A Second Opportunity for the Peptide-Based Analogues with γ-Lactam at the P1 Position: Human Cathepsin S Inhibition
Abstract
1. Introduction
2. Results and Discussion
2.1. Biology
2.2. Docking Studies
3. Materials and Methods
3.1. Biological
3.2. Molecular Modelling
3.2.1. Target Structure Preparation
3.2.2. Preparation of Ligands
3.2.3. Molecular Docking Simulations
3.2.4. Molecular Dynamics Simulations
3.2.5. Trajectory Clustering and Energy Evaluation of Conformers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMC | 7-amino-4-methyl coumarin |
APC | Antigen-Presenting Cell |
Cbz | Carbobenzyloxy |
Cha | Cyclohexylalanine |
Cpa | Cyclopropylalanine |
EWG | Electron-Withdrawing Group |
hCatB | Human Cathepsin B |
hCatL | Human Cathepsin L |
hCatS | Human cathepsin S |
IFD | Induced Fit Docking |
LMCS | Low-Mode Conformational Search |
MD | Molecular Dynamics |
MHC | Major Histocompatibility Complex |
Mpro | Main protease |
Nle | Nor-leucine |
PDB | Protein Data Bank |
RMSD | Root Mean Square Deviation |
RMSF | Root Mean Square Fluctuation |
SAR | Structure-Activity Relationship |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
References
- Bromme, D. Papain-like cysteine proteases. Curr. Protoc. Protein Sci. 2001, 21, 21.2.1–21.2.14. [Google Scholar] [CrossRef]
- Patel, S.; Homaei, A.; El-Seedi, H.R.; Akhtar, N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed. Pharmacother. 2018, 105, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Pecar Fonovic, U.; Kos, J.; Mitrovic, A. Compensational role between cathepsins. Biochimie 2024, 226, 62–76. [Google Scholar] [CrossRef]
- Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta 2012, 1824, 68–88. [Google Scholar] [CrossRef]
- Yadati, T.; Houben, T.; Bitorina, A.; Shiri-Sverdlov, R. The ins and outs of cathepsins: Physiological function and role in disease management. Cells 2020, 9, 1679. [Google Scholar] [CrossRef]
- Lecaille, F.; Kaleta, J.; Bromme, D. Human and parasitic papain-like cysteine proteases: Their role in physiology and pathology and recent developments in inhibitor design. Chem. Rev. 2002, 102, 4459–4488. [Google Scholar] [CrossRef]
- Geetha, D.; Hameeda, B.A.; Jose, D.; Kuriakose, N.; Skaria, T. Novel insights into the dynamic conformational transitions and active site plasticity of human immunoregulatory cathepsin S. Proteins 2025, 93, 1805–1818. [Google Scholar] [CrossRef]
- Vizovišek, M.; Vidak, E.; Javoršek, U.; Mikhaylov, G.; Bratovš, A.; Turk, B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin. Ther. Targets 2020, 24, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, B.; Yang, Y.; Zhang, W.; Wang, X.; Zhou, H.; Wen, J.; Yang, Z.; Hu, R. Elevated circulating cathepsin S levels are associated with metabolic syndrome in overweight and obese individuals. Diabetes Metab. Res. Rev. 2019, 35, e3117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, H.; Xu, J. Cathepsin S as a cancer target. Neoplasma 2015, 62, 16–26. [Google Scholar] [CrossRef]
- Sena, B.F.; Figueiredo, J.L.; Aikawa, E. Cathepsin S as an inhibitor of cardiovascular inflammation and calcification in chronic kidney disease. Front. Cardiovasc. Med. 2018, 4, 88. [Google Scholar] [CrossRef]
- Cocchiaro, P.; De Pasquale, V.; Della Morte, R.; Tafuri, S.; Avallone, L.; Pizard, A.; Moles, A.; Pavone, L.M. The multifaceted role of the lysosomal protease cathepsins in kidney disease. Front. Cell Dev. Biol. 2017, 5, 114. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.; Nath, S.; Lora, A.; Samaha, G.; Elgamal, Z.; Kaiser, R.; Taggart, C.; Weldon, S.; Geraghty, P. Cathepsin S: Investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respir. Res. 2020, 21, 111. [Google Scholar] [CrossRef] [PubMed]
- Senjor, E.; Kos, J.; Nanut, M.P. Cysteine cathepsins as therapeutic targets in immune regulation and immune disorders. Biomedicines 2023, 11, 476. [Google Scholar] [CrossRef]
- Sayed, S.; Faruq, O.; Preya, U.H.; Kim, J.T. Cathepsin S knockdown suppresses endothelial inflammation, angiogenesis, and complement protein activity under hyperglycemic conditions in vitro by inhibiting NF-κB signaling. Int. J. Mol. Sci. 2023, 24, 5428. [Google Scholar] [CrossRef]
- Driessen, C.; Bryant, R.A.R.; Lennon-Duménil, A.-M.; Villadangos, J.A.; Bryant, P.W.; Shi, G.-P.; Chapman, H.A.; Ploegh, H.L. Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. J. Cell Biol. 1999, 147, 775–790. [Google Scholar] [CrossRef]
- Shi, G.-P.; Villadangos, J.A.; Dranoff, G.; Small, C.; Gu, L.; Haley, K.J.; Riese, R.; Ploegh, H.L.; Chapman, H.A. Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 1999, 10, 197–206. [Google Scholar] [CrossRef]
- Beers, C.; Burich, A.; Kleijmeer, M.J.; Griffith, J.M.; Wong, P.; Rudensky, A.Y. Cathepsin S controls MHC class II-mediated antigen presentation by epithelial cells in vivo. J. Immunol. 2005, 174, 1205–1212. [Google Scholar] [CrossRef]
- Wilkinson, R.D.; Williams, R.; Scott, C.J.; Burden, R.E. Cathepsin S: Therapeutic, diagnostic, and prognostic potential. Biol. Chem. 2015, 396, 867–882. [Google Scholar] [CrossRef]
- Smyth, P.; Sasiwachirangkul, J.; Williams, R.; Scott, C.J. Cathepsin S (CTSS) activity in health and disease—A treasure trove of untapped clinical potential. Mol. Aspects Med. 2022, 88, 101106. [Google Scholar] [CrossRef] [PubMed]
- Ajani, T.A.; Magwebu, Z.E.; Chauke, C.G.; Obikeze, K. Advances in cathepsin S inhibition: Challenges and breakthroughs in drug development. Pathophysiology 2024, 31, 471–487. [Google Scholar] [CrossRef]
- Schade, M.; Merla, B.; Lesch, B.; Wagener, M.; Timmermanns, S.; Pletinckx, K.; Hertrampf, T. Highly selective sub-nanomolar cathepsin S inhibitors by merging fragment binders with nitrile inhibitors. J. Med. Chem. 2020, 63, 11801–11808. [Google Scholar] [CrossRef] [PubMed]
- Meta, M.; Zimmer, C.; Fuchs, N.; Zecher, M.J.; Lahu, A.; Schirmeister, T. Structural modifications of covalent cathepsin S inhibitors: Impact on affinity, selectivity, and permeability. ACS Med. Chem. Lett. 2024, 15, 837–844. [Google Scholar] [CrossRef]
- Hilpert, H.; Mauser, H.; Humm, R.; Anselm, L.; Kuehne, H.; Hartmann, G.; Gruener, S.; Banner, D.W.; Benz, J.; Gsell, B.; et al. Identification of potent and selective cathepsin S inhibitors containing different central cyclic scaffolds. J. Med. Chem. 2013, 56, 9789–9801. [Google Scholar] [CrossRef]
- Jm Wiener, J.; Sun, S.; Thurmond, R.L. Recent advances in the design of cathepsin S inhibitors. Curr. Top. Med. Chem. 2010, 10, 717–732. [Google Scholar] [CrossRef]
- Previti, S.; Ettari, R.; Calcaterra, E.; Roggia, M.; Natale, B.; Weldert, A.C.; Muller-Ruttloff, C.; Salisch, F.; Irto, A.; Cigala, R.M.; et al. Identification of dual inhibitors targeting main protease (Mpro) and cathepsin L as potential anti-SARS-CoV-2 agents. ACS Med. Chem. Lett. 2024, 15, 602–609. [Google Scholar] [CrossRef]
- La Monica, G.; Bono, A.; Lauria, A.; Martorana, A. Targeting SARS-CoV-2 main protease for treatment of COVID-19: Covalent inhibitors structure-activity relationship insights and evolution perspectives. J. Med. Chem. 2022, 65, 12500–12534. [Google Scholar] [CrossRef] [PubMed]
- Arafet, K.; Serrano-Aparicio, N.; Lodola, A.; Mulholland, A.J.; Gonzalez, F.V.; Swiderek, K.; Moliner, V. Mechanism of inhibition of SARS-CoV-2 M(pro) by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Chem. Sci. 2020, 12, 1433–1444. [Google Scholar] [CrossRef]
- Pang, X.; Xu, W.; Liu, Y.; Li, H.; Chen, L. The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. Eur. J. Med. Chem. 2023, 257, 115491. [Google Scholar] [CrossRef]
- Previti, S.; Ettari, R.; Calcaterra, E.; Di Maro, S.; Hammerschmidt, S.J.; Muller, C.; Ziebuhr, J.; Schirmeister, T.; Cosconati, S.; Zappalà, M. Structure-based lead optimization of peptide-based vinyl methyl ketones as SARS-CoV-2 main protease inhibitors. Eur. J. Med. Chem. 2023, 247, 115021. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.T.; Rasnick, D.; Klaus, J.L.; Bromme, D. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem. 1995, 38, 3193–3196. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.; Meta, M.; Meidner, J.L.; Schwickert, M.; Meyr, J.; Schwickert, K.; Kersten, C.; Zimmer, C.; Hammerschmidt, S.J.; Frey, A.; et al. Investigation of the compatibility between warheads and peptidomimetic sequences of protease inhibitors-a comprehensive reactivity and selectivity study. Int. J. Mol. Sci. 2023, 24, 7226. [Google Scholar] [CrossRef]
- Fuchs, N.; Meta, M.; Lantzberg, B.; Bros, M.; Ling Kuan, S.; Weil, T.; Schirmeister, T. Subnanomolar cathepsin S inhibitors with high selectivity: Optimizing covalent reversible alpha-fluorovinylsulfones and alpha-sulfonates as potential immunomodulators in cancer. ChemMedChem 2023, 18, e202300160. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep. 2020, 72, 1479–1508. [Google Scholar] [CrossRef]
- Sultana, J.; Crisafulli, S.; Gabbay, F.; Lynn, E.; Shakir, S.; Trifiro, G. Challenges for drug repurposing in the COVID-19 pandemic era. Front. Pharmacol. 2020, 11, 588654. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, Y.D.; Zhang, C.B.; Xiang, Y.; Bai, X.Y.; Zhang, D.; Fu, Z.Y.; Hao, R.B.; Liu, X.L. Progress in research on inhibitors targeting SARS-CoV-2 main protease (Mpro). ACS Omega 2024, 9, 34196–34219. [Google Scholar] [CrossRef]
- Tan, B.; Sacco, M.; Tan, H.; Li, K.; Joyce, R.; Zhang, X.; Chen, Y.; Wang, J. Exploring diverse reactive warheads for the design of SARS-CoV-2 main protease inhibitors. Eur. J. Med. Chem. 2023, 259, 115667. [Google Scholar] [CrossRef]
- Agost-Beltrán, L.; de la Hoz-Rodríguez, S.; Bou-Iserte, L.; Rodríguez, S.; Fernández-de-la-Pradilla, A.; González, F.V. Advances in the development of SARS-CoV-2 Mpro inhibitors. Molecules 2022, 27, 2523. [Google Scholar] [CrossRef] [PubMed]
- Vankadara, S.; Dawson, M.D.; Fong, J.Y.; Oh, Q.Y.; Ang, Q.A.; Liu, B.; Chang, H.Y.; Koh, J.; Koh, X.; Tan, Q.W.; et al. A warhead substitution study on the coronavirus main protease inhibitor nirmatrelvir. ACS Med. Chem. Lett. 2022, 13, 1345–1350. [Google Scholar] [CrossRef] [PubMed]
- Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 2006, 49, 534–553. [Google Scholar] [CrossRef]
- Pauly, T.A.; Sulea, T.; Ammirati, M.; Sivaraman, J.; Danley, D.E.; Griffor, M.C.; Kamath, A.V.; Wang, I.K.; Laird, E.R.; Seddon, A.P.; et al. Specificity determinants of human cathepsin S revealed by crystal structures of complexes. Biochemistry 2003, 42, 3203–3213. [Google Scholar] [CrossRef]
- Lemke, C.; Benysek, J.; Brajtenbach, D.; Breuer, C.; Jilkova, A.; Horn, M.; Busa, M.; Ulrychova, L.; Illies, A.; Kubatzky, K.F.; et al. An activity-based probe for cathepsin K imaging with excellent potency and selectivity. J. Med. Chem. 2021, 64, 13793–13806. [Google Scholar] [CrossRef]
- Mertens, M.D.; Schmitz, J.; Horn, M.; Furtmann, N.; Bajorath, J.; Mares, M.; Gütschow, M. A coumarin-labeled vinyl sulfone as tripeptidomimetic activity-based probe for cysteine cathepsins. Chembiochem 2014, 15, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Leatherbarrow, R.J. GraFit 6; Vol. Erithacus Software Limited: East Gristead, UK, 2007. [Google Scholar]
- Ludewig, S.; Kossner, M.; Schiller, M.; Baumann, K.; Schirmeister, T. Enzyme kinetics and hit validation in fluorimetric protease assays. Curr. Top. Med. Chem. 2010, 10, 368–382. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided. Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Sancineto, L.; Iraci, N.; Massari, S.; Attanasio, V.; Corazza, G.; Barreca, M.L.; Sabatini, S.; Manfroni, G.; Avanzi, N.R.; Cecchetti, V.; et al. Computer-aided design, synthesis and validation of 2-phenylquinazolinone fragments as CDK9 inhibitors with anti-HIV-1 Tat-mediated transcription activity. ChemMedChem 2013, 8, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS All-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Schrödinger Release 2025-2: Maestro, Schrödinger, LLC.: New York, NY, USA, 2025.
- Schrödinger Release 2025-2: MacroModel, Schrödinger, LLC.: New York, NY, USA, 2025.
- Schrödinger Release 2025-2: Prime, Schrödinger, LLC.: New York, NY, USA, 2025.
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; pp. 84–es. [Google Scholar]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger Suite Release 2025-2, Schrödinger, LLC.: New York, NY, USA, 2025.
Compounds | P2 | F | Ki (nM) | SI hCatL/hCatS | SI hCatB/hCatS | ||
---|---|---|---|---|---|---|---|
hCatS | hCatL | hCatB | |||||
SPR38 | Nle | - | 58.8 ± 3.6 | 1920 ± 100 b | 11,100 ± 1200 b | 32 | 189 |
SPR39 | Cpa | - | 45.1 ± 3.8 | 3380 ± 220 b | 7880 ± 650 b | 75 | 175 |
SPR41 | Cha | - | 10.7 ± 1.1 | 252 ± 18 b | 14,400 ± 1200 b | 24 | 1345 |
SPR49 a | Cpa | 2-F | 95.4 ± 0.6 | 294 ± 42 | >15,000 | 3 | >157 |
SPR60 a | Leu | 4-F | 6.23 ± 0.25 | 20 ± 2 | 10,900 ± 500 | 3 | 1750 |
SPR62 a | Tba | 4-F | 0.7 ± 0.1 | 701 ± 66 | 7700 ± 320 | 1000 | 11,000 |
K11017 c | - | - | 5.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Previti, S.; Iraci, N.; Calcaterra, E.; Ettari, R.; Zappalà, M. A Second Opportunity for the Peptide-Based Analogues with γ-Lactam at the P1 Position: Human Cathepsin S Inhibition. Pharmaceuticals 2025, 18, 1462. https://doi.org/10.3390/ph18101462
Previti S, Iraci N, Calcaterra E, Ettari R, Zappalà M. A Second Opportunity for the Peptide-Based Analogues with γ-Lactam at the P1 Position: Human Cathepsin S Inhibition. Pharmaceuticals. 2025; 18(10):1462. https://doi.org/10.3390/ph18101462
Chicago/Turabian StylePreviti, Santo, Nunzio Iraci, Elsa Calcaterra, Roberta Ettari, and Maria Zappalà. 2025. "A Second Opportunity for the Peptide-Based Analogues with γ-Lactam at the P1 Position: Human Cathepsin S Inhibition" Pharmaceuticals 18, no. 10: 1462. https://doi.org/10.3390/ph18101462
APA StylePreviti, S., Iraci, N., Calcaterra, E., Ettari, R., & Zappalà, M. (2025). A Second Opportunity for the Peptide-Based Analogues with γ-Lactam at the P1 Position: Human Cathepsin S Inhibition. Pharmaceuticals, 18(10), 1462. https://doi.org/10.3390/ph18101462