Prediction of R. ulmifolius Bioactive Compounds Gene Targets
3.7.2. Retrieval of Disease-Associated Genes
3.7.3. Identification of Common Targets
3.7.4. Protein–Protein Interaction (PPI) Network Construction
3.7.5. KEGG Pathway Enrichment Analysis
3.7.6. Compound–Target–Pathway Network Construction
3.7.7. Molecular Docking Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tabarki, S.; Aouadhi, C.; Mechergui, K.; Hammi, K.M.; Ksouri, R.; Raies, A.; Toumi, L. Comparison of Phytochemical Composition and Biological Activities of Rubus ulmifolius Extracts Originating from Four Regions of Tunisia. Chem. Biodivers. 2017, 14, e1600168. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Saad, A.M.; Mohammed, D.M.; Korma, S.A.; Alshahrani, M.Y.; Ahmed, A.E.; Ibrahim, E.H.; Salem, H.M.; Alkafaas, S.S.; Saif, A.M.; et al. Medicinal plants: Bioactive compounds, biological activities, combating multidrug-resistant microorganisms, and human health benefits—A comprehensive review. Front. Immunol. 2025, 16, 1491777. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, R.; Shaito, A.A.; Badran, A.; Baydoun, S.; Sobeh, M.; Ouchari, W.; Sahri, N.; Eid, A.H.; Mesmar, J.E.; Baydoun, E. Fractionation and phytochemical composition of an ethanolic extract of Ziziphus nummularia leaves: Antioxidant and anticancerous properties in human triple negative breast cancer cells. Front. Pharmacol. 2024, 15, 1331843. [Google Scholar] [CrossRef] [PubMed]
- Al Kahlout, A.; Fardoun, M.; Mesmar, J.; Abdallah, R.; Badran, A.; Nasser, S.A.; Baydoun, S.; Kobeissy, F.; Shaito, A.; Iratni, R.; et al. Origanum syriacum L. Attenuates the Malignant Phenotype of MDA-MB231 Breast Cancer Cells. Front. Oncol. 2022, 12, 922196. [Google Scholar] [CrossRef]
- Azwanida, N.N. A Review on the Extraction Methods Used in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4, 3. [Google Scholar] [CrossRef]
- Mesmar, J.; Abdallah, R.; Hamade, K.; Baydoun, S.; Al-Thani, N.; Shaito, A.; Maresca, M.; Badran, A.; Baydoun, E. Ethanolic extract of Origanum syriacum L. leaves exhibits potent anti-breast cancer potential and robust antioxidant properties. Front. Pharmacol. 2022, 13, 994025. [Google Scholar] [CrossRef]
- Makhoba, X.H.; Krysenko, S. Drug Target Validation in Polyamine Metabolism and Drug Discovery Advancements to Combat Tuberculosis. Future Pharmacol. 2025, 5, 32. [Google Scholar] [CrossRef]
- Yousefbeyk, F.; Ghasemi, S.; Evazalipour, M.; Dabirian, S.; Schubert, C.; Hekmatnia, S.; Habibi, Y.; Eghbali Koohi, D.; Böhm, V. Phytochemical analysis, antioxidant, antibacterial, and cytotoxic activities of leaves and roots of Rubus hyrcanus Juz. Eur. Food Res. Technol. 2022, 248, 141–152. [Google Scholar] [CrossRef]
- Schulz, M.; Seraglio, S.K.T.; Della Betta, F.; Nehring, P.; Valese, A.C.; Daguer, H.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Blackberry (Rubus ulmifolius Schott): Chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Res. Int. 2019, 122, 627–634. [Google Scholar] [CrossRef]
- Ali, N.; Shaoib, M.; Shah, S.W.A.; Shah, I.; Shuaib, M. Pharmacological profile of the aerial parts of Rubus ulmifolius Schott. BMC Complement. Altern. Med. 2017, 17, 59. [Google Scholar] [CrossRef]
- Akhtar, K.; Shah, S.W.A.; Shah, A.A.; Shoaib, M.; Haleem, S.K.; Sultana, N. Pharmacological effect of Rubus ulmifolius Schott as antihyperglycemic and antihyperlipidemic on streptozotocin (STZ)-induced albino mice. Appl. Biol. Chem. 2017, 60, 411–418. [Google Scholar] [CrossRef]
- Da Silva, L.P.; Pereira, E.; Pires, T.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Dall’Acqua, S.; Cervellati, R.; Loi, M.C.; Innocenti, G. Evaluation of in vitro antioxidant properties of some traditional Sardinian medicinal plants: Investigation of the high antioxidant capacity of Rubus ulmifolius. Food Chem. 2008, 106, 745–749. [Google Scholar] [CrossRef]
- Akkari, H.; Hajaji, S.; B’Chir, F.; Rekik, M.; Gharbi, M. Correlation of polyphenolic content with radical-scavenging capacity and anthelmintic effects of Rubus ulmifolius (Rosaceae) against Haemonchus contortus. Vet. Parasitol. 2016, 221, 46–53. [Google Scholar] [CrossRef]
- Mehiou, A.; Alla, C.; Akissi, Z.L.E.; Dib, I.; Abid, S.; Berraaouan, A.; Mekhfi, H.; Legssyer, A.; Ziyyat, A.; Sahpaz, S. Cardiovascular Effects, Antioxidant Activity, and Phytochemical Analysis of Rubus ulmifolius Schott Leaves. Plants 2025, 14, 2513. [Google Scholar] [CrossRef]
- Martins, A.; Barros, L.; Carvalho, A.M.; Santos-Buelga, C.; Fernandes, I.P.; Barreiro, F.; Ferreira, I.C. Phenolic extracts of Rubus ulmifolius Schott flowers: Characterization, microencapsulation and incorporation into yogurts as nutraceutical sources. Food Funct. 2014, 5, 1091–1100. [Google Scholar] [CrossRef]
- Panizzi, L.; Caponi, C.; Catalano, S.; Cioni, P.L.; Morelli, I. In vitro antimicrobial activity of extracts and isolated constituents of Rubus ulmifolius. J. Ethnopharmacol. 2002, 79, 165–168. [Google Scholar] [CrossRef]
- Ibba, A.; Rosa, A.; Maxia, A.; Fais, S.; Orrù, G.; Porcedda, S.; Piras, A. Evaluation of fatty acid composition and antimicrobial activity of supercritical fluid extract of Rubus ulmifolius Schott fruits. Nat. Prod. Res. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Hajaji, S.; Jabri, M.-A.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; B’Chir, F.; Valladares, B.; Pinero, J.E.; Lorenzo-Morales, J.; Akkari, H. Amoebicidal, antimicrobial and in vitro ROS scavenging activities of Tunisian Rubus ulmifolius Schott, methanolic extract. Exp. Parasitol. 2017, 183, 224–230. [Google Scholar] [CrossRef]
- Rodrigues, C.A.; Nicácio, A.E.; Boeing, J.S.; Garcia, F.P.; Nakamura, C.V.; Visentainer, J.V.; Maldaner, L. Rapid extraction method followed by a d-SPE clean-up step for determination of phenolic composition and antioxidant and antiproliferative activities from berry fruits. Food Chem. 2020, 309, 125694. [Google Scholar] [CrossRef]
- Benslama, O.; Lekmine, S.; Moussa, H.; Tahraoui, H.; Ola, M.S.; Zhang, J.; Amrane, A. Silymarin as a Therapeutic Agent for Hepatocellular Carcinoma: A Multi-Approach Computational Study. Metabolites 2025, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Sisti, M.; De Santi, M.; Fraternale, D.; Ninfali, P.; Scoccianti, V.; Brandi, G. Antifungal activity of Rubus ulmifolius Schott standardized in vitro culture. LWT Food Sci. Technol. 2008, 41, 946–950. [Google Scholar] [CrossRef]
- Bramki, A.; Benouchenne, D.; Salvatore, M.M.; Benslama, O.; Andolfi, A.; Rahim, N.; Moussaoui, M.; Ramoul, S.; Nessah, S.; Barboucha, G.; et al. In Vitro and In Silico Biological Activities Investigation of Ethyl Acetate Extract of Rubus ulmifolius Schott Leaves Collected in Algeria. Plants 2024, 13, 3425. [Google Scholar] [CrossRef] [PubMed]
- Guida, M.; Salvatore, M.M.; Salvatore, F.A. A Strategy for GC/MS Quantification of Polar Compounds via their Silylated Surrogates: Silylation and Quantification of Biological Amino Acids. J. Anal. Bioanal. Tech. 2015, 6, 263. [Google Scholar] [CrossRef]
- Barthwal, R.; Mahar, R. Exploring the Significance, Extraction, and Characterization of Plant-Derived Secondary Metabolites in Complex Mixtures. Metabolites 2024, 14, 119. [Google Scholar] [CrossRef]
- Tinco-Jayo, J.A.; Aguilar-Felices, E.J.; Enciso-Roca, E.C.; Arroyo-Acevedo, J.L.; Herrera-Calderon, O. Phytochemical Screening by LC-ESI-MS/MS and Effect of the Ethyl Acetate Fraction from Leaves and Stems of Jatropha macrantha Müll Arg. on Ketamine-Induced Erectile Dysfunction in Rats. Molecules 2021, 27, 115. [Google Scholar] [CrossRef]
- El-Nagar, A.; Elzaawely, A.A.; Taha, N.A.; Nehela, Y. The Antifungal Activity of Gallic Acid and Its Derivatives against Alternaria solani, the Causal Agent of Tomato Early Blight. Agronomy 2020, 10, 1402. [Google Scholar] [CrossRef]
- Akhtar, N.; Mannan, M.A.; Pandey, D.; Sarkar, A.; Sharma, H.; Kumar, M.; Ghosh, A. Potent antifungal properties of gallic acid in Sarcochlamys pulcherrima against Candida auris. Biotechnologia 2023, 104, 105–119. [Google Scholar] [CrossRef]
- Sardi, J.d.C.O.; Gullo, F.P.; Freires, I.A.; Pitangui, N.d.S.; Segalla, M.P.; Fusco-Almeida, A.M.; Rosalen, P.L.; Regasini, L.O.; Mendes-Giannini, M.J.S. Synthesis, antifungal activity of caffeic acid derivative esters, and their synergism with fluconazole and nystatin against Candida spp. Diagn. Microbiol. Infect. Dis. 2016, 86, 387–391. [Google Scholar] [CrossRef]
- Hirasawa, M.; Takada, K. Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J. Antimicrob. Chemother. 2004, 53, 225–229. [Google Scholar] [CrossRef]
- Anand, R.; Gill, K.D.; Mahdi, A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014, 76 Pt A, 27–50. [Google Scholar] [CrossRef] [PubMed]
- Deepa, A.V.; Thomas, T.D. Plant extracts and phytochemicals targeting Alzheimer’s through acetylcholinesterase inhibition. Explor. Neurosci. 2025, 4, 100697. [Google Scholar] [CrossRef]
- Saqee, A.H.S.; Eruygur, N. Phytochemical Investigation, Antioxidant, and Enzyme Inhibitory Activities of Blackberry (Rubus fruticosus) Fruits. Curr. Perspect. Med. Aromat. Plants 2024, 7, 34–40. [Google Scholar] [CrossRef]
- Yener, I. The Phenolic Content and Bioactivity Assessment of Rubus sanctus Schreber Species with Potential for Food and Ethnopharmacological Uses. Chem. Biodivers. 2025, 22, e202500034. [Google Scholar] [CrossRef]
- Szwajgier, D. Anticholinesterase Activity of Phenolic Acids and their Derivatives. Z. Naturforschung C 2013, 68, 125–132. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother. Res. 2016, 30, 1265–1286. [Google Scholar] [CrossRef]
- Roseiro, L.B.; Rauter, A.P.; Serralheiro, M.L.M. Polyphenols as acetylcholinesterase inhibitors: Structural specificity and impact on human disease. Nutr. Aging 2012, 1, 99–111. [Google Scholar] [CrossRef]
- Oboh, G.; Agunloye, O.M.; Akinyemi, A.J.; Ademiluyi, A.O.; Adefegha, S.A. Comparative Study on the Inhibitory Effect of Caffeic and Chlorogenic Acids on Key Enzymes Linked to Alzheimer’s Disease and Some Pro-oxidant Induced Oxidative Stress in Rats’ Brain-In Vitro. Neurochem. Res. 2013, 38, 413–419. [Google Scholar] [CrossRef]
- Erdogan Orhan, I.; Küpeli Akkol, E.; Suntar, I.; Yesilada, E. Assessment of anticholinesterase and antioxidant properties of the extracts and (+)-catechin obtained from Arceuthobium oxycedri (D.C.) M. Bieb (dwarf mistletoe). S. Afr. J. Bot. 2019, 120, 309–312. [Google Scholar] [CrossRef]
- Mangmool, S.; Kunpukpong, I.; Kitphati, W.; Anantachoke, N. Antioxidant and Anticholinesterase Activities of Extracts and Phytochemicals of Syzygium antisepticum Leaves. Molecules 2021, 26, 3295. [Google Scholar] [CrossRef]
- Kaur, A.; Randhawa, K.; Singh, V.; Shri, R. Bioactivity-Guided Isolation of Acetylcholinesterase Inhibitor from Ganoderma mediosinense (Agaricomycetes). Int. J. Med. Mushrooms 2019, 21, 755–763. [Google Scholar] [CrossRef]
- Okello, E.J.; Mather, J. Comparative Kinetics of Acetyl- and Butyryl-Cholinesterase Inhibition by Green Tea Catechins|Relevance to the Symptomatic Treatment of Alzheimer’s Disease. Nutrients 2020, 12, 1090. [Google Scholar] [CrossRef]
- Moss, D.E.; Perez, R.G. Anti-Neurodegenerative Benefits of Acetylcholinesterase Inhibitors in Alzheimer’s Disease: Nexus of Cholinergic and Nerve Growth Factor Dysfunction. Curr. Alzheimer Res. 2021, 18, 1010–1022. [Google Scholar] [CrossRef]
- Tripathi, P.N.; Lodhi, A.; Rai, S.N.; Nandi, N.K.; Dumoga, S.; Yadav, P.; Tiwari, A.K.; Singh, S.K.; El-Shorbagi, A.A.; Chaudhary, S. Review of Pharmacotherapeutic Targets in Alzheimer’s Disease and Its Management Using Traditional Medicinal Plants. Degener. Neurol. Neuromuscul. Dis. 2024, 14, 47–74. [Google Scholar] [CrossRef] [PubMed]
- Follmer, C. Ureases as a target for the treatment of gastric and urinary infections. J. Clin. Pathol. 2010, 63, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Norsworthy, A.N.; Pearson, M.M. From Catheter to Kidney Stone: The Uropathogenic Lifestyle of Proteus mirabilis. Trends Microbiol. 2017, 25, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Rego, Y.F.; Queiroz, M.P.; Brito, T.O.; Carvalho, P.G.; de Queiroz, V.T.; de Fátima, Â.; Macedo, F., Jr. A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. J. Adv. Res. 2018, 13, 69–100. [Google Scholar] [CrossRef]
- Yang, W.; Feng, Q.; Peng, Z.; Wang, G. An overview on the synthetic urease inhibitors with structure-activity relationship and molecular docking. Eur. J. Med. Chem. 2022, 234, 114273. [Google Scholar] [CrossRef]
- Al-Rooqi, M.M.; Mughal, E.U.; Raja, Q.A.; Hussein, E.M.; Naeem, N.; Sadiq, A.; Asghar, B.H.; Moussa, Z.; Ahmed, S.A. Flavonoids and related privileged scaffolds as potential urease inhibitors: A review. RSC Adv. 2023, 13, 3210–3233. [Google Scholar] [CrossRef]
- Svane, S.; Sigurdarson, J.J.; Finkenwirth, F.; Eitinger, T.; Karring, H. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci. Rep. 2020, 10, 8503. [Google Scholar] [CrossRef]
- Li, Y.; Zou, H.; Sun-Waterhouse, D.; Chen, Y. Chlorogenic acid, caffeic acid and luteolin from dandelion as urease inhibitors: Insights into the molecular interactions and inhibition mechanism. J. Sci. Food Agric. 2024, 104, 8079–8088. [Google Scholar] [CrossRef] [PubMed]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics 2022, 11, 1014. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.W.; Ho, J.N.; Lee, Y.H.; Shin, D.H.; Hong, B.S.; Cho, H.Y. Isolation and characterization of Helicobacter pylori urease inhibitor from Rubus coreanus Miquel. J. Korean Soc. Food Sci. Nutr. 2004, 33, 769–777. [Google Scholar] [CrossRef]
- Shaito, A.A.; Omairi, I.; Al-Thani, N.; Seglab, F.; Ad-Darwish, E.; Kobeissy, F.; Nasreddine, S. Determination of Medicago orbicularis Antioxidant, Antihemolytic, and Anti-Cancerous Activities and Its Augmentation of Cisplatin-Induced Cytotoxicity in A549 Lung Cancer Cells. Plants 2024, 13, 442. [Google Scholar] [CrossRef]
- Suffness, M. Assays Related to Cancer Drug Discovery. In Methods in Plant Biochemistry: Assays for Bioactivity; Hostettmann, K., Ed.; Academic Press: London, UK, 1990; Volume 6, pp. 71–133. [Google Scholar]
- Triggiani, D.; Ceccarelli, D.; Cusi, M.G.; Paffetti, A.; Braconi, D.; Millucci, L.; Bernardini, G.; Santucci, A. Rubus ulmifolius Leaf Extract Inhibits Proliferation of Murine Myeloma Cells. Med. Aromat. Plant Sci. Biotechnol. 2012, 6, 37–41. [Google Scholar] [CrossRef]
- Da Silva, L.P.; Pereira, E.; Prieto, M.A.; Simal-Gandara, J.; Pires, T.C.S.P.; Alves, M.J.; Calhelha, R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott as a Novel Source of Food Colorant: Extraction Optimization of Coloring Pigments and Incorporation in a Bakery Product. Molecules 2019, 24, 2181. [Google Scholar] [CrossRef]
- Rahmoun, A.; Ghanemi, F.Z.; Chenni, F.Z.; Benariba, K.; Mamoun, C.; Soualem, Z.; Chaib, F.; Kharoubi, O.; Tabbene, O.; Essid, R. Rubus ulmifolius leaves as a promising natural remedy: Focus on antioxidant, anti-inflammatory, and hepatoprotective activities. Int. J. Environ. Health Res. 2025, 1–13. [Google Scholar] [CrossRef]
- Jiang, Y.; Pei, J.; Zheng, Y.; Miao, Y.-j.; Duan, B.-z.; Huang, L.-f. Gallic Acid: A Potential Anti-Cancer Agent. Chin. J. Integr. Med. 2022, 28, 661–671. [Google Scholar] [CrossRef]
- Rezaei-Seresht, H.; Cheshomi, H.; Falanji, F.; Movahedi-Motlagh, F.; Hashemian, M.; Mireskandari, E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J. Phytomed. 2019, 9, 574–586. [Google Scholar] [CrossRef]
- Kuo, C.; Lai, K.; Ma, Y.; Weng, S.; Lin, J.; Chung, J. Gallic acid inhibits migration and invasion of SCC-4 human oral cancer cells through actions of NF-κB, Ras and matrix metalloproteinase-2 and -9. Oncol. Rep. 2014, 32, 355–361. [Google Scholar] [CrossRef]
- Subramanian, A.P.; John, A.A.; Vellayappan, M.V.; Balaji, A.; Jaganathan, S.K.; Supriyanto, E.; Yusof, M. Gallic Acid: Prospects and Molecular Mechanisms of Its Anticancer Activity. RSC Adv. 2015, 5, 35608–35621. [Google Scholar] [CrossRef]
- Secme, M.; Mutlu, D.; Elmas, L.; Arslan, S. Assessing effects of caffeic acid on cytotoxicity, apoptosis, invasion, GST enzyme activity, oxidant, antioxidant status and micro-RNA expressions in HCT116 colorectal cancer cells. S. Afr. J. Bot. 2023, 157, 19–26. [Google Scholar] [CrossRef]
- Pelinson, L.P.; Assmann, C.E.; Palma, T.V.; da Cruz, I.B.M.; Pillat, M.M.; Mânica, A.; Stefanello, N.; Weis, G.C.C.; de Oliveira Alves, A.; de Andrade, C.M.; et al. Antiproliferative and apoptotic effects of caffeic acid on SK-Mel-28 human melanoma cancer cells. Mol. Biol. Rep. 2019, 46, 2085–2092. [Google Scholar] [CrossRef]
- Sun, H.; Yin, M.; Hao, D.; Shen, Y. Anti-Cancer Activity of Catechin against A549 Lung Carcinoma Cells by Induction of Cyclin Kinase Inhibitor p21 and Suppression of Cyclin E1 and P–AKT. Appl. Sci. 2020, 10, 2065. [Google Scholar] [CrossRef]
- Guruvayoorappan, C.; Kuttan, G. (+)-Catechin inhibits tumour angiogenesis and regulates the production of nitric oxide and TNF-α in LPS-stimulated macrophages. Innate Immun. 2008, 14, 160–174. [Google Scholar] [CrossRef]
- Cortez, N.; Villegas, C.; Burgos, V.; Cabrera-Pardo, J.R.; Ortiz, L.; González-Chavarría, I.; Nchiozem-Ngnitedem, V.-A.; Paz, C. Adjuvant Properties of Caffeic Acid in Cancer Treatment. Int. J. Mol. Sci. 2024, 25, 7631. [Google Scholar] [CrossRef]
- Maity, S.; Kinra, M.; Nampoothiri, M.; Arora, D.; Pai, K.S.R.; Mudgal, J. Caffeic acid, a dietary polyphenol, as a promising candidate for combination therapy. Chem. Pap. 2022, 76, 1271–1283. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Sun, Y.; Tan, J.; Miao, Y.; Zhang, Q. The role of PD-L1 in the immune dysfunction that mediates hypoxia-induced multiple organ injury. Cell Commun. Signal. 2021, 19, 76. [Google Scholar] [CrossRef]
- Elpek, G.O. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update. World J. Clin. Cases 2021, 9, 4890–4917. [Google Scholar] [CrossRef]
- Zong, Z.; Wei, Y.; Ren, J.; Zhang, L.; Zhou, F. The intersection of COVID-19 and cancer: Signaling pathways and treatment implications. Mol. Cancer 2021, 20, 76. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, J.C.; Bhowmick, N.A.; Karlstaedt, A. Metabolic basis of cardiac dysfunction in cancer patients. Curr. Opin. Cardiol. 2024, 39, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Pakiet, A.; Kobiela, J.; Stepnowski, P.; Sledzinski, T.; Mika, A. Changes in lipids composition and metabolism in colorectal cancer: A review. Lipids Health Dis. 2019, 18, 29. [Google Scholar] [CrossRef] [PubMed]
- Gunji, T.; Tomita, K.; Koganezawa, I.; Nakagawa, M.; Yokozuka, K.; Ochiai, S.; Kobayashi, T.; Sano, T.; Tabuchi, S.; Chiba, N.; et al. Impact of atherosclerosis on the postoperative complications of colorectal surgery in older patients with colorectal cancer. BMC Gastroenterol. 2022, 22, 519. [Google Scholar] [CrossRef]
- Paunica, I.; Silaghi, A.; Bălan, D.G.; Socea, B.; Balalau, C.; Groseanu, F.S.; Popescu, G.A.; Epistatu, D.; Constantin, V.D. Diabetic Patients and Postoperative Complications in Colorectal Surgery. J. Mind Med. Sci. 2024, 11, 33–41. [Google Scholar] [CrossRef]
- Zhang, F.; Qiao, S. Research Progress on the Relationship Between Inflammation and Colorectal Cancer. Ann. Gastroenterol. Surg. 2022, 6, 204–211. [Google Scholar] [CrossRef]
- Gründker, C.; Emons, G. Role of Gonadotropin-Releasing Hormone (GnRH) in Ovarian Cancer. Cells 2021, 10, 437. [Google Scholar] [CrossRef]
- Mungenast, F.; Thalhammer, T. Estrogen biosynthesis and action in ovarian cancer. Front. Endocrinol. 2014, 5, 192. [Google Scholar] [CrossRef]
- Du, Y.; Karatekin, F.; Wang, W.K.; Hong, W.; Boopathy, G.T.K. Cracking the EGFR code: Cancer biology, resistance mechanisms, and future therapeutic frontiers. Pharmacol. Rev. 2025, 77, 100076. [Google Scholar] [CrossRef]
- Aotsuka, A.; Matsumoto, Y.; Arimoto, T.; Kawata, A.; Ogishima, J.; Taguchi, A.; Tanikawa, M.; Sone, K.; Mori-Uchino, M.; Tsuruga, T.; et al. Interleukin-17 is associated with expression of programmed cell death 1 ligand 1 in ovarian carcinoma. Cancer Sci. 2019, 110, 3068–3078. [Google Scholar] [CrossRef]
- Nieman, K.M.; Kenny, H.A.; Penicka, C.V.; Ladanyi, A.; Buell-Gutbrod, R.; Zillhardt, M.R.; Romero, I.L.; Carey, M.S.; Mills, G.B.; Hotamisligil, G.S.; et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 2011, 17, 1498–1503. [Google Scholar] [CrossRef]
- Lee, W.; Song, G.; Bae, H. Review of synergistic anticancer effects of natural compounds combined with conventional therapeutics against chemoresistance and progression of pancreatic cancer. Mol. Cell. Toxicol. 2025, 21, 455–471. [Google Scholar] [CrossRef]
- Makhoba, X.H.; Ragno, R.; Kaiser, A.; Agostinelli, E. An Undefined Interaction between Polyamines and Heat Shock Proteins Leads to Cellular Protection in Plasmodium falciparum and Proliferating Cells in Various Organisms. Molecules 2023, 28, 1686. [Google Scholar] [CrossRef]
- Snezhkina, A.V.; Krasnov, G.S.; Lipatova, A.V.; Sadritdinova, A.F.; Kardymon, O.L.; Fedorova, M.S.; Melnikova, N.V.; Stepanov, O.A.; Zaretsky, A.R.; Kaprin, A.D.; et al. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPβ rather than Enterotoxigenic Bacteroides fragilis Infection. Oxid. Med. Cell. Longev. 2016, 2016, 2353560. [Google Scholar] [CrossRef]
- Chen, Y.; León-Letelier, R.A.; Abdel Sater, A.H.; Vykoukal, J.; Dennison, J.B.; Hanash, S.; Fahrmann, J.F. c-MYC-Driven Polyamine Metabolism in Ovarian Cancer: From Pathogenesis to Early Detection and Therapy. Cancers 2023, 15, 623. [Google Scholar] [CrossRef] [PubMed]
- Meyskens, F.L., Jr.; McLaren, C.E.; Pelot, D.; Fujikawa-Brooks, S.; Carpenter, P.M.; Hawk, E.; Kelloff, G.; Lawson, M.J.; Kidao, J.; McCracken, J.; et al. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: A randomized placebo-controlled, double-blind trial. Cancer Prev. Res. 2008, 1, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Barboucha, G.; Rahim, N.; Boulebd, H.; Bramki, A.; Andolfi, A.; Salvatore, M.M.; Masi, M. Chemical Composition, In Silico Investigations and Evaluation of Antifungal, Antibacterial, Insecticidal and Repellent Activities of Eucalyptus camaldulensis Dehn. Leaf Essential Oil from ALGERIA. Plants 2024, 13, 3229. [Google Scholar] [CrossRef] [PubMed]
- Bramki, A.; Barboucha, G.; Benslama, O.; Andolfi, A.; Makhlouf, F.Z.; Smati, M.; Benouchenne, D.; Moussaoui, M.; Bensouici, C.; Cimmino, A.; et al. Bioactive Potential and Chemical Composition of Vitex agnus-castus L. Leaf Extracts Collected in Algeria: A Combined In Vitro and In Silico Approach. Molecules 2025, 30, 749. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Taha, M.; Ullah, H.; Al Muqarrabun, L.M.R.; Khan, M.N.; Rahim, F.; Ahmat, N.; Javid, M.T.; Ali, M.; Khan, K.M. Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies. Bioorg. Med. Chem. 2018, 26, 152–160. [Google Scholar] [CrossRef]
- Seglab, F.; Abou Assali, M.; AlYafei, T.; Hassan, H.; Pinto, D.C.G.A.; Baydoun, S.; Al Thani, A.A.; Shaito, A.A. Chemical Composition, Antioxidant Capacity, and Anticancerous Effects against Human Lung Cancer Cells of a Terpenoid-Rich Fraction of Inula viscosa. Biology 2024, 13, 687. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 2019, 47, D1038–D1043. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
Zone of Inhibition (mm) | |||||
---|---|---|---|---|---|
C. albicans | A. niger | A. fumigatus | Penicillium sp. | F. oxysporum | |
EtOAc extract | 22.5 ± 0.7 d | 18.0 ± 1.0 f | 24.0 ± 0.6 d | 26.8 ± 1.3 c | 18.0 ± 1.0 e |
Nystatin | 31.5 ± 0.8 b | 35.0 ± 0.9 a | 36.8 ± 1.2 a | 32.5 ± 0.6 b | 30.5 ± 0.3 b |
IC50 (μg/mL) | ||
---|---|---|
BchE | AchE | |
EtOAc Extract | 274.93 ± 2.32 | 92.94 ± 1.97 |
Galantamine | 35.41 ± 0.52 | 7.14 ± 0.88 |
IC50 (µg/mL) | |
---|---|
EtOAc Extract | 262.60 ± 1.41 |
Thiourea | 11.57 ± 0.68 |
HT-29 | SK-OV-3 | A549 | |
---|---|---|---|
IC50 (µg/mL) | 2.41 ± 0.13 | 4.63 ± 0.26 | >20 |
Binding Energy (Kcal/mol) | Hydrogen Interactions (Distance Å) | Hydrophobic Interactions | |||
---|---|---|---|---|---|
EGFR (1M17) | Co-crystallized ligand | 4-anilinoquinazoline | −8.01 | Met769 (2.54), Gln767 (2.32), Thr830 (3.14) | Leu820(2), Ala719 (2), Leu764, Lys721 (2), Met769, Leu694 |
Best docked compounds | Catechin | −7.56 | Met769 (3.22), Asp831 (2.55) | Leu820, Leu694, Val702 (2), Ala719 (3), Lys721 (2), Leu764 | |
Caffeic acid | −6.85 | Met769 (1.68), Lys721 (2.48), Glu738 (2.36) | Ala719, Lys721 | ||
Fructofuranose | −6.12 | Thr766 (2.55), Thr766 (2.82), Thr766 (2.96), Thr830 (1.98), Thr830 (2.87), Asp831 (2.15), Glu738 (2.69) | - | ||
Gallic acid | −5.17 | Asp831 (2.44) | Ala719, Val702, Lys721 | ||
ESR1 (1A52) | Co-crystallized ligand | Estradiol | −7.80 | His524 (2.57), Arg394 (3.34), Glu353 (3.41) | Leu391, Phe404 (2), Ala350, Leu387, Let388, Leu384, Ile424, His524, Met421, Leu525, Leu346 |
Best docked compounds | Catechin | −7.32 | Arg394 (2.65), Glu353 (2.74), Gly512 (2.25), Leu346 (2.63), Leu387 (2.47) | Leu391, Ala350, Phe404, Met421, Leu356, Leu387 | |
Caffeic acid | −5.91 | Leu346 (2.82), Leu525 (2.52) | Phe404, Ala350 | ||
Fructofuranose | −5.18 | Thr347 (3.16), Gly521 (2.50), Gly521 (2.82), His524 (2.36) | - | ||
Gallic acid | −6.04 | Glu353 (2.51), Glu353 (2.58), Leu346 (3.36) | Ala350, Phe404, Leu391, Leu387 | ||
PTGS2 (3LN1) | Co-crystallized ligand | Celecoxib | −9.31 | Arg499 (2.30), Gln178 (2.48), Leu338 (2.51), Ser339 (2.71), Arg106 (3.42) | Ser339, Val509, Leu517, Ala513, Val335 (2), Gly512, Tyr371, Trp373, Leu370 |
Best docked compounds of olive oil | Catechin | −7.89 | Arg499 (2.68) | Val335 (2), Ala513 (2), Leu517, Val509 (2) | |
Caffeic acid | −6.92 | Ser339 (2.48), Tyr341(2.69) | Val509, Ser339 | ||
Fructofuranose | −5.89 | Ser339 (3.48), Ser339 (2.61) | - | ||
Gallic acid | −6.33 | Ser516 (2.49), Tyr371 (2.62), Val509 (2.72) | Val335, Leu338, Ala513, Gly512 | ||
STAT3 (6NUQ) | Reference inhibitor | Stattic | −7.41 | Ser611 (1.84), Ser611 (2.50), Glu612 (2.45), Ser613 (2.04), Ser613 (2.46), Lys591 (3.08), | Pro639 |
Best docked compounds | Catechin | −8.12 | Arg609 (2.25), Arg609 (2.51), Pro639 (2.44), Val637 (2.49), Ser636 (2.53), Ser613 (2.83), Lys591(2.36) | Pro639 | |
Caffeic acid | −7.08 | Ser611 (2.54), Arg609 (2.78), Lys591 (2.92), Glu638 (3.43) | Pro639 | ||
Fructofuranose | −6.11 | Ser611 (3.25), Ser611 (2.55), Ser613 (2.95), Ser613 (2.46), Glu612 (2.38), Arg609 (2.74), Arg609 (2.69), Lys591 (2.60), Lys591 (2.48), Val637 (2.65) | - | ||
Gallic acid | −6.75 | Ser611 (2.44), Ser611 (3.12), Ser613 (2.74), Glu612 (2.52), Arg609 (3.45), Val637 (2.35) | Pro639 |
Compound | RT | RI |
---|---|---|
D-(-)-Fructofuranose | 12.669 | 1831 |
Gallic acid | 13.28 | 1974 |
Caffeic acid | 13.916 | 2148 |
Catechin | 18.28 | 2900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bramki, A.; Barboucha, G.; Benslama, O.; Seglab, F.; Makhlouf, F.Z.; Nessah, S.; Bensouici, C.; Masi, M.; Shaito, A.A. Therapeutic Insights into Rubus ulmifolius Schott Leaf Extract: In Vitro Antifungal, Enzyme Inhibition, and Anticancer Activities Integrated with Network Pharmacology and Molecular Docking Analyses of Colorectal and Ovarian Cancer. Pharmaceuticals 2025, 18, 1563. https://doi.org/10.3390/ph18101563
Bramki A, Barboucha G, Benslama O, Seglab F, Makhlouf FZ, Nessah S, Bensouici C, Masi M, Shaito AA. Therapeutic Insights into Rubus ulmifolius Schott Leaf Extract: In Vitro Antifungal, Enzyme Inhibition, and Anticancer Activities Integrated with Network Pharmacology and Molecular Docking Analyses of Colorectal and Ovarian Cancer. Pharmaceuticals. 2025; 18(10):1563. https://doi.org/10.3390/ph18101563
Chicago/Turabian StyleBramki, Amina, Ghozlane Barboucha, Ouided Benslama, Fatiha Seglab, Fatima Zohra Makhlouf, Sirine Nessah, Chawki Bensouici, Marco Masi, and Abdullah A. Shaito. 2025. "Therapeutic Insights into Rubus ulmifolius Schott Leaf Extract: In Vitro Antifungal, Enzyme Inhibition, and Anticancer Activities Integrated with Network Pharmacology and Molecular Docking Analyses of Colorectal and Ovarian Cancer" Pharmaceuticals 18, no. 10: 1563. https://doi.org/10.3390/ph18101563
APA StyleBramki, A., Barboucha, G., Benslama, O., Seglab, F., Makhlouf, F. Z., Nessah, S., Bensouici, C., Masi, M., & Shaito, A. A. (2025). Therapeutic Insights into Rubus ulmifolius Schott Leaf Extract: In Vitro Antifungal, Enzyme Inhibition, and Anticancer Activities Integrated with Network Pharmacology and Molecular Docking Analyses of Colorectal and Ovarian Cancer. Pharmaceuticals, 18(10), 1563. https://doi.org/10.3390/ph18101563