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Abstract: Pharmacometabolomics (PMx) studies aim to predict individual differences in treatment 
response and in the development of adverse effects associated with specific drug treatments. Over-
all, these studies inform us about how individuals will respond to a drug treatment based on their 
metabolic profiles obtained before, during, or after the therapeutic intervention. In the era of preci-
sion medicine, metabolic profiles hold great potential to guide patient selection and stratification in 
clinical trials, with a focus on improving drug efficacy and safety. Metabolomics is closely related 
to the phenotype as alterations in metabolism reflect changes in the preceding cascade of genomics, 
transcriptomics, and proteomics changes, thus providing a significant advance over other omics 
approaches. Nuclear Magnetic Resonance (NMR) is one of the most widely used analytical plat-
forms in metabolomics studies. In fact, since the introduction of PMx studies in 2006, the number of 
NMR-based PMx studies has been continuously growing and has provided novel insights into the 
specific metabolic changes associated with different mechanisms of action and/or toxic effects. This 
review presents an up-to-date summary of NMR-based PMx studies performed over the last 10 
years. Our main objective is to discuss the experimental approaches used for the characterization of 
the metabolic changes associated with specific therapeutic interventions, the most relevant results 
obtained so far, and some of the remaining challenges in this area. 

Keywords: pharmacometabolomics; nuclear magnetic resonance; drug response; personalized 
medicine; metabolism 
 

1. Introduction 
Precision or personalized medicine aims to select, based on the characteristics of a 

patient, the most appropriate drug treatment for a particular disease. The ultimate goal in 
this area is to improve treatment efficacy and reduce the number of adverse effects [1,2]. 
However, this approach is challenging as patient responses to treatment can be very dif-
ferent [3]. In this context, pharmacogenomics (PGx) emerged as a promising approach for 
studying the influence of the specific individual’s genomic background on the response 
to drug treatment [4–6]. For certain drugs or drug classes, genetic factors have been shown 
to have the most important influence on drug treatment outcomes [7]. In fact, it has been 
reported that genetic traits account for 20–40% of the intra-patient differences associated 
with drug metabolism and response [8]. However, there exist other factors influencing 
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drug response, including age, sex, disease, environmental factors, diet, and drug interac-
tions [9,10]. Thus, although PGx approaches have facilitated the identification of many 
associations between genome alterations and changes in drug metabolism or response, 
they are somewhat limited as environmental or other contextual factors (i.e., ethnicity, 
diet, age, weight, gut microbiota, etc.) are not considered [11–13]. In this scenario, phar-
macometabolomics (PMx) could represent a valuable alternative, or complementary, ap-
proach to PGx. 

PMx, introduced in 2006 by Clayton et al. [14], focuses on predicting individual re-
sponses to drug treatments (i.e., toxicity and efficacy) based on the characterization of 
their metabolic fingerprints before the intervention [14]. The metabolic profile of a biolog-
ical sample can be strongly influenced, from a quantitative and qualitative perspective, by 
a pathological condition or the presence of a specific drug [15]. The metabolome repre-
sents the final step of the omics cascade and can offer an accurate description of the path-
ophysiological status of an individual. Metabolomics provides information on metabolic 
changes induced by both environmental and genomic factors, therefore reflecting a more 
complete description of the molecular alterations associated with drug response than ge-
nomics [16]. This approach enables the identification of specific alterations in metabolites 
levels and pathways that characterize particular metabolic phenotypes associated with 
the specific patient’s response to a drug treatment [13,17]. PMx studies represent a prom-
ising approach for gaining a deeper insight into the molecular mechanisms that determine 
inter-patient variability in drug response [14,18–20]. Using this strategy, it is possible to 
identify metabolic biomarkers that could help in predicting individual drug effects and 
increasing efficacy in drug treatments. Since its introduction [14], the number of PMx 
studies has greatly increased, especially in the last decade. Patient metabolic profiles are 
frequently characterized using either the Nuclear Magnetic Resonance (NMR) or the Mass 
Spectrometry (MS) techniques, each of them exhibiting their own advantages and disad-
vantages. However, the high reproducibility, in addition to the non-destructive nature of 
the NMR-based approaches, presents a major advantage in these studies [21]. This review 
focuses on the analysis of the results derived from the NMR-based PMx studies performed 
over the last ten years. 

2. Methods 
2.1. Search Strategy 

A systematic search was conducted on PubMed, Web of Science, and EMBASE data-
bases for published NMR-based PMx studies, using the following terms: “(Pharma-
cometabolomics OR (Pharmaco OR Drug OR treatment OR response)) AND (Metabolom-
ics) AND (Nuclear Magnetic Resonance OR NMR)”. In addition, the “Pharmacometabo-
lomics” term was also introduced in the clinicaltrials.gov database to look for clinical stud-
ies using this experimental approach. Duplicates were removed and only the original ar-
ticles written in English and published between January 2011 and June 2021 were selected 
for further review. 

2.2. Selection Criteria 
All selected publications were screened following standard protocols [22] and re-

viewed based on the pre-defined selection criteria. An additional filtering process based 
on the presence of the key terms “NMR AND (predict OR response OR effect OR phar-
macometab) AND (patient OR human OR cell line)” in the title or abstract was also per-
formed. Then, titles and abstracts of the selected publications were examined to evaluate 
their eligibility according to their relevance on the issue of interest in order to determine 
their inclusion in the review. Finally, the available full texts of selected articles were thor-
oughly reviewed. Additionally, principal investigators responsible for the PMx-related 
clinical trials identified in the clinicaltrials.gov database were contacted for further details 
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on the experimental design of the studies in order to evaluate their potential inclusion in 
the review. 

2.3. Data Extraction 
The full-text articles of the final selected studies were reviewed in detail and different 

informative data were extracted, including disease, treatment, experimental design, sam-
ple type, time points for sample collection, research aim, NMR instrument and pulse se-
quence, data preprocessing, statistical analyses, etc. 

3. Results 
Out of a total of 9208 publications initially identified through the literature search 

(Figure 1), 3196 of them were published during the last ten years. After screening based 
on the pre-defined terms, 680 articles were considered eligible. A thorough review of the 
titles and abstracts of these articles led to a final selection of 46 studies matching the selec-
tion criteria previously described. Finally, the information included in the full-text publi-
cations of these 46 PMx studies was further analyzed for the purpose of this review. 

 
Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow 
diagram. 

3.1. Study Characteristics 
3.1.1. Sample Collection 

Metabolomics analyses can be performed using multiple biological matrices. How-
ever, in the PMx studies included in this review the most frequently used biofluids were 
blood (i.e., serum, plasma, and platelets), followed by urine samples. Other biosamples, 
such as feces [23,24] or cells [25,26] were used in two studies, whereas saliva [27], culture 
medium [28], and tissue [29] were only collected in one of the studies. It should be noted 
that even though tissue and patient-derived cells can provide in situ information of the 
specific metabolic alterations due to a health condition or an external intervention [30], 
the access to these samples is highly dependent on the clinical practice. In metabolomics 
studies, it is recommended to follow specific standard operating procedures (SOPs) that 
harmonize processes associated with the quality of the biological samples: collection, pro-
cessing, and storage [31,32]. Specific details regarding the protocols followed for sample 
collection were not included in most of the studies detailed in this review. It is of critical 
importance to ensure the quality of the samples used in PMx studies to avoid the intro-
duction of additional, non-disease-related variations. Samples were stored at −80ºC until 
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NMR analysis in the vast majority of the reviewed studies. Metabolomics studies based 
on the analysis of biofluids such as blood, urine, or saliva present obvious advantages due 
to their simple and less invasive collection. In particular, and despite the high variability 
in the number of samples, the number of participants included in the blood- or urine-
related PMx studies was always significantly higher than in those based on the analysis 
of feces or tissue samples, most probably reflecting a much easier access and availability 
of these biofluids. Furthermore, studies relying on the analysis of patient-derived samples 
(i.e., biofluids, tissue, feces, etc.) included a larger number of samples compared with 
those focused on the analysis of commercially available cell lines. Overall, the number of 
samples included in the different PMx studies ranged from biological triplicates, in the 
case of cell cultures [28], to hundreds of patients, in the case of clinical trials [33]. 

3.1.2. Study Design 
Most of the reviewed PMx studies relied on the characterization of the metabolomics 

profiles of the patients, classified as “responders” or “non-responders”, to specific thera-
peutic interventions, using samples collected before treatment. Additionally, in 35 out of 
the 46 studies, patient samples were also collected at different timepoints after treatment. 
A number of studies also included the analysis of samples from a control group reflecting 
the metabolomics profile of healthy individuals. Overall, different experimental strategies 
are being explored for the evaluation of metabolic changes associated with drug response. 
For example, a very recent study evaluated metabolites produced by bacteria in ex vivo 
experiments. In particular, human stool samples were incubated in the presence of meth-
otrexate to evaluate the association between the microbiome-driven metabolism of this 
drug and the clinical response to this therapeutic treatment [34]. 

3.1.3. NMR Sample Preparation 
The sample preparation in the different PMx studies followed the standard proce-

dure used in most NMR-based metabolomics studies [31], consisting in the addition of a 
deuterated buffer to the blood and urine samples to adjust the pH and provide the neces-
sary lock signal [31]. The pH adjustment turns especially relevant when samples, such as 
urine or saliva, that are particularly sensitive to inter-individual pH changes, are meas-
ured. In the PMx studies included in this review, the pH ranged from 6.8 to 7.4 for urine 
samples, whereas 7.4 was used for the saliva samples. The metabolomics profile in the 
only PMx study based on tissue samples was carried out using high-resolution magic an-
gle spinning (HR-MAS) NMR spectroscopy [29]. Although this particular PMx study was 
performed using HR-MAS, a non-destructive method only requiring minimal sample 
preparation, some other metabolomics studies, such as those based on fecal samples, rely 
on a previous extraction of polar metabolites [35–37]. In general, the final percentage of 
deuterated water in samples not previously subjected to metabolite extraction (i.e., 
plasma, serum, saliva, urine, etc.) was approximately 10%, whereas polar extracts were 
usually lyophilized and resuspended in 100% D2O buffer. Furthermore, most of the stud-
ies relied on using sodium trimethylsilyl [2,2,3,3-2H4] propionate (TSP) as an internal 
standard, whereas 2,2,3,3-d4-3-(trimethylsilyl) propionic acid (TMSP) or 4,4-dimethyl-4-
silapentane-1-sulfonic acid (DSS) were only used in a few studies. Other chemical com-
pounds, such as tetramethylsilane (TMS) or calcium formate, were rarely used [38,39]. 

3.1.4. NMR Spectra Acquisition 
Operating frequencies ranging from 400 to 800 MHz were used in the different PMx 

studies, although 500 and 600 MHz spectrometers were the most frequently chosen. Fur-
thermore, spectrometers equipped with a cryoprobe [24,26,40–49] were used in over 25% 
of the studies, and an automatic sample charger was only used in seven of them 
[24,26,48,50–53]. Spectrometer selection in the selected PMx studies does not appear to be 
associated with the type of sample or any other characteristic of the study. However, the 
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selection of the NMR pulse sequence was heavily dependent on the sample type, as would 
be expected from the different nature of the biological matrices used in the studies. Thus, 
the Carr−Purcell−Meiboom−Gill (CPMG) [54] pulse sequence was preferentially used to 
acquire spectra from blood and tissue samples, whereas nuclear Overhauser effect spec-
troscopy (NOESY) [55] experiments were primarily selected for urine, fecal extracts, and 
saliva samples. Only one study relied on a different pulse sequence, Solvent-Optimized 
Gradient-Gradient Spectroscopy (SOGGY) [56], based on a previous excitation-sculpting 
template [57], to improve the water suppression and the solute sensitivity in the charac-
terization of pancreatic cancer cells [26]. The CPMG pulse sequence, which includes a re-
laxation filter for larger molecules to facilitate the detection of small metabolites, was used 
for the measurement of samples containing lipids and proteins (i.e., serum, plasma, etc.) 
[31]. On the other hand, the NOESY experiment, which leads to spectra with improved 
baseline and water suppression [58], was the preferred choice for analyzing samples that 
do not usually contain large molecules (i.e., urine, polar extracts, cell culture media, etc.). 
The number of scans for acquiring the one-dimensional (1D) NMR spectra ranged from 
16 to 256, independently of the sample type. The NMR metabolic profiles of biological 
samples are usually characterized by a high degree of signals overlap. In this context, the 
acquisition of two-dimensional (2D) NMR experiments (1H−13C Heteronuclear Single 
Quantum Correlation (HSQC), 1H−1H Total Correlation Spectroscopy (TOCSY), 1H-1H J-
resolved spectroscopy (J-RES) [59], etc.) of representative samples greatly facilitates the 
assignment of the metabolites present in the biological samples [21,31]. The 2D NMR ex-
periments were acquired in approximately 40% of the reviewed publications. Of note, 
only one of the reviewed studies included NMR-based stable isotope labelled approaches 
[26]. In addition, four of the selected studies integrated NMR and MS data [23,41,44,60], 
and a combination of PMx and PGx analyses was performed in one of the reviewed clini-
cal trials [33]. The integrated analysis of data obtained through different analytical tech-
niques and platforms offers very valuable information in these studies. In particular, the 
integration of NMR and MS data [23,61], as well as the application of multi-omics ap-
proaches, has shown a tremendous potential for the study of changes in metabolism 
[62,63]. 

3.1.5. NMR Data Processing 
Information on spectra processing was only partially, or not at all, detailed in most 

of the studies included in the review. Spectra phase and baseline correction were usually 
performed using TopSpin software (Bruker Biospin), although Chenomx (Chenomx) was 
chosen in other studies. Data binning was described as the first processing step in more 
than 50% of the studies. To this end, different software packages were used, including 
Amix (Bruker Biospin), Chenomx (Chenomx), MestreNova (Mestrelab Research S.L.), or 
NMRPRocFlow [64]. Blood and urine samples were generally binned into 0.04 ppm wide 
rectangular buckets, although smaller bucket widths (i.e., 0.005 or 0.002) were used in 
some of the selected PMx studies. An important issue in NMR-based metabolomics stud-
ies is the selection of the best compromise between the bucket size and the number of 
samples in the data set [65]. Even though very large bucket widths are not recommended 
as they decrease the resolution of the NMR spectra, an extreme reduction in the bucket 
width could significantly contribute to data overfitting as a result of the imbalance be-
tween the number of samples and the variables included in the analysis [66]. In general, 
most NMR-based metabolomics studies used a bucket width between 0.01 and 0.04 ppm, 
depending on the spectra complexity and the signal overlapping, for binning [29,43,67–
70]. After binning, different normalization approaches were followed in most of the PMx 
studies. Although normalization details were not specified in all the studies, the normali-
zation strategy was mainly dependent on the sample type. Overall, serum and plasma 
NMR data were preferentially normalized to total area [40,41,46,47,49,51,52,60,67–69,71–
76], although probabilistic quotient normalization [26,48,77] and other normalization pro-
cedures, such as glucose [78] or internal standard normalization [39], were applied in 
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some studies. For urine normalization, total area [42,67] and creatinine signal were the 
methods most frequently used [44,79,80]. Data normalization aims to make the data from 
all samples directly comparable and to reduce the effects of differences in sample dilution. 
Physiological normalization is especially relevant when analyzing biofluids such as urine 
where large differences in excreted volume, and hence in urinary concentrations, are 
found between patients. Different normalization approaches have been developed for the 
normalization of NMR-based metabolomics data. The most commonly used methods are 
normalization to total area and the use of endogenous stable metabolites (such as creati-
nine in urine) [81]. Additionally, data scaling is another important issue when analyzing 
NMR-based metabolomics data. In this context, pareto scaling seems to be the most sen-
sible choice for NMR data scaling when the aim is data exploration through multivariate 
statistical approaches [82]. This particular approach was used in 15 of the 25 PMx studies 
including information on the method used for data scaling. In contrast to other scaling 
methods, such as unit variance, that often increase noise artefacts from spectral regions, 
pareto scaling increases the sensitivity and reduces noise [82]. Therefore, this scaling ap-
proach is often the method of choice for NMR spectra as the influence of small peaks is 
increased without amplifying uninformative variables [83]. 

3.1.6. Metabolite Assignment 
The analysis of the metabolomics data in all the PMx studies followed an untargeted 

approach. The assignment of metabolites was generally carried out using the information 
available through public databases (i.e., Human Metabolome Database (HMDB) [84,85] 
and Madison-Qingdao Metabolomics Consortium Database (MMCD) [86]), as well inter-
nal metabolic databases. Chenomx NMR Suite software [87] was used in 19 of the PMx 
studies for assignment purposes. The Chenomx NMR Suite is a commercially available 
software offering a large database of common biological and drug metabolite 1H-NMR 
data widely used for metabolomics analysis [88]. Although these two are probably the 
most extensive public metabolomics spectral databases, other open source compound li-
braries, such as the Biological Magnetic Resonance Data Bank (BMRB) [89] or InterSpin 
(RIKEN) [90] were used in some of the PMx studies. Additionally, there exist several 
metabolomics data repositories for submitting metabolomics datasets (i.e., MetaboLights 
[91], Metabolomic Repository Bordeaux [92], Metabolonote [93], etc.). Out of the 46 PMx 
studies selected in this review, only two of them [26,94] deposited their NMR dataset at 
the Metabolomics Workbench database [95], reflecting that the use of these repositories is 
still not very extensively used. 

3.1.7. Statistical Analysis 
The most common strategy followed for statistical analysis of the data was multivar-

iate analysis. First, unsupervised methods were used for the identification of inter-group 
variations, outliers, or sample clustering. Principal Component Analysis (PCA) [96] was 
the method of choice in most of the studies, although hierarchical clustering [97] was also 
used in other studies [26]. Then, supervised analysis methods, such as partial least square 
discriminant analysis (PLS-DA) [25,41,42,46,48,49,60,67,68,71,73–76,78,79,98,99] or or-
thogonal PLS-DA (OPLS-DA) [24,26,29,40,43,50,68,70,72,74–77,98,100–102] were pursued 
in the majority of the studies to evaluate the discriminatory potential of the metabolic 
profile between the groups of study. Herein, alternative supervised approaches were also 
followed, including multilevel Partial Least Square (mPLS) [27], Random Forest (RF) 
[45,47,53], K-nearest neighbors (kNN) [27], multivariate logistic regression analysis 
(MVLR) [78], or the GALGO R package [103], based on a genetic algorithm search proce-
dure coupled to statistical modeling methods for supervised classification [42]. Further-
more, univariate analyses were performed to confirm the statistical significance of the 
metabolic changes identified based on the multivariate models. To that end, the Student 
T test or the Mann-Whitney U test were chosen for the mean comparison while Pearson 
or Spearman correlation analyses were followed for the evaluation of the potential 



Pharmaceuticals 2021, 14, 1015 7 of 22 
 

 

correlations with continuous variables. Additionally, ROC curves were generated in 13 
studies to internally validate the discriminatory power of their findings for predicting the 
response to treatment [24,26,41,44–47,52,70,74,77,78,99]. Nevertheless, none of the re-
viewed studies conducted an external validation to evaluate the relevance of their results 
in an independent set of samples. In general, SIMCA (Umetrics AB), SPSS (IBM Corp), 
Matlab (The MathWorks), PRISM (Graphpad), R software, and the online tool MetaboAn-
alyst [104,105] were the most frequently used software packages to perform the statistical 
analyses in the PMx studies. Two out of the four PMx studies carried out using a combi-
nation of two analytical approaches (i.e., NMR and MS) followed independent analyses 
for the data derived from each platform [41,44,60]. One of them performed an enrichment 
analysis based on the NMR data that facilitated the focus of the subsequent MS-based 
targeted analysis on the most significantly altered pathways [44]. In the other study, MS 
analyses were used to confirm the identity of specific metabolites involved in altered met-
abolic pathways [60]. The other two PMx studies performed an integrated multivariate 
analysis of both the MS- and the NMR-derived data. To that end, an additional block-
scaling step was included to mitigate the effect of the difference in variances obtained in 
each analytical approach. In both cases, these analyses were performed using Matlab (The 
MathWorks) [23,41]. 

3.2. Therapeutic Areas and Treatments 
The 46 PMx studies included in this review can be classified into a total of 11 health 

categories, based on the Health Research Classification System (HRCS) [106] (Figure 2). 
More than one third of the reviewed articles focused on different oncological conditions 
[23–26,29,41,43,46,48,51,52,76,77,94,101,102]. Cardiovascular diseases, including coronary 
artery disease [49,70,74], hypertension [44], atrial fibrillation [78], myocardial infarction 
[107], and cardiotoxicity [28] were the second most explored health conditions. Five stud-
ies, associated with respiratory diseases, focused on the evaluation of treatments for 
chronic obstructive pulmonary disease (COPD) [68,73,98], acute lung injury [39], or 
COVID-19 [53]. Four other publications focused on the characterization of the metabolic 
profile associated with the treatment response in different infectious diseases, including 
septic shock [38], periodontitis [27] and HIV [45,47]. Other PMx studies (e.g., non-alco-
holic fatty liver [80,99], alcohol use disorder [33], and drug-induced liver injury [79] treat-
ments) were classified within the oral and gastrointestinal therapeutic area. Within the 
inflammatory and immune system area, rheumatoid arthritis was the subject of three dif-
ferent studies [42,71,72], and two publications focused on different neurological condi-
tions, one on epilepsy [50,60] and the other on multiple sclerosis [69]. Finally, articles fo-
cused on β-thalassemia [75], vitamin D deficiency [67], nephrotic syndrome [40], and ne-
onatal jaundice [100] were classified into the blood, metabolic and endocrine, renal and 
urogenital, and skin categories, respectively. Of note, out of the 46 PMx studies included 
in this review, only seven of them were associated with different clinical trials 
[29,33,38,43,80,94,107]. The most recent one, NCT03818191 [33], currently in the enrolling 
phase, pursues the combination of PGx and PMx strategies to identify biomarkers that 
could predict the response to the administration of acamprosate in patients with alcohol-
use disorders. 
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Figure 2. Pie chart displaying the classification of the NMR-based PMx studies based on the differ-
ent health categories defined by the Health Research Classification System [106]. 

Chemo- and immune-therapies were the therapeutic strategies most frequently eval-
uated in the PMx studies, particularly in the cancer category, but also in the cardiovascu-
lar, neurological, and respiratory diseases. For example, different studies evaluated 
changes in the metabolic profile of patients with breast cancer (BC) [24,41,94], pancreatic 
cancer (PC) [26,76], and head and neck squamous cell carcinoma (HNSCC) [101,102] re-
ceiving chemotherapy, while others focused on the effect of immune therapies in non-
small-cell lung cancer (NSCLC) [23,52], BC [51], COVID-19 [53] and multiple sclerosis [69] 
patients. Different studies focused on the characterization of the metabolic profiles asso-
ciated with different therapeutic strategies for the treatment of the same pathological con-
dition. Thus, the effects of aspiring and clopidogrel, two anti-platelet agents, were evalu-
ated in three different PMx studies related to coronary diseases [49,70,74]. Similarly, an-
other study focused on the identification of biomarkers for predicting resistance to differ-
ent drugs in epileptic patients [50]. Furthermore, the effects of bronchodilators [73,98] or 
antibiotics [68] were evaluated in PMx studies involving COPD patients. Finally, meta-
bolic changes associated with two major treatment approaches were evaluated in patients 
suffering from rheumatoid arthritis, namely anti-tumor necrosis factor (TNF) inhibitors, 
including etanercept alone [72], or in combination with infliximab [42] and methotrexate 
[64]. 

3.3. Clinical Applications in Oncology 
Oncology was the main therapeutic area explored in the NMR-based PMx studies 

included in this review. Sixteen PMx studies focused on different oncology conditions 
(Table 1). Therefore, this section will focus on the discussion of the most relevant results 
obtained in this area. 

BC was by far the most frequently studied oncological disease [24,41,46,48,51,94]. 
Other studies analyzed the metabolic profile associated with PC [26,76], HNSCC [101,102], 
and NSCLC [23,52], and only one study referred to prostate cancer (PCa) [29], Hodgkin 
and non-Hodgkin lymphoma (HL/NHL) [25], hepatocellular carcinoma (HCC) [77], and 
multiple myeloma (MM) [43]. Overall, four different biological samples (i.e., serum, feces, 
cells, and tumor tissue) were used to evaluate metabolic changes in these studies. Most of 
the studies used serum samples, followed by feces [23,24] and cells [25,26], and tumor 
tissue, which was the biological matrix used in only one of the PMx studies [29]. 
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Table 1. Overview of the PMx studies focused on the oncology area. 

Disease Treatment 
Experimental  

Design Sample 
Sample Collec-

tion Research Aim 
NMR 

Instrument Pulse Sequences Reference 

BC GC  
chemotherapy 

29 (1 CR, 13 PR, 
8 SD, 7 PD) 

Serum Before treatment Prediction of treat-
ment response 

800 MHz 

1D: CPMG 
2D: COSY, 

HMBC, HSQC, J-
RES, TOCSY 

[46] 

BC NAC 
28 (8 CR, 14 PR 

and 6 NR) Serum Before treatment 
Prediction of treat-

ment response 500 MHz CPMG [41] 

HER2+ BC T / T+E 79 (40 T, 39 T+E) Serum 
Before, during, 
and after treat-

ment 

Evaluation of treat-
ment impact 800 MHz 

1D: CPMG, NO-
ESY 

2D: HSQC, J-
RES, TOCSY 

[51] 

BC 
NAC /  

NAC + Bev 
118 (58 NAC, 60 

NAC + Bev) 
Tissue and  

serum 

Before and during 
treatment, and 6 
weeks after sur-

gery 

Evaluation of treat-
ment impact 

Prediction of patient 
prognosis 

600 MHz CPMG [48] 

BC NAC 
8 (6 good, 2 

non-responders) Feces 

Before and 20 
days after each 

chemotherapy cy-
cle 

Evaluation of treat-
ment impact 

Prediction of treat-
ment response 

600 MHz 
1D: NOESY 
2D: COSY, 

HSQC, TOCSY 
[24] 

BC Paclitaxel 48 Blood 
Before, during, 

and after  
treatment 

Prediction of treat-
ment adverse effects 500 MHz 1D-1H-NMR [94] 
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PC Gemcitabine 10 replicates Cell lines Before and after 
treatment 

Biomarkers of treat-
ment resistance and 

response  
500 MHz 1D-SOGGY 

2D: HSQC 
[26] 

PC Gemcita-
bine/CUS 

50 (12 control, 9 
PC, 10 CUS-

high, 10 CUS-
low, 9 gemcita-

bine) 

Serum from  
xenografts 

33 days after treat-
ment 

Evaluation of treat-
ment impact 

600 MHz CPMG [76] 

HNSCC 
Radio-/Chemo-

therapy 170 Serum 

Weekly, from the 
day before to the 
week after treat-

ment 

Prediction of treat-
ment adverse effects 400 MHz 

1D: CPMG, DIFF, 
NOESY 

2D: J-RES 
[101] 

HNSCC Induction chem-
otherapy 

53 Serum Before and after 
treatment 

Prediction of treat-
ment response 

400 MHz 
1D: CPMG, DIFF, 

NOESY 
2D: J-RES 

[102] 

NSCLC Nivolumab/Pe
mbrolizumab 

50 (34 
nivolumab,  

19 pembroli-
zumab) 

Serum Before treatment Prediction of treat-
ment response 

600 MHz CPMG, DIFF 
NOESY 

[52] 

NSCLC Nivolumab 9 (4 EP, 5 LR) Feces After treatment Prediction of treat-
ment response 

400 MHz 2D: HSQC, 
TOCSY 

[23] 

PCa Degarelix 
13 (10 benign, 7 
PCa untreated, 
6 PCa treated) 

Tissue 7 days after treat-
ment 

Evaluation of treat-
ment impact 

600 MHz CPMG [29] 



Pharmaceuticals 2021, 14, 1015 11 of 22 
 

 

HL/NHL High dose ther-
apy 

12 (6 t-
MDS/AML,  

6 no t-
MDS/AML)  

Peripheral 
blood stem 

cells 
Before aHCT 

Evaluation of meta-
bolic changes associ-

ated to adverse effects 
600MHz 1D-1H-NMR [25] 

HCC RFA 
120 (59 viral, 61 
Non-viral cir-

rhosis) 
Serum Before and after 

treatment 
Prediction of treat-

ment response 
500 MHz 

1D: CPMG, NO-
ESY 

2D: J-RES, 
TOCSY 

[77] 

MM Chemotherapy 
81 (31 control, 
27 diagnosed, 
23 remission)  

Serum 
Before and after 

treatment 
Evaluation of treat-

ment impact 600 MHz 

1D: CPMG, NO-
ESY 

2D: HSQC, J-
RES, TOCSY 

[43] 

aHCT: autologous hematopoietic cell transplantation; Bev: bevacizumab; BC: breast cancer; COSY: 1H-1H correlation spectroscopy; CPMG: Carr-Purcell-Meiboom-Gill; CR: 
complete response; CUS: cucurmosin; DIFF: diffusion edited; E: everolimus; EP: early progressors; GC: gemcitabine-carboplatin; HCC: hepatocellular carcinoma; HER2: 
Human Epidermal growth factor Receptor type-2; HL: Hodgkin lymphoma; HMBC: 1H-13C heteronuclear multiple bond correlation spectroscopy; HNSCC: head and neck 
squamous cell carcinoma; HSQC: 1H-13C heteronuclear single quantum correlation spectroscopy; J-RES: J-resolved spectroscopy; LR: long responders; MM: Multiple mye-
loma; NAC: neoadjuvant chemotherapy; NHL: non-Hodgkin lymphoma; NOESY: Nuclear Overhauser effect spectroscopy; NR: no-response; NSCLC: non-small-cell lung 
cancer; PC: pancreatic cancer; PCa: prostate cancer; PD: progressive disease; PR: partial response; RAF: radiofrequency ablation; SD: stable disease; SOGGY: Solvent-
Optimized Gradient-Gradient Spectroscopy; T: trastuzumab; t-MDS/AML: therapy-related myelodysplasia syndrome or acute myeloid leukemia; TOCSY: 1H-1H total cor-
relation spectroscopy. 
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3.3.1. Breast Cancer 
NMR-based PMx strategies for the evaluation of BC treatments were pursued in six 

studies with different objectives. Five of them focused on the identification of biomarkers 
that could contribute to the prediction of patient response to a specific treatment 
[24,41,46,48,51], and one aimed to characterize the metabolic profile associated with the 
development of adverse effects following paclitaxel treatment [94]. 

Jiang et al. [46] analyzed serum samples from 29 metastatic BC patients to character-
ize the pre-treatment metabolomics profile associated with the response to gemcitabine-
carboplatin (GC) chemotherapy. By combining multivariate and univariate analyses, met-
abolic differences between clinically-benefited and non-benefited patients were identified. 
Furthermore, the relevance of the most altered serum metabolites for predicting the re-
sponse to chemotherapy was evaluated using ROC curves. Based on this analysis, formate 
and acetate basal levels showed a high sensitivity (>0.8) and specificity (>0.8) for predict-
ing treatment response. The authors suggested that the decreased formate and acetate 
levels observed in the non-responding patients could be reflecting the use of these metab-
olites as an alternative nutritional source to fulfill the energetic needs of highly proliferat-
ing cancer cells, which are more aggressive or resistant to therapy. Metabolic alterations 
capable of predicting the response to different neoadjuvant chemotherapy regimens in BC 
patients were also evaluated in a PMx study conducted by Wei et al. [41]. In this other 
study, the differences in the serum metabolic profile of 28 BC patients with complete (CR), 
partial (PR), or no-response (NR) to neoadjuvant chemotherapy (NAC), using a combina-
tion of NMR and liquid chromatography (LC)-MS metabolomics approaches, were char-
acterized. A statistical model based on the analysis of the levels of three metabolites de-
tected by the NMR (threonine, glutamine, and isoleucine) and one by LC-MS (linolenic 
acid) provided 100% selectivity and 80% sensitivity for the prediction of CR vs. NR pa-
tients. Changes in the serum metabolic profile of HER2-positive BC patients after treat-
ment were also evaluated by Jobard et al. [51]. Samples from 79 patients receiving either 
trastazumab alone (n = 40) or a combination with everolimus (n = 39) were collected be-
fore, during, and after treatment administration. Everolimus is an inhibitor of the mam-
malian target of rapamycin (mTOR) and trastuzumab, a monoclonal antibody able to bind 
HER2, inhibits the proliferation of cells overexpressing HER2 [108]. Results showed that 
the combination (tratuzumab + everolimus) induced significant changes in the metabo-
lism of patients that were not induced by trastuzumab alone. The BC patients treated with 
the combination therapy exhibited increased levels of lipids (the glycerol backbone of 
phosphoglycerides), triacylglycerides, lipoproteins (VLDL and LDL), and acetone and de-
creased levels of acetate, amino acids (alanine, histidine, lysine, phenylalanine, tyrosine, 
and valine), albumin lysyl, betaine, creatine, creatinine, acetoacetate, citrate, choline, glu-
cose, glycerophosphocholine, myo-inositol, and methanol levels. Some of the metabolic 
changes detected in the serum metabolics profile of the BC patients were consistent with 
metabolic changes previously described in relation to mTOR inhibition [108–115]. Hence, 
although synergistic effect could not be completely excluded because the study did not 
include a subgroup of patients treated with everolimus alone, the metabolic signature ob-
served for the combination treatment could most likely be reflecting mTOR inhibition. 

The impact of NAC and other therapeutic approaches in the metabolic profile of BC 
patients has also been evaluated. Debik et al. [48] evaluated the metabolomics profiles of 
118 primary BC patients (tissue, serum) receiving NAC alone, or a combination with 
bevacizumab, to identify potential changes associated with treatment response or patient 
prognosis. Results revealed significant alterations in the serum metabolites during treat-
ment, particularly in a significant increase in lipid levels during NAC. Furthermore, spe-
cific metabolic changes, including higher levels of leucine, acetoacetate, and tri-hydroxy-
butyrate were observed in patients treated with bevacizumab. Interestingly, in this study 
tissue metabolic profiles exhibited a predictive potential for discriminating survivors from 
non-survivor patients in this study, while serum metabolite levels reflected the patient 
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response to treatment. The patient response to NAC was also evaluated by Zidi et al. [24] 
using a strategy based on the analysis of metabolic alterations of BC patients before and 
after three chemotherapy cycles. Specifically, the fecal metabolomic profiles of six good- 
and two non-responder BC patients were characterized with a focus on the identification 
of potential candidate biomarkers that could predict the response to NAC. Multivariate 
supervised analyses showed that the treatment effect started to affect the fecal metabo-
lome of patients after the second cycle of treatment. Interestingly, the levels of short chain 
fatty acids (SCFA), specific products of the gut microbiota, also exhibited a tendency to 
increase after the second cycle. Moreover, the good-responder patients showed specific 
metabolic changes after NAC, including higher levels of some amino acids, creatine, phe-
nylacetate, 3-methylhistidine, histamine, ethanol, theophylline, and succinate when com-
pared with the non-responder patients. These results suggest that changes in the fecal 
metabolic profile of BC patients could provide very relevant information on the biochem-
ical changes associated with NAC. 

In addition, a PMx study, carried out in the context of a clinical trial (NCT02338115), 
focused on the identification of serum metabolic alterations associated with the develop-
ment of paclitaxel-induced peripheral neuropathy (PN) [94]. To this end, serum samples 
from 48 BC patients were collected before, during, and after treatment with paclitaxel. 
Using this strategy, the potential association between changes in the serum metabolic pro-
file of patients and ΔCIPN8 scores, a parameter measuring primarily sensory neuropathy 
caused by paclitaxel, was evaluated. Inverse correlations between the pre-treatment levels 
of histidine, phenylalanine and threonine, and the maximum ΔCIPN8 were observed, sug-
gesting that these amino acids could potentially predict PN severity in these patients. In 
fact, as indicated by Sun et al. [94], histidine is involved in the pathogenesis and inflam-
matory process of neuropathic pain [116–118]; phenylalanine precursors are implicated in 
the development of neurological conditions [119,120]; and threonine could cause glycine 
accumulation in the brain, affecting neurotransmitter balance [121]. This study highlights 
the enormous potential of PMx studies in the follow-up of BC patients. 

3.3.2. Pancreatic Cancer 
PMx studies focused on PC have relied on different in vitro and in vivo models to 

characterize the metabolic changes associated with the response or resistance to therapeu-
tic interventions. Gebregiworgis et al. investigated the potential of PMx to differentiate 
PC cells that respond or develop resistance to Gemcitabine treatment [26], information 
that could be useful in the clinical setting for monitoring a patient’s therapeutic response. 
In particular, the authors compared the metabolomics profile of wild-type (WT) and Gem-
citabine-resistant (GemR) PC cell lines before and after treatment with Gemcitabine. Anal-
ysis of the metabolomics profile after treatment in the two experimental models (WT and 
GemR) allowed the identification of unique metabolic changes differentiating the re-
sponse, or the acquired resistance, to gemcitabine. Overall, the metabolic profile associ-
ated with gemcitabine-resistance was the major feature discriminating between the 
groups of study. Specific alterations in the metabolism of GemR cells were further evalu-
ated by combining stable-isotope labeling experiments using 13C6-glucose. Based on these 
studies, it was concluded that, in GemR cells, glucose is primarily derived for nucleotide 
synthesis to compensate gemcitabine activity; whereas in WT cells, glucose is primarily 
directed into glycolysis after treatment with Gemcitabine. These findings are in agreement 
with previous results reporting that Gemcitabine efficacy is influenced by the nucleotide 
cellular pool [122] and that deoxycytidine triphosphate acts as a competitive-inhibitor of 
Gemcitabine [123]. A different study, conducted by Wei et al., has also evaluated the ther-
apeutic effects of Cucurmosin, as an alternative to Gemcitabine for PC treatment, by ex-
amining its impact on serum metabolism [76]. Differences in the serum metabolomics pro-
file after treatment were evaluated in a subcutaneous xenograft mouse model of PC. The 
results showed that whilst the PC mice showed specific metabolic changes when com-
pared with the control mice, both drugs induced similar metabolic effects in the in vivo 
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PC model. Additional studies would be required to explore the significance of these 
changes in disease progression and the response to treatment. 

3.3.3. Head and Neck Squamous Cell Carcinoma 
Treatment response and adverse effects, associated with different therapeutic inter-

ventions, have been evaluated in different NMR-based PMx studies focused on HNSCC 
patients. A first study pursued the NMR characterization of the serum metabolic profile 
of HNSCC patients following radio- and/or chemotherapy to identify metabolic altera-
tions that could predict weight loss and induced-toxicity risk [101]. Serum samples from 
170 patients undergoing radio- and chemotherapy (RT/CHRT) were weekly collected be-
fore, during, and after treatment. The authors identified a group of three ketone bodies 
(3-hydroxybutyrate (3HB), acetone and acetoacetate) able to identify patients at high risk 
of weight loss. Particularly, 3HB was found to be a sensitive biomarker for the identifica-
tion of patients at higher risk of >10% weight loss during RT/CHRT treatment. In a more 
recent study, the serum metabolic profile of 53 locally-advanced HNSCC patients was also 
analyzed to identify biomarkers able to differentiate responder from non-responder pa-
tients [102]. The analysis of the metabolomics profiles revealed an association between the 
response to induction chemotherapy (iCHT) and increased serum lipids, accompanied by 
a simultaneous decrease in alanine, glucose, and N-acetyl-glycoprotein (NAG) levels. 
These metabolic changes were initially associated with the regression of the primary tu-
mor in males. However, an in-depth analysis of the data suggested that gender-related 
metabolic differences could be explained by elevated pre-treatment levels of glucose and 
alanine and/or a higher initial tumor stage found in the male patients enrolled in the study 
[102]. 

3.3.4. Non-small-Cell Lung Cancer 
Two PMx studies have evaluated metabolic alterations associated with the immuno-

therapy response in NSCLC patients, using serum and feces. Ghini et al. evaluated the 
serum metabolomics profile of NSCLC patients before treatment with the immune check-
point inhibitors Nivolumab and Pembrolizumab [52]. The classification model derived 
from this analysis allowed the prediction of individual outcomes with >80% accuracy, and 
the results showed that the serum metabolic fingerprints able to discriminate responder 
from non-responder patients were similar for both treatments. Another study carried out 
by Botticelli et al. has been able to identify metabolites specifically associated with the 
Nivolumab response using a strategy based on the combined analysis (NMR, MS) of the 
fecal metabolic profile of nine NSCLC patients after Nivolumab [23]. Higher levels of 2-
Pentanone (ketone) and tridecane (alkane) were significantly associated with early disease 
progression in this study, whereas higher levels of SCFAs (i.e., propionate, butyrate), ly-
sine, and nicotinic acid were significantly associated with a better treatment response. 
These preliminary data suggest a potential role of gut microbiota metabolic alternations 
in regulating the response to immunotherapy. 

3.3.5. Prostate Cancer 
So far, only one PMx study, based on HR-MAS NMR spectroscopy, has been carried 

out with a focus on PCa patients. In particular, Madhu et al. evaluated the metabolic 
changes after treatment with Degarelix, a gonadotrophin-releasing hormone blocker used 
to treat advanced PCa by decreasing serum androgen levels, in intact prostate tissue [29]. 
To this end, benign and tumor tissue samples were collected from 13 PCa patients partic-
ipating in two different clinical trials (NCT01852864 and NCT00967889 for treated and 
untreated patients, respectively). The results of the NMR and the statistical data revealed 
that lactate, alanine, and choline levels were significantly increased in high-grade PCa tu-
mors compared with benign samples. Furthermore, the Degarelix treatment resulted in 
significant decreases in lactate and choline levels in tumor samples, whereas these 
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changes were not observed in benign prostate tissues. The results from this study suggest 
that it could be possible to monitor the effects of physical or chemical castration in PCa 
patients based on their metabolomics profile changes. 

3.3.6. Hodgkin and Non-Hodgkin Lymphoma 
Peripheral blood stem cells from HL/NHL patients, collected before hematopoietic 

cell transplantation (HCT), were metabolically examined by Cano et al. to identify patients 
with a higher predisposition for developing therapy-related myelodysplasia syndrome or 
acute myeloid leukemia (t-MDS/AML) [25]. Patients were classified based on the occur-
rence of t-MDS or AML within 5 years after autologous hematopoietic cell transplantation 
(aHCT). Comparison of the metabolite levels between patients developing (n = 6) and not-
developing (n = 6) t-MDS/AML resulted in the identification of alterations in alanine and 
aspartate metabolism; glyoxylate and dicarboxylate metabolism; phenylalanine metabo-
lism; the citrate acid cycle; and aminoacyl-t-RNA biosynthesis. The authors suggested that 
these metabolic dysfunctions would result in a decreased ability of cells to detoxify reac-
tive oxygen species (ROS) derived from therapy, leading to DNA mutations that could 
predispose patients for the development of t-MDS. 

3.3.7. Hepatocellular Carcinoma 
The serum metabolic profile of 120 HCC patients was analyzed by Goossens et al. to 

identify the metabolic changes associated with disease recurrence and the radiofrequency 
ablation (RFA) response in these patients [77]. Although no significant findings were iden-
tified for defining a predictive signature of HCC recurrency, the serum metabolic profile 
of patients analyzed before treatment showed significant differences depending on 
whether the liver disease had a viral or a non-viral etiology. Moreover, several metabolic 
alterations were found when comparing serum samples at different time points. Thus, the 
RFA response was correlated with higher levels of lactate, glutamine, and 3-phenylpropi-
onate, as well as lower levels of isoleucine, phosphatidylcholine, and glycerophosphocho-
line. Furthermore, some other metabolites, including lipids, aspartate, choline, and glu-
cose experienced different alterations four months after RFA in viral and non-viral cirrho-
sis patients, reflecting different metabolic patterns of evolution after RFA depending on 
the etiology of the cirrhosis. 

3.3.8. Multiple Myeloma 
Serum samples from healthy individuals and MM patients were collected at the time 

of diagnosis and after complete remission and metabolically characterized to obtain clin-
ically relevant information for the management of this oncological condition [43]. This 
PMx study relied on the analysis of samples from two different clinical trials 
(NCT00461747, NCT00443235). Specific metabolic changes were identified in MM patients 
at the time of diagnosis, but also after complete remission of the disease. A comparison of 
the metabolic profiles obtained for the different groups of the study resulted in the iden-
tification of metabolic alterations (i.e., glutamine, cholesterol, and lysine) observed at the 
MM diagnosis that exhibited an opposite trend in MM patients upon responding to treat-
ment. This behavior would explain why MM patients after complete remission exhibited 
a more similar metabolic profile to that of healthy individuals. Interestingly, it was also 
found that some other metabolic alterations associated with the disease (i.e., 3-hydroxy-
butyrate, arginine, and acetate) were not reversed after achieving complete remission and 
could potentially play a role in MM relapse. 

4. Conclusions and Future Perspective 
It is becoming increasingly important to accurately select the best therapeutical strat-

egy for a specific health condition in order to maximize the therapeutic benefit of a specific 
group of patients. PMx relies on the characterization of patient metabolic profiles to better 
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understand the molecular mechanisms underlying drug administration, predict patient 
drug response, and identify biomarkers associated with drug toxicity. Therefore, PMx 
represents a powerful experimental strategy to gather information on drug safety, tox-
icity, or metabolism, because it involves the evaluation of a wide variety of factors, includ-
ing specific genetic traits and environmental parameters. In this context, PMx studies, 
based on the non-invasive evaluation of metabolic changes, could improve the current 
landscape of precision medicine by providing more accurate and specific predictions on 
drug efficacy and safety. This review underlines the tremendous potential of these ap-
proaches for the evaluation and prediction of treatment efficacy and safety in different 
oncological conditions. 

However, standardized protocols for optimal sample preparation [124]; the need of 
sensitive, specific and reproducible analytical approaches [125]; and the importance of 
accurate data processing for reliable statistical analysis [126] are still under development 
in this research area. Furthermore, other factors, often underestimated, that could have a 
major impact on metabolomics analyses include sample collection, processing, or storage 
[127,128]. In fact, different protocols for sample preparation and NMR-data acquisition 
and pretreatment were followed, even for the same sample types in the PMx studies in-
cluded in this review. Therefore, the implementation of standard operating procedures 
(SOPs) could contribute to ensure reproducibility across research centers and biobanks 
[129]. This strategy could also facilitate the development of sufficiently well-powered da-
tasets for producing accurate and robust findings that could potentially be translated to 
the clinical setting. Only a few of the PMx studies relied on using different analytical tech-
niques (e.g., NMR and MS) or platforms (e.g., metabolomics, genomics, proteomics, etc.). 
In this context, the integrated analysis of the data from different experimental approaches 
to the characterization of treatment effects in patient samples on future PMx studies could 
enormously benefit the personalized medicine field and further improve the treatment 
selection for patients. Additionally, an in-depth characterization of the metabolic changes, 
based on the analysis of different in vivo and in vitro approaches, could also provide a 
better understanding of the biological mechanisms underlying metabolic changes. Over-
coming such challenges is essential to discovering sensitive and specific biomarkers that 
could be informative on drug metabolism, safety, efficacy, and response. 
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