Innovative Amino-Functionalization of Pyrido[2,3-d]pyrimidine Scaffolds for Broad Therapeutic Applications Supported by Computational Analyses
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemical Part
2.2. Biological Evaluation
2.2.1. Antiproliferative In Vitro Potency
Best Compounds Based on SI (Selectivity)
- Compound 1 achieved the highest SI values, making it the most selective among all compounds: 20.51 on MCF-7 cells, 13.83 on HepG-2 cells, and 12.98 on HeLa cells.
- Compound 2 also showed good selectivity, but it was lower than both Compound 1 and Erlotinib. Based on this analysis, Future studies should concentrate on comprehending Compound 1’s mode of action and how it achieves this exceptional efficacy and selectivity.
Structure-Activity Relationship Study
2.2.2. In Vitro Inhibitory Activity Evaluation Against Wild EGFR, Mutant EGFR (L858R), and EGFR (T790M)
2.2.3. 1,3-Dimethyl-2,4-dioxopyrido[2,3-d]pyrimidine 1 Cell Cycle Arrest and Apoptosis
2.2.4. Wound Healing Assay
2.2.5. In Vitro Antibacterial Activity
2.3. Computational Studies
2.3.1. ADMET In Silico Prediction
2.3.2. Docking Simulation
2.3.3. Molecular Dynamics Simulations
2.3.4. Quantum Chemical Calculation
Computational Profiling and Global Reactivity Descriptors
Frontier Molecular Orbitals and Hardness/Softness
Electrostatic Potential (ESP) Mapping and Areal Distribution
Composite Bioactivity Score and Compound Ranking
- Compound 5 (1.0834): Balanced softness (S ≈ 34.30), moderate electrophilicity (ω ≈ 1.35), favorable ESP profile.
- Compound 12 (1.0668): Despite a higher ΔE (0.0776 eV), advantageous ESP distribution enhanced its ranking.
- Compound 2 (0.8306): Extremely low ΔE and high softness/electrophilicity, but negative ESP bias reduced its score.
- Compounds 4 (0.6380) and 1 (0.6363): Moderate predicted activity.
Interplay Between Global and Local Descriptors
Charge Transfer Capacity
Implications for SAR and Lead Prioritization
Limitations and Outlook
Target Compound Selection (Compound 1)
3. Materials and Methods
3.1. Chemistry
3.1.1. Synthesis of Ethyl 7-amino-5-(4-chlorophenyl)-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carboxylate (1)
3.1.2. 7-Amino-5-(4-chlorophenyl)-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine 6-carbohydrazide (2)
3.1.3. 7-Amino-5-(4-chlorophenyl)-N-(4-hydrazinyl-1H-pyrazol-3-yl)-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carboxamide (3)
3.1.4. 7-Amino-6-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-5-(4-chlorophenyl)-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (4)
3.1.5. 7-Amino-5-(4-chlorophenyl)-N-(hydrazinecarbonothioyl)-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carboxamide (5)
3.1.6. 7-Amino-5-(4-chlorophenyl)-6-(3,5-dimethyl-1H-pyrazole-1-carbonyl)-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (6)
3.1.7. 7-Amino-5-(4-chlorophenyl)-6-(5-mercapto-1,3,4-oxadiazol-2-yl)-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (7)
3.1.8. 3-Amino-5-[7-amino-5-(4-chlorophenyl)-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidin-6-yl]-4H-pyrazole-4-carbonitrile (8)
3.1.9. 3-{5-[7-Amino-5-(4-chlorophenyl)-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrido [2,3-d]pyrimidin-6-yl]-2-thioxo-1,3,4-oxadiazol-3(2H)-yl}propanenitrile (9)
3.1.10. 6-{4-[2-(2H-Tetrazol-5-yl)ethyl]-5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl}-7-amino-5-(4-chlorophenyl)-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (10)
3.1.11. 7-Amino-5-(4-chlorophenyl)-1,3-dimethyl-6-(4-oxo-3a,5-dihydro-4H-pyrazolo [3,4-d]pyrimidin-3-yl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (11)
3.1.12. 7-Amino-6-(4-amino-3aH-pyrazolo [3,4-d]pyrimidin-3-yl)-5-(4-chlorophenyl)-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (12)
3.1.13. 7-Amino-5-(4-chlorophenyl)-N-(3,5-dimethyl-1′H-[1,4′-bipyrazol]-3′-yl)-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carboxamide (13)
3.1.14. 7-Amino-6-(6-chloro-7H-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazin-3-yl)-5-(4-chlorophenyl)-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (14)
3.1.15. 7-Amino-5-(4-chlorophenyl)-6-(6-mercapto-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl)-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (15)
3.1.16. 7-Amino-5-(4-chlorophenyl)-1,3-dimethyl-N-(3-methyl-5-oxo-4,5-dihydro-1H-pyrazole-1-carbonothioyl)-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carboxamide (16)
3.2. Biological Activity
3.2.1. Assessment of Antiproliferative Activity
3.2.2. In Vitro Enzyme Inhibitory Assay Against EGFRWT, Mutant EGFRL858R, and EGFRT790M
3.2.3. Cell Cycle and Apoptosis Analysis
3.2.4. In Vitro Wound Healing Assessment
3.2.5. In Vitro Antibacterial Assessment
3.3. Computational Studies
3.3.1. ADMET In Silico Evaluation
3.3.2. Docking Simulation
3.3.3. Molecular Dynamics Simulation
3.3.4. Quantum Chemical Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Filho, A.M.; Laversanne, M.; Ferlay, J.; Colombet, M.; Piñeros, M.; Znaor, A.; Parkin, D.M.; Soerjomataram, I.; Bray, F. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide. Int. J. Cancer 2025, 156, 1336–1346. [Google Scholar] [CrossRef]
- Bizuayehu, H.M.; Ahmed, K.Y.; Kibret, G.D.; Dadi, A.F.; Belachew, S.A.; Bagade, T.; Tegegne, T.K.; Venchiarutti, R.L.; Kibret, K.T.; Hailegebireal, A.H.; et al. Global disparities of cancer and its projected burden in 2050. JAMA Netw. Open 2024, 7, e2443198. [Google Scholar] [CrossRef]
- Ge, M.; Chen, X.Y.; Huang, P.; Fleishman, J.S.; Yang, D.H.; Wu, Z.X.; Chen, Z.S. Understanding and overcoming multidrug resistance in cancer. Nat. Rev. Clin. Oncol. 2025, 22, 760–780. [Google Scholar] [CrossRef]
- Yao, L.; Jiang, B.; Xu, D. Strategies to combat cancer drug resistance: Focus on copper metabolism and cuproptosis. Cancer Drug Resist. 2025, 8, 15. [Google Scholar] [CrossRef]
- Wu, G.Y.; Xiao, M.Z.; Hao, W.C.; Yang, Z.S.; Liu, X.R.; Xu, D.S.; Peng, Z.X.; Zhang, L.Y. Drug resistance in breast cancer: Mechanisms and strategies for management. Drug Resist. Updat. 2025, 83, 101288. [Google Scholar] [CrossRef]
- Shyamsunder, S.; Lu, Z.; Takiar, V.; Waltz, S.E. Challenges and resistance mechanisms to EGFR targeted therapies in head and neck cancers and breast cancer: Insights into RTK dependent and independent mechanisms. Oncotarget 2025, 16, 508. [Google Scholar] [CrossRef]
- Bouchard, N.; Daaboul, N. Lung cancer: Targeted therapy in 2025. Curr. Oncol. 2025, 32, 146. [Google Scholar] [CrossRef]
- da Silva Santos, E.; Nogueira, K.A.B.; Fernandes, L.C.C.; Martins, J.R.P.; Reis, A.V.F.; Neto, J.D.B.V.; da Silva Júnior, I.J.; Pessoa, C.; Petrilli, R.; Eloy, J.O. EGFR targeting for cancer therapy: Pharmacology and immunoconjugates with drugs and nanoparticles. Int. J. Pharm. 2021, 592, 120082. [Google Scholar] [CrossRef]
- Khan, M.N.; Farooq, U.; Khushal, A.; Wani, T.A.; Zargar, S.; Khan, S. Unraveling potential EGFR kinase inhibitors: Computational screening, molecular dynamics insights, and MMPBSA analysis for targeted cancer therapy development. PLoS ONE 2025, 20, e0321500. [Google Scholar] [CrossRef]
- Pan, Q.; Lu, Y.; Xie, L.; Wu, D.; Liu, R.; Gao, W.; Luo, K.; He, B.; Pu, Y. Recent advances in boosting EGFR tyrosine kinase inhibitors-based cancer therapy. Mol. Pharm. 2023, 20, 829–852. [Google Scholar] [CrossRef]
- Shen, Q.; Tang, H.; Chen, S. EGFR-TKIs for lung cancer treatment: Development, application, and side effects. Front. Oncol. 2025, 15, 1617788. [Google Scholar] [CrossRef]
- Soliman, S.M.; Abdel-Rahman, A.A.; Nossier, E.S.; Hussein, M.F.; Sabry, A.; El-Hema, H.S. Design, antiproliferative potency, and in silico studies of novel 5-(methylfuran-3-yl)thio)-3-phenylquinazolin-4(3H)-one based derivatives as potential EGFR inhibitors. Sci. Rep. 2025, 15, 27992. [Google Scholar] [CrossRef]
- Popper, H.H.; Ryska, A.; Timar, J.; Olszewski, W. Molecular pathology of lung cancer: Current status and perspectives. Transl. Lung Cancer Res. 2014, 3, 291–300. [Google Scholar]
- Thomas, R.; Weihua, Z. Rethinking EGFR biology: Impact on anti-EGFR cancer therapeutics. Front. Oncol. 2019, 9, 800. [Google Scholar]
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018, 12, 3–20. [Google Scholar] [CrossRef]
- Su, C.; Sun, S.Y. Fourth-generation epidermal growth factor receptor-tyrosine kinases inhibitors: Hope and challenges. Transl. Cancer Res. 2024. 13, 3929–3934. [CrossRef]
- Campos, J.F.; Besson, T.; Berteina-Raboin, S. Review on the Synthesis and Therapeutic Potential of Pyrido[2,3-d], [3,2-d], [3,4-d] and [4,3-d]pyrimidine Derivatives. Pharmaceuticals 2022, 15, 352. [Google Scholar] [CrossRef]
- El Malah, T.; Abdel Mageid, R.E.; Shamroukh, A.H. Review of the Synthesis, Reactions and Pharmaceutical Potential of Pyrido[2,3-d]Pyrimidine Derivatives. Curr. Org. Chem. 2023, 27, 260–281. [Google Scholar] [CrossRef]
- Bandi, S.R.; Kapavarapu, R.; Palabindela, R.; Azam, M.; Min, K.; Narsimha, S. Synthesis of novel pyrido [2, 3-d] pyrimidine-thiazolidine-1, 2, 3-triazoles: Potent EGFR targeting anticancer agents. J. Mol. Struct. 2023, 1294, 136451. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Zhang, X.; Chang, Y.; Fan, H.; Dong, M.; Li, M.; Liu, Y.; Hu, J. Design, synthesis, and biological evaluation of pyrido [2, 3-d] pyrimidine and thieno [2, 3-d] pyrimidine derivatives as novel EGFRL858R/T790M inhibitors. J. Enzyme Inhib. Med. Chem. 2023, 38, 2205605. [Google Scholar] [CrossRef]
- Kumar, A.; Backer, N.; Paliwal, H.; Singh, A.K.; Debbaraman, T.; Singh, V.; Kumar, P. Synthesis and anticancer evaluation of diaryl pyrido [2, 3-d] pyrimidine/alkyl substituted pyrido [2, 3-d] pyrimidine derivatives as thymidylate synthase inhibitors. BMC 2024, 18, 161. [Google Scholar] [CrossRef]
- García-Marín, J.; Griera, M.; Sánchez-Alonso, P.; Di Geronimo, B.; Mendicuti, F.; Rodríguez-Puyol, M.; Alajarín, R.; de Pascual-Teresa, B.; Vaquero, J.J.; Rodríguez-Puyol, D. Pyrrolo[1,2-a]quinoxalines: Insulin mimetics that exhibit potent and selective inhibition against protein tyrosine phosphatase 1B. ChemMedChem 2020, 15, 1788–1801. [Google Scholar] [CrossRef]
- Shaha, C.; Bag, K.; Gangjee, A. A Review on Fused Pyrimidine Systems as EGFR Inhibitors and Their Structure–Activity Relationship. Front. Chem. 2022, 10, 861288. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, P.; Singh, H. Synthesis and anticancer evaluation of novel pyrrole-pyrido[2,3-d]pyrimidine-based compounds as thymidylate synthase inhibitors. Chem. Biol. Drug Des. 2023, 101, 456–468. [Google Scholar] [CrossRef]
- Edupuganti, R.; Wang, Q.; Tavares, C.D.; Chitjian, C.A.; Bachman, J.L.; Ren, P.; Anslyn, E.V.; Dalby, K.N. Synthesis and biological evaluation of pyrido [2, 3-d] pyrimidine-2, 4-dione derivatives as eEF-2K inhibitors. Bioorg. Med. Chem. 2014, 22, 4910–4916. [Google Scholar] [CrossRef]
- Gao, X.; Cen, L.; Li, F.; Wen, R.; Yan, H.; Yao, H.; Zhu, S. Biochemical and biophysical evaluation of pyrido[2,3-d]pyrimidine derivatives. Biochem. Biophys. Res. Commun. 2018, 505, 761–767. [Google Scholar] [CrossRef]
- Jahanshahi, P.; Mamaghani, M.; Haghbin, F.; Hossein Nia, R.; Rassa, M. Synthesis and structural analysis of novel pyrido[2,3-d]pyrimidine derivatives. J. Mol. Struct. 2018, 1155, 520–529. [Google Scholar] [CrossRef]
- Naresh Kumar, R.; Dev, G.J.; Ravikumar, N.; Krishna Swaroop, D.; Debanjan, B.; Bharath, G.; Narsaiah, B.; Jain, S.N.; Gangagni Rao, A. Synthesis and anticancer evaluation of novel pyridopyrimidines. Bioorg. Med. Chem. Lett. 2016, 26, 2927–2930. [Google Scholar] [CrossRef] [PubMed]
- Hurlbert, B.; Valenti, B. 1,4-Dihydropyridines. II. 3,5-Dicarboxylic acid derivatives with hypotensive activity. J. Med. Chem. 1968, 11, 708–710. [Google Scholar] [CrossRef]
- Heber, D.; Heers, C.; Ravens, U. Cardiac effects of novel pyridopyrimidines with calcium antagonist activity. Pharmazie 1993, 48, 537–541. [Google Scholar]
- Keshk, R.M.; Salama, Z.A.; Elsaedany, S.K.; ElRehim, E.M.A.; Beltagy, D.M. Synthesis, antimicrobial, anti-inflammatory, antioxidant and cytotoxicity of new pyrimidine and pyrimidopyrimidine derivatives. Sci. Rep. 2025, 15, 9328. [Google Scholar] [CrossRef]
- Youssef, N.A.; Selim, Y.A.; Shaheen, L.A.; Fadda, A.A.; Gaffer, H.E.; El-Hadidy, S.A. Design and synthesis of novel pyridopyrimidine moieties linked to coumarin ring of potentially active cytotoxic agents and their docking study. Sci. Rep. 2025, 15, 20155. [Google Scholar] [CrossRef]
- Abu-Hashem, A.A.; Al-Hussain, S.A. Design, synthesis, antimicrobial activity, and molecular docking of novel thiazoles, pyrazoles, 1,3-thiazepinones, and 1,2,4-triazolopyrimidines derived from quinoline-pyrido[2,3-d]pyrimidinones. Pharmaceuticals 2024, 17, 1632. [Google Scholar] [CrossRef]
- Hammouda, M.M.; Rashed, M.M.; Elattar, K.M.; Osman, A.M. Synthetic strategies of heterocycle-integrated pyridopyrimidine scaffolds supported by nano-catalysts. RSC Adv. 2023, 13, 11600–11634. [Google Scholar] [CrossRef]
- Abdelgawad, M.A.; Al-Sanea, M.M.; Musa, A.; Elmowafy, M.; El-Damasy, A.K.; Azouz, A.A.; Bakr, R.B. Docking study, synthesis, and anti-inflammatory potential of some new pyridopyrimidine-derived compounds. J. Inflamm. Res. 2022, 15, 15–451. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liu, G.; Zhang, C.; Li, J.; Li, Y.; Liu, L. Fluorescent immunoassay with a copper polymer as the signal label for catalytic oxidation of O-phenylenediamine. Molecules 2022, 27, 3675. [Google Scholar] [CrossRef] [PubMed]
- DeGoey, D.A.; Betebenner, D.A.; Grampovnik, D.J.; Liu, D.; Pratt, J.K.; Tufano, M.D.; He, W.; Krishnan, P.; Pilot-Matias, T.J.; Marsh, K.C.; et al. Discovery of novel NS5A inhibitors for hepatitis C virus. Bioorg. Med. Chem. Lett. 2013, 23, 3627–3630. [Google Scholar] [CrossRef] [PubMed]
- Tandel, H.T.; Patel, S.K. Microwave assisted synthesis and antimicrobial activity of pyridopyrimidines. Indian J. Chem. B 2020, 59, 502–508. [Google Scholar]
- Zohny, Y.M.; Awad, S.M.; Rabie, M.A.; Alsaidan, O.A. Design, synthesis, molecular modeling, and biological evaluation of novel pyrimidine derivatives as potential calcium channel blockers. Molecules 2023, 28, 4869. [Google Scholar] [CrossRef]
- Mohire, P.P.; Chandam, D.R.; Patravale, A.A.; Choudhari, P.; Karande, V.; Ghosh, J.S.; Deshmukh, M.B. Design and synthesis of new pyridopyrimidine-based compounds with anticancer potential. Polycycl. Aromat. Compd. 2020, 42, 137–155. [Google Scholar] [CrossRef]
- D’agostino, L.A.; Sjin, R.T.T.; Niu, D.; McDonald, J.J.; Zhu, Z.; Liu, H.; Mazdiyasni, H.; Petter, R.C.; Singh, J.; Barrague, M.; et al. Substituted Pyrido[2,3-d]Pyrimidines as Inhibitors of Protein Kinases. US Patent 10065966, 4 September 2018. [Google Scholar]
- Kots, A.Y.; Choi, B.K.; Estrella-Jimenez, M.E.; Warren, C.A.; Gilbertson, S.R.; Guerrant, R.L.; Murad, F. Pyridopyrimidine derivatives as inhibitors of cyclic nucleotide synthesis: Application for treatment of diarrhea. Proc. Natl. Acad. Sci. USA 2008, 105, 8440–8445. [Google Scholar] [CrossRef]
- Dasari, S.R.; Tondepu, S.; Vadali, L.R.; Seelam, N. Synthesis and characterization of novel pyridopyrimidine derivatives. Synth. Commun. 2020, 50, 2950–2961. [Google Scholar] [CrossRef]
- Yadav, P.; Shah, K. An overview on synthetic and pharmaceutical prospective of pyrido[2,3-d]pyrimidines scaffold. Chem. Biol. Drug Des. 2020, 97, 633–648. [Google Scholar] [CrossRef]
- Wei, X.; Fan, D.; Dong, H.; Li, M.; Lv, Q.; Zheng, P.; Wang, L. Advances in the synthesis and SAR of pyrido[2,3-d]pyrimidine scaffold. Curr. Pharm. Des. 2025, 31, 1521–1536. [Google Scholar] [CrossRef] [PubMed]
- Jubete, G.; Puig de la Bellacasa, R.; Estrada-Tejedor, R.; Teixidó, J.; Borrell, J.I. Pyrido[2,3-d]pyrimidin-7(8H)-ones: Synthesis and biomedical applications. Molecules 2019, 24, 4161. [Google Scholar] [CrossRef] [PubMed]
- Elsebaie, H.A.; El-Moselhy, T.F.; El-Bastawissy, E.A.; Elberembally, K.M.; Badi, R.M.; Elkaeed, E.B.; Shaldam, M.A.; Eldehna, W.M.; Tawfik, H.O. Development of new thieno[2,3-d]pyrimidines as dual EGFR and STAT3 inhibitors endowed with anticancer and pro-apoptotic activities. Bioorg. Chem. 2024, 143, 107101. [Google Scholar] [CrossRef] [PubMed]
- Kurumurthy, C.; Sambasiva, P.; Veeraswamy, B.; Santhoshkumar, G.; Shanthan, P.; Narsaiah, B.; Velatooru, L.R.; Pamanji, R.; Venkateswara, J. Synthesis of novel alkyltriazole tagged pyrido[2,3-d]pyrimidine derivatives and their anticancer activity. Eur. J. Med. Chem. 2011, 46, 3462–3470. [Google Scholar] [CrossRef]
- Dongre, R.S.; Meshram, J.S.; Selokar, R.S.; Almalki, F.A.; Hadda, T.B. Antibacterial activity of synthetic pyrido[2,3-d]pyrimidines armed with nitrile groups: POM analysis and identification of pharmacophore sites of nitriles as important pro-drugs. New J. Chem. 2018, 42, 15610–15617. [Google Scholar] [CrossRef]
- Zhang, H.J.; Wang, S.B.; Wen, X.; Li, J.Z.; Quan, Z.S. Design, synthesis, and evaluation of the anticonvulsant and antidepressant activities of pyrido[2,3-d]pyrimidine derivatives. Med. Chem. Res. 2016, 25, 1287–1298. [Google Scholar] [CrossRef]
- Nemr, M.T.; AboulMagd, A.M. New fused pyrimidine derivatives with anticancer activity: Synthesis, topoisomerase II inhibition, apoptotic inducing activity and molecular modeling study. Bioorg. Chem. 2020, 103, 104134. [Google Scholar] [CrossRef]
- Sayed, M.T.E.L.; Hussein, H.A.R.; Elebiary, N.M.; Hassan, G.S.; Elmessery, S.M.; Elsheakh, A.R.; Nayel, M.; Abdel-Aziz, H.A. Tyrosine kinase inhibition effects of novel pyrazolo [1,5-a]pyrimidines and pyrido[2,3-d]pyrimidines ligand: Synthesis, biological screening and molecular modeling studies. Bioorg. Chem. 2018, 78, 312–323. [Google Scholar] [CrossRef]
- Eissa, A.A.; Aljamal, K.F.; Ibrahim, H.S.; Allam, H.A. Design and synthesis of novel pyridopyrimidine derivatives with anchoring non-coplanar aromatic extensions of EGFR inhibitory activity. Bioorg. Chem. 2021, 116, 105318. [Google Scholar] [CrossRef]
- Kumar, A.; Bhagat, K.K.; Singh, A.K.; Singh, H.; Angre, T.; Verma, A.; Kumar, P. Medicinal chemistry perspective of pyrido[2,3-d]pyrimidines as anticancer agents. RSC Adv. 2023, 13, 6872–6908. [Google Scholar] [CrossRef]
- Yu, L.; Huang, M.; Xu, T.; Tong, L.; Yan, X.E.; Zhang, Z.; Xu, Y.; Yun, C.; Xie, H.; Ding, K.; et al. A structure-guided optimization of pyrido[2,3-d]pyrimidin-7-ones as selective inhibitors of EGFR L858R/T790M mutant with improved pharmacokinetic properties. Eur. J. Med. Chem. 2017, 126, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Gaber, A.A.; Bayoumi, A.H.; El-Morsy, A.M.; Sherbiny, F.F.; Mehany, A.B.; Eissa, I.H. Design, synthesis and anticancer evaluation of 1H-pyrazolo[3,4-d]pyrimidine derivatives as potent EGFR WT and EGFR T790M inhibitors and apoptosis inducers. Bioorg. Chem. 2018, 80, 375–395. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Wang, Q.; Jiang, T.; Wang, W.; Zhao, J.J. EGFR mutations in non-small cell lung cancer. Oncol. Lett. 2025, 30, 375. [Google Scholar] [CrossRef]
- Elzahabi, H.S.A.; Nossier, E.S.; Alasfoury, R.A.; El-Manawaty, M.; Sayed, S.M.; Elkaeed, E.B.; Metwaly, A.M.; Hagras, M.; Eissa, I.H. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. J. Enzym. Inhib. Med. Chem. 2022, 37, 1053–1076. [Google Scholar] [CrossRef]
- Yang, F.; Liu, J.; Xu, M.; Peng, B. Acquired multiple EGFR mutations-mediated resistance to a third-generation tyrosine kinase inhibitor in a patient with lung adenocarcinoma who responded to afatinib: A case report and literature review. Transl. Lung Cancer Res. 2024, 13, 617–627. [Google Scholar] [CrossRef]
- Wu, W.; Yu, S.; Huang, J.; Qi, Q.; Wu, Y.; Dong, J. Molecular heterogeneity and treatment outcome of EGFR exon 20 insertion mutations in Chinese patients with advanced non-small cell lung cancer: Insights from a large-scale real-world study. BMC Cancer 2024, 24, 1010. [Google Scholar] [CrossRef]
- Satyanarayana, G.; Enriquez, K.T.; Sun, T.; Klein, E.J.; Abidi, M.; Advani, S.M.; Awosika, J.; Bakouny, Z.; Bashir, B.; Berg, S.; et al. Coinfections in Patients with Cancer and COVID-19: A COVID-19 and Cancer Consortium (CCC19) Study. Open Forum Infect. Dis. 2022, 9, ofac037. [Google Scholar] [CrossRef]
- Abdel-Hamid, R.M.; Bayoumi, A.; Abdellateif, M.S.; Nooh, H.A.; Refaat, L.; Kandeel, E.Z.; Hassan, S.S. Bacterial co-infections in cancer patients with COVID-19: Predictors and antimicrobial resistance trends. J. Infect. Dev. Ctries. 2024, 18, 1185–1195. [Google Scholar] [CrossRef]
- Gudiol, C.; Durà-Miralles, X.; Aguilar-Company, J.; Hernández-Jiménez, P.; Martínez-Cutillas, M.; Fernandez-Avilés, F.; Machado, M.; Vázquez, L.; Martín-Dávila, P.; de Castro, N.; et al. Co-infections and superinfections complicating COVID-19 in cancer patients: A multicentre, international study. J. Infect. 2021, 83, 306–313. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, Q.; Chen, Y. Exploration of dual-acting anticancer and antimicrobial compounds: Challenges and prospects. Eur. J. Med. Chem. 2023, 266, 115089. [Google Scholar] [CrossRef]
- Upadhyay, A.; Jha, H.C.; Pal, D.; Kumar, A. Repurposing antibiotics: A dual-action approach against bacteria-induced cancer. Cancer Pathog. Ther. 2025, 3, E01–E11. [Google Scholar] [CrossRef]
- Thankappan, B.; Sivakumar, J.; Asokan, S.; Ramasamy, M.; Pillai, M.M.; Selvakumar, R.; Angayarkanni, J. Dual antimicrobial and anticancer activity of a novel synthetic α-helical antimicrobial peptide. Eur. J. Pharm. Sci. 2021, 161, 105784. [Google Scholar] [CrossRef]
- Elsaedany, S.K.; AbdEllatif Zein, M.; AbdElRehim, E.M.; Keshk, R.M. Synthesis and biological activity studies of novel pyrido[2,3-d]pyrimidines and pyrido[2,3-d]triazines. Russ. J. Bioorg. Chem. 2021, 47, 552–560. [Google Scholar] [CrossRef]
- Popiołek, Ł.; Biernasiuk, A.; Paruch, K.; Malm, A.; Wujec, M. Synthesis and in vitro antimicrobial activity screening of new pipemidic acid derivatives. Arch. Pharm. Res. 2018, 41, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Camarasa, M.; De La Bellacasa, R.P.; González, À.L.; Ondoño, R.; Estrada, R.; Franco, S.; Badia, R.; Esté, J.; Martínez, M.Á.; Teixidó, J.; et al. Design, synthesis and biological evaluation of pyrido[2,3-d]pyrimidin-7-(8H)-ones as HCV inhibitors. Eur. J. Med. Chem. 2016, 115, 463–483. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Nettles, R.E.; Belema, M.; Snyder, L.B.; Nguyen, V.N.; Fridell, R.A.; Serrano-Wu, M.H.; Langley, D.R.; Sun, J.H.; O’Boyle, D.R., II; et al. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 2010, 465, 96–100. [Google Scholar] [CrossRef]
- El-Hema, H.S.; Mady, M.F.; Abdel-Rahman, A.A.H.; Nossier, E.S.; El-Sayed, A.F.; Sabry, A.; El-Feky, M.; Hawata, M.A. Novel pyrimidopyridothiazine based derivatives as potential anticancer and antibacterial agents: A step towards design and synthesis of multi-targeted therapeutics. J. Mol. Struct. 2026, 1349, 143790. [Google Scholar] [CrossRef]
- Dzieszkowski, K.; Barańska, I.; Rafiński, Z. Construction of dihydropyrido[2,3-d]pyrimidine scaffolds via aza-Claisen rearrangement catalyzed by N-heterocyclic carbenes. J. Org. Chem. 2020, 85, 6645–6662. [Google Scholar] [CrossRef] [PubMed]
- Tantawy, E.S.; Nafie, M.S.; Morsy, H.A.; El-Sayed, H.A.; Moustafa, A.H.; Mohammed, S.M. Synthesis of novel bioactive pyrido[2,3-d]pyrimidine derivatives with potent cytotoxicity through apoptosis as PIM-1 kinase inhibitors. RSC Adv. 2024, 14, 11098–11111. [Google Scholar] [CrossRef] [PubMed]
- Toolabi, M.; Basiri, A.; Yaghouti, F.D.; Safdarian, M.; Ayati, A.; Mojaddami, A. Coumarin derivatives as potential anticancer agents: Synthesis, antiproliferative activity, apoptosis, and molecular docking studies. Results Chem. 2025, 16, 102442. [Google Scholar] [CrossRef]
- Kilic-Kurt, Z.; Ozmen, N.; Bakar-Ates, F. Synthesis and anticancer activity of some pyrimidine derivatives with aryl urea moieties as apoptosis-inducing agents. Bioorg. Chem. 2020, 101, 104028. [Google Scholar] [CrossRef]
- Abdelshaheed, M.M.; El Subbagh, H.I.; Tantawy, M.A.; Attia, R.T.; Youssef, K.M.; Fawzy, I.M. Discovery of new pyridine heterocyclic hybrids: Design, synthesis, dynamic simulations, and in vitro and in vivo breast cancer biological assays. RSC Adv. 2023, 13, 15689–15703. [Google Scholar] [CrossRef]
- Todsaporn, D.; Zubenko, A.; Kartsev, V.G.; Mahalapbutr, P.; Geronikaki, A.; Sirakanyan, S.N.; Divaeva, L.N.; Chekrisheva, V.; Yildiz, I.; Choowongkomon, K.; et al. Furopyridine derivatives as potent inhibitors of the wild type, L858R/T790M, and L858R/T790M/C797S EGFR. J. Phys. Chem. B 2024, 128, 12389–12402. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, Y.; Gao, C. Underlying anti-cancer mechanisms of histone deacetylase (HDAC) inhibitors in tamoxifen-resistant breast cancer cells. Iran. J. Basic Med. Sci. 2024, 27, 775. [Google Scholar] [PubMed]
- Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci. 2018, 19, 448. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Gao, C.; Li, R.; Wu, Y.; Kong, H.; Li, Y.; Li, D.; Ampomah-Wireko, M.; Wang, Y.N.; Zhang, E. Synthesis and antimicrobial evaluation of novel quaternary quinolone derivatives with low toxicity and anti-biofilm activity. Eur. J. Med. Chem. 2025, 291, 117591. [Google Scholar] [CrossRef]
- Radini, I.A.M. Design, synthesis, and antimicrobial evaluation of novel pyrazoles and pyrazolyl-1,3,4-thiadiazine derivatives. Molecules 2018, 23, 2092. [Google Scholar] [CrossRef]
- El-Hema, H.S.; Soliman, S.M.; El-Dougdoug, W.; Ahmed, M.H.; Abdelmajeid, A.; Nossier, E.S.; Hussein, M.F.; Alrayes, A.A.; Hassan, M.; Ahmed, N.A.; et al. Design, characterization, antimicrobial activity, and in silico studies of theinothiazoloquinazoline derivatives bearing thiazinone, tetrazole, and triazole moieties. ACS Omega 2025, 10, 9703–9717. [Google Scholar] [CrossRef]
- Mohi El-Deen, E.M.; Anwar, M.M.; El-Gwaad, A.A.A.; Karam, E.A.; El-Ashrey, M.K.; Kassab, R.R. Novel pyridothienopyrimidine derivatives: Design, synthesis and biological evaluation as antimicrobial and anticancer agents. Molecules 2022, 27, 803. [Google Scholar] [CrossRef]
- Hassan, S.A.; Abdullah, M.N. Synthesis of New 4-Thiazolidinone Bearing Thiazole, Assess Anticancer, and Antimicrobial Activities: Insights from DFT, and Molecular Docking. J. Mol. Struct. 2025, 1346, 143181. [Google Scholar] [CrossRef]
- Somkuwar, S.; Chaubey, N. In silico ADME prediction of designed pyrimidine derivatives for antiviral, antimalarial and anticancer potentials. Int. J. Pharm. Res. Dev. 2025, 7, 577–581. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, Y.; Li, L.; Shen, X.; Chen, G.; Wang, X.; Liang, X.; Tan, M.; Huang, Z. Computational approaches in preclinical studies on drug discovery and development. Front. Chem. 2020, 8, 726. [Google Scholar] [CrossRef]
- Abd El-Lateef, H.M.; Ezelarab, H.A.; Ali, A.M.; Alsaggaf, A.T.; Mahdi, W.A.; Alshehri, S.; Aboelez, M.O. Design and evaluation of sulfadiazine derivatives as potent dual inhibitors of EGFR WT and EGFR T790M: Integrating biological, molecular docking, and ADMET analysis. RSC Adv. 2024, 14, 28608–28625. [Google Scholar] [CrossRef] [PubMed]
- Sobh, E.A.; Dahab, M.A.; Elkaeed, E.B.; Alsfouk, B.A.; Ibrahim, I.M.; Metwaly, A.M.; Eissa, I.H. New thieno[2,3-d]pyrimidine derivatives as EGFR WT and EGFR T790M inhibitors: Design, synthesis, antiproliferative activities, docking studies, ADMET, toxicity, MD simulation studies. J. Heterocycl. Chem. 2024, 61, 285–304. [Google Scholar] [CrossRef]
- Eissa, I.H.; Yousef, R.G.; Elkady, H.; Alsfouk, A.A.; Alsfouk, B.A.; Husein, D.Z.; Ibrahim, I.M.; Elkaeed, E.B.; Metwaly, A.M. A new anticancer semisynthetic theobromine derivative targeting EGFR protein: CADDD study. Life 2023, 13, 191. [Google Scholar] [CrossRef]
- Shaban, R.M.; Samir, N.; Nissan, Y.M.; Abouzid, K.A. Design, synthesis, and biological evaluation with molecular dynamics study of novel pyrazolo[3,4-d]pyrimidine derivatives as anti-cancer agents. RSC Adv. 2023, 13, 17074–17096. [Google Scholar] [CrossRef]
- Aboelez, M.O.; Belal, A.; Xiang, G.; Ma, X. Design, synthesis, and molecular docking studies of novel pomalidomide-based PROTACs as potential anti-cancer agents targeting EGFR WT and EGFR T790M. J. Enzyme Inhib. Med. Chem. 2022, 37, 1196–1211. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Ercan, D.; Chen, L.; Yun, C.H.; Li, D.; Capelletti, M.; Cortot, A.B.; Chirieac, L.; Iacob, R.E.; Padera, R.; et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 2009, 462, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Holdgate, G.A.; Tunnicliffe, A.; Ward, W.H.; Weston, S.A.; Rosenbrock, G.; Barth, P.T.; Taylor, I.W.; Pauptit, R.A.; Timms, D. The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: A thermodynamic and crystallographic study. Biochemistry 1997, 36, 9663–9673. [Google Scholar] [CrossRef] [PubMed]
- Love, R.A.; Brodsky, O.; Hickey, M.J.; Wells, P.A.; Cronin, C.N. Crystal structure of a novel dimeric form of NS5A domain I protein from hepatitis C virus. J. Virol. 2009, 83, 4395–4403. [Google Scholar] [CrossRef]
- Abo-Salem, H.M.; Ali, E.A.; El-Mowafi, S.A.; Abdel-Aziz, M.S.; El-Sawy, E.R.; Abd El Salam, H.A. New sulfonamide-tethered coumarin derivatives as potential DNA gyrase inhibitors: Design, synthesis, antimicrobial evaluation, and in silico study. J. Mol. Struct. 2024, 1296, 136860. [Google Scholar] [CrossRef]
Compd. No. | IC50 (Mean ± SD) (µM) | Fold-Change | |||
---|---|---|---|---|---|
EGFR | EGFR_L858R | EGFR_T790M | L858R/WT | T790M/WT | |
1 | 0.093 ± 0.003 | 1.157 ± 0.036 | 0.174 ± 0.006 | 12.44× | 1.87× |
2 | 0.212 ± 0.007 | 1.603 ± 0.050 | 0.854 ± 0.027 | 7.56× | 4.03× |
Erlotinib | 0.051 ± 0.002 | 0.239 ± 0.007 | 0.098 ± 0.003 | 4.69× | 1.92× |
Compounds | MIC (µg/mL) | |||
---|---|---|---|---|
E. coli ATCC25915 | S. aureus ATCC25923 | E. faecalis ATCC29212 | P. aeruginosa ATCC10145 | |
1 | 50 | 100 | 100 | 50 |
12 | 50 | >100 | 100 | 50 |
13 | 50 | >100 | >100 | 100 |
16 | 50 | 100 | 100 | 5 |
Compd. | Violations a | MW b | nHBD c | nHBA d | nRB e | TPSA (Å2) f | MLogP g |
---|---|---|---|---|---|---|---|
Rule | - | ≤500 | ≤5 | ≤10 | ≤10 | ≤140 | ≤4.15 |
1 | 0 (Lipinski & Veber) | 388.80 | 1 | 5 | 4 | 109.21 | 2.86 |
2 | 0 (Lipinski & Veber) | 374.78 | 3 | 5 | 3 | 138.03 | 1.34 |
Cpds. | LUMO | HOMO | ΔE | A | I | X | η | S | ω | ΔN max | ΔN |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −0.168 | −0.2744 | 0.1064 | 0.168 | 0.2744 | 0.2212 | 0.0532 | 18.79699 | 0.919726 | 2.078947 | 63.71053 |
2 | −0.17313 | −0.17791 | 0.00478 | 0.17313 | 0.17791 | 0.17552 | 0.00239 | 418.41 | 12.89007 | 36.71967 | 1427.715 |
3 | −0.17124 | −0.21647 | 0.04523 | 0.17124 | 0.21647 | 0.193855 | 0.022615 | 44.21844 | 1.661718 | 4.285983 | 150.4786 |
4 | −0.18425 | −0.24145 | 0.0572 | 0.18425 | 0.24145 | 0.21285 | 0.0286 | 34.96503 | 1.584095 | 3.721154 | 118.6565 |
5 | −0.1689 | −0.22721 | 0.05831 | 0.1689 | 0.22721 | 0.198055 | 0.029155 | 34.29943 | 1.345422 | 3.396587 | 116.6514 |
6 | −0.21131 | −0.25065 | 0.03934 | 0.21131 | 0.25065 | 0.23098 | 0.01967 | 50.83884 | 2.712342 | 5.871378 | 172.0646 |
7 | −0.16429 | −0.20577 | 0.04148 | 0.16429 | 0.20577 | 0.18503 | 0.02074 | 48.21601 | 1.650728 | 4.460704 | 164.2953 |
8 | −0.17823 | −0.20828 | 0.03005 | 0.17823 | 0.20828 | 0.193255 | 0.015025 | 66.55574 | 2.48569 | 6.431115 | 226.514 |
9 | −0.16436 | −0.20201 | 0.03765 | 0.16436 | 0.20201 | 0.183185 | 0.018825 | 53.12085 | 1.782563 | 4.865471 | 181.0575 |
10 | −0.16012 | −0.23905 | 0.07893 | 0.16012 | 0.23905 | 0.199585 | 0.039465 | 25.33891 | 1.009354 | 2.528633 | 86.15754 |
11 | −0.16261 | −0.19105 | 0.02844 | 0.16261 | 0.19105 | 0.17683 | 0.01422 | 70.32349 | 2.198935 | 6.217651 | 239.9146 |
12 | −0.17746 | −0.25503 | 0.07757 | 0.17746 | 0.25503 | 0.216245 | 0.038785 | 25.78316 | 1.20567 | 2.78774 | 87.45333 |
13 | −0.17528 | −0.21691 | 0.04163 | 0.17528 | 0.21691 | 0.196095 | 0.020815 | 48.04228 | 1.847382 | 4.710425 | 163.4375 |
14 | −0.18373 | −0.21469 | 0.03096 | 0.18373 | 0.21469 | 0.19921 | 0.01548 | 64.59948 | 2.563606 | 6.434432 | 219.6638 |
15 | −0.16836 | −0.20404 | 0.03568 | 0.16836 | 0.20404 | 0.1862 | 0.01784 | 56.05381 | 1.94341 | 5.21861 | 190.9697 |
16 | −0.18343 | −0.2266 | 0.04317 | 0.18343 | 0.2266 | 0.205015 | 0.021585 | 46.32847 | 1.947239 | 4.749016 | 157.4006 |
Compound | ΔE | S | ω | ESP Score | Composite Bioactivity Score |
---|---|---|---|---|---|
1 | 0.1064 | 18.79699 | 0.919726 | 0.187937 | 0.636331 |
2 | 0.00478 | 418.41 | 12.89007 | 0.870748 | 0.830612 |
3 | 0.04523 | 44.21844 | 1.661718 | 0.245007 | 0.188622 |
4 | 0.0572 | 34.96503 | 1.584095 | 0.187937 | 0.637946 |
5 | 0.05831 | 34.29943 | 1.345422 | 0.378923 | 1.083423 |
6 | 0.03934 | 50.83884 | 2.712342 | 0.252531 | 0.223867 |
7 | 0.04148 | 48.21601 | 1.650728 | 0.231074 | 0.175793 |
8 | 0.03005 | 66.55574 | 2.48569 | 0.215803 | 0.244654 |
9 | 0.03765 | 53.12085 | 1.782563 | 0.118538 | 0.261083 |
10 | 0.07893 | 25.33891 | 1.009354 | 0.157292 | 0.169537 |
11 | 0.02844 | 70.32349 | 2.198935 | 0.5149 | 0.290725 |
12 | 0.07757 | 25.78316 | 1.20567 | 0.15 | 1.066763 |
13 | 0.04163 | 48.04228 | 1.847382 | 0.217997 | 0.326359 |
14 | 0.03096 | 64.59948 | 2.563606 | 0.184459 | 0.237995 |
15 | 0.03568 | 56.05381 | 1.94341 | 0.295571 | 0.275627 |
16 | 0.04317 | 46.32847 | 1.947239 | 0.272797 | 0.336711 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Hema, H.S.; Shehata, H.E.; Hawata, M.A.; Nossier, E.S.; El-Sayed, A.F.; Altwaijry, N.A.; Saleh, A.; Hussein, M.F.; Sabry, A.; Abdel-Rahman, A.A.-H. Innovative Amino-Functionalization of Pyrido[2,3-d]pyrimidine Scaffolds for Broad Therapeutic Applications Supported by Computational Analyses. Pharmaceuticals 2025, 18, 1472. https://doi.org/10.3390/ph18101472
El-Hema HS, Shehata HE, Hawata MA, Nossier ES, El-Sayed AF, Altwaijry NA, Saleh A, Hussein MF, Sabry A, Abdel-Rahman AA-H. Innovative Amino-Functionalization of Pyrido[2,3-d]pyrimidine Scaffolds for Broad Therapeutic Applications Supported by Computational Analyses. Pharmaceuticals. 2025; 18(10):1472. https://doi.org/10.3390/ph18101472
Chicago/Turabian StyleEl-Hema, Hagar S., Haitham E. Shehata, Mohamed A. Hawata, Eman S. Nossier, Ahmed F. El-Sayed, Najla A. Altwaijry, Asmaa Saleh, Modather F. Hussein, Amr Sabry, and Adel A.-H. Abdel-Rahman. 2025. "Innovative Amino-Functionalization of Pyrido[2,3-d]pyrimidine Scaffolds for Broad Therapeutic Applications Supported by Computational Analyses" Pharmaceuticals 18, no. 10: 1472. https://doi.org/10.3390/ph18101472
APA StyleEl-Hema, H. S., Shehata, H. E., Hawata, M. A., Nossier, E. S., El-Sayed, A. F., Altwaijry, N. A., Saleh, A., Hussein, M. F., Sabry, A., & Abdel-Rahman, A. A.-H. (2025). Innovative Amino-Functionalization of Pyrido[2,3-d]pyrimidine Scaffolds for Broad Therapeutic Applications Supported by Computational Analyses. Pharmaceuticals, 18(10), 1472. https://doi.org/10.3390/ph18101472