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Abstract: The ability to block human-to-mosquito and mosquito-to-human transmission of 

Plasmodium parasites is fundamental to accomplish the ambitious goal of malaria elimination. The 

WHO currently recommends only primaquine as a transmission-blocking drug but its use is 

severely restricted by toxicity in some populations. New, safe and clinically effective transmission-

blocking drugs therefore need to be discovered. While natural products have been extensively 

investigated for the development of chemotherapeutic antimalarial agents, their potential use as 

transmission-blocking drugs is comparatively poorly explored. Here, we provide a comprehensive 

summary of the activities of natural products (and their derivatives) of plant and microbial origins 

against sexual stages of Plasmodium parasites and the Anopheles mosquito vector. We identify the 

prevailing challenges and opportunities and suggest how these can be mitigated and/or exploited 

in an endeavor to expedite transmission-blocking drug discovery efforts from natural products. 
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1. Introduction 

1.1. Transmission-Blocking: An Integral Tool for Malaria Elimination 

In spite of the many efforts that have been explored to control malaria, the disease still remains 

a global health threat [1–3]. The intricate multistage life cycle of the malaria-causing Plasmodium 

parasite, which spans both development in the human host and mosquito vector, has been one of the 

major reasons for its survival and continued infection of humans. Each developmental stage of the 

parasite is characterised by distinct biological processes that causes the variation in stage-specific 

drug susceptibility [4–9]. After hepatic schizogony (liver stage development as initial step after 

infection with sporozoites transmitted by a feeding female Anopheles mosquito), pathology is 

associated with asexual intra-erythrocytic development of the parasite, typified by progression from 

ring to trophozoites before schizogony occurs to release daughter merozoites able to infect new 

erythrocytes and continue proliferation. Sexual development relies on gametocytogenesis of a small 



Pharmaceuticals 2020, 13, 251 2 of 20 

 

fraction of the parasites (~1% of the population) and is characterised by the parasite differentiating 

through five developmental stages (stages I–V) in the human host to produce mature gametocytes 

(stage V) able to be transmitted by a feeding mosquito. Once back in the mosquito vector, gamete 

formation ensues followed by fertilisation and finally oocyst formation before sporogony [10]. 

For decades, antimalarial drug development efforts have been (rightly so) skewed towards the 

discovery of chemotherapeutic agents, drugs able to target the symptomatic intra-erythrocytic 

asexual stage Plasmodium parasites and cure a patient of disease and preventing mortality [11,12]. 

However, this does not eliminate carriage of gametocytes in these patients and indeed, parasite 

transmission largely continues unabated due to the general inactivity of these drugs against the 

sexual stages of the Plasmodium parasite life cycle. As global malaria programs shift from control to 

elimination and eradication [13], emphasis has therefore been placed on discovery of additional 

activities associated with new antimalarial candidates. Not only should such candidates be able to 

kill asexual parasites and therefore be useful therapeutically, but they should also have transmission-

blocking activity, targeting either sexual stages of Plasmodium parasites (classified by the Medicines 

for Malaria Venture as target candidate profile 5, TCP-5, [10,14,15]) or the Anopheles mosquito vector 

(endectocides, TCP-6, [10,16]). 

It is anticipated that transmission-blocking drugs will reduce the burden of malaria by 

substantially decreasing the number of infectious mosquitoes, resulting in significant decline in 

secondary human infections [14]. In fact, interruption of transmission through vector control targeted 

interventions, has been at the heart of some of the major success stories in the fight against malaria 

including elimination of the disease in several countries [17]. However, the efficacy of vector control 

has plateaued and is undermined by, amongst others, outdoor feeding behaviour of mosquitoes and 

insecticide resistance [18]. The use of drugs to target the parasite and thereby prevent transmission is 

therefore an enticing new possibility as add-on to current standard practice. Moreover, the low 

number of sexual stage parasites marks them for targeting and their non-proliferative nature could 

decrease the probability of development of resistance to transmission-blocking drugs [19], a fact 

compromising the use of all antimalarial chemotherapeuticals targeting asexual stages. 

Despite these advantages and the growing body of empirical and clinical evidence 

substantiating its usefulness [20–23], there is currently only one WHO approved transmission-

blocking drug, primaquine. Unfortunately, its use is limited due to toxicity concerns [24] and it cannot 

be prescribed to pregnant women, breast feeding mothers and infants [25], populations that has a 

large potential parasite reservoir, which will perpetuate parasite transmission. It is thus imperative 

to discover new, safe and clinically effective transmission-blocking agents. 

1.2. Can Natural Products Prove a Panacea for Transmission-Blocking Drug Discovery Efforts? 

Natural products are an extensive reservoir of diverse chemical compounds with novel 

biological targets and mode-of-action (MoA). These qualities have made them a significant 

component of the global pharmaceutical arsenal with over half of currently commercially available 

medicinal drugs having been either derived from a natural source or been inspired by natural 

compounds [26,27]. The malaria field has equally benefitted, with natural products having played a 

pivotal role in the discovery of chemotherapeutic antimalarial agents with two mainstay malaria 

chemotherapeutic agents, artemisinin and quinine, both derived from medicinal plants [28,29]. These 

agents also served as scaffolds for the synthesis of derivatives including artemether, 

dihydroartemisinin, artesunate, chloroquine and mefloquine. Another antimalarial, atovaquone, also 

traces its discovery to a plant-derived natural compound [28]. Natural compounds isolated from 

microorganisms have similarly had a profound impact towards discovery of chemotherapeutic 

antimalarial agents by providing privileged scaffolds for the synthesis of derivatives including the 

tetracycline, doxycycline and the lincosamide, clindamycin [30,31]. 

However, research on natural products as a source of drugs drastically declined towards the end 

of the 20th century [32]. This was attributed to challenges associated with downstream development 

of such compounds in medicinal chemistry programmes, particularly due to limited availability of 

starting material and structural complexity of purified natural product compounds that restricts their 
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synthesis. Further compounding factors include frequent isolation of pan-assay interfering 

compounds, repeated isolation of known molecules and the non-compatibility of some secondary 

metabolites with high-throughput screening platforms [32]. Despite this, the emergence of drug 

resistant microorganisms and limited chemical structural diversity of synthetic libraries has led to a 

revival of interest in natural products as sources for drug discovery [33]. The recent discovery of 

structurally unique bacterial-derived antibiotics, teixobactin [34] and darobactin [35] and a anticancer 

marine alkaloid, trabectedin [36] is fuelling new research. Likewise, malaria research has benefited 

from this renaissance with the discovery and development of the natural product inspired clinical 

antimalarial candidates cipargamin [37] and artefenomel [38]. Apart from providing leads, natural 

products are also opening up new avenues for rational drug discovery efforts through the 

identification of useful novel biological targets and pathways in Plasmodium parasites [39]. 

Accumulating evidence supports natural products as a source for transmission-blocking drugs 

targeting the sexual stages of Plasmodium parasites and / or the Anopheles mosquito. Some natural 

compounds exhibit a TCP-5 activity profile while others have dual activity with additional potency 

against asexual parasites (defined with both TCP-1 and TCP-5 activity). The low hit rates of the 

synthetic compounds against sexual stage Plasmodium parasites [40–43], motivates expansion of the 

search for transmission-blocking drugs to natural products. This is justified particularly since their 

diverse chemical space and wide range of pharmacophores could lead to identification of novel lead 

compounds and associated targets in the parasite and as such avert existing drug resistance 

challenges. We therefore discuss here the status quo of natural products that have been explored for 

transmission-blocking activity in Plasmodium parasites and debate future usefulness of natural 

products and provide guidance as to standardised strategies to explore this rich source more 

expeditiously and economically to discover new transmission-blocking hits. 

Transmission-blocking screens are typically complex since compounds should show activity 

primarily against gametocytes in humans, but also has to translate to retained activity against early 

sporogonic stages (ESS, gametes and/or ookinetes) and oocyst mosquito stages (Figure 1a). 

Alternatively, compounds active against the Anopheles mosquito itself can then be used in the form 

of endectocides [10,40]. Moreover, the assays used in transmission-blocking screens are technically 

challenging as they involve multiple biological assay platforms that spans the entire transmission-

blocking cascade, with the standard membrane feeding assay (SMFA) serving as the gold standard 

assay to confirm a block in human-to-mosquito transmission [40]. Until now, transmission-blocking 

screens for natural products have been largely confined to late-stage gametocytes (stage IV/V 

gametocytes) whilst screens directly against gametes or oocysts or for identification of endectocides 

have received the least attention (Figure 1a). 

A summary of the current profile of natural compounds that have been screened for 

transmission-blocking antimalarial potential, revealed that 80 pure natural product compounds (and 

11 derivatives generated from some of these pure compounds) have been investigated for some form 

of transmission-blocking activity. Of this, 21 compounds are from microbial origin and 59 from plants 

(Figure 1a, Supplementary File). In addition to these purified compounds, complex and/or minimal 

extracts from 37 plant species and 10 herbal products have been associated with at least some 

transmission-blocking activity. The plant species investigated were drawn from 17 different plant 

families with Asteraceae, Meliaceae and Combretaceae being the most represented (Figure 1b). 
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Figure 1. Overview of transmission-blocking assays and natural product origins. (a) Sexual stages 

within the human host are categorised into early-stage (I–III) and late-stage (IV–V) gametocytes. 

Gametocytes are sexually dimorphic with both male (micro-) and female (macro-) gametocytes found 

in human host at a ratio of ~1:3.6, respectively. Inside the mosquitoes’ midgut, micro-gametocytes 

develop into mature micro-gametes, a process called exflagellation. Each micro-gametocyte produces 

eight micro-gametes while a macro-gametocyte matures into a single macro-gamete. Gametocyte 

development into gametes is termed gametogenesis. Micro- and macro-gametes fuse together to form 

a zygote that develops into a motile ookinete. Gamete-zygote-ookinete development constitute early 

sporogonic stages (ESS). Ookinetes penetrate the midgut wall where they form oocysts which enlarge 

over time and eventually rupture to release sporozoites. Different assay platforms to assess the 

activity against different stages include gametocyte stage specific assays (which assess either 

development, viability, metabolic or redox status), dual gamete formation assays (DGFA) (examine 

development of mature gametocytes into either micro- or macro-gametes), ookinete development 

assay (ODA) (examines development of gametes to ookinetes), standard membrane feeding assay 

(SMFA, assess either the number of oocysts per mosquito (termed oocyst intensity) or total number 

of mosquitoes with oocysts (termed oocysts prevalence) and endectocidal assays (which examine 

insecticidal properties of drugs upon ingestion by mosquito). Numbers indicated in blue and green 

circles indicate number of pure natural compounds and plant extracts screened per each respective 

stage. TB–transmission-blocking. (b) Summary of plant species reviewed for activity against 

transmission-blocking stages. Quite noticeable is the lack of investigations on gametes. It is also 

evident that the Asteraceae, Meliaceae and Combretaceae are the most investigated plant families 

with most species from the latter family being inactive against the respective transmission-blocking 

stages they were interrogated against. The colour scale indicates active (red) and inactive (black) 

plants species against specific stages. 
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2. Effectiveness of Natural Products Against Transmission-Blocking Stages 

2.1. Microbial-Derived Natural Products  

2.1.1. Ionophores 

Ionophores are lipid-soluble carboxylic polyether complexes that facilitate the transportation of 

ions across cellular membranes [44]. Inspired by the drug repurposing efforts, D’Alessandro et al. 

[45] screened three ionophores, salinomycin, nigericin and monensin (all originally isolated from 

different Streptomyces sp. [46]), against early- and late-stage P. falciparum gametocytes in vitro. 

All three compounds were highly active (IC50 < 200 nM, Figure 2, Table 1) against both 

gametocyte stages, with salinomycin showing preference to late-stage gametocytes [45]. The 

ionophores were able to inhibit development of P. berghei gametocytes into early sporogonic stages 

(ESS) in vitro and the transmission-blocking properties of these compounds was confirmed in vivo 

using the standard membrane feeding assay (SMFA) (Table 1) [45]. Maduramicin, an ionophore 

produced by the actinomycete Actinomadura rubra, [47] has transmission-blocking properties both in 

vitro and in vivo [48,49], killing late-stage P. falciparum gametocytes (IC50 < 200 nM) (Figure 2, Table 

1). This ionophore is fast acting, reducing late-stage gametocyte viability by >90% 12 h post treatment, 

with morphological changes evident even 1 h after drug exposure. This is similarly reflected in in 

vivo transmission-blocking activity where oocyst development was significantly blocked by 

maduramicin following exposure of gametocytes to drug for only 90 min prior to mosquito feed [48]. 

2.1.2. Peptides, Glycosides and Miscellaneous 

The proteasome inhibitor, epoxomicin, is one of the most widely investigated peptides routinely 

used for transmission-blocking as a reference drug for in vitro gametocytocidal assays [48,50–54]. It 

has potent (IC50 < 10 nM, Figure 2, Table 1) in vitro activity against late-stage P. falciparum gametocytes 

[50,51,53,54], with sex-specific preference towards P. falciparum micro-gametes in vitro [50,55]. In 

vivo, epoxomicin completely blocks the formation of P. falciparum oocysts in An. stephensi [55]. The 

peptide carmaphycin B targets the β5 subunit of the yeast 20s proteasome, a well characterised 

antimalarial target [56]. Carmaphycin B is potent (IC50 < 1 µM) against both intra-erythrocytic asexual 

P. falciparum parasites and gametocytes, with 40-fold preference towards asexual parasites (Figure 2, 

Table 1) [57]. Toxicity concerns with this compound resulted in norleucine replacement of the 

methionine moiety and racemic changes on valine, drastically improving selectivity of a new 

derivative [57]. 

Cyclic oligopeptides have been explored including the antibiotic thiostrepton, which is 

moderately active against intra-erythrocytic asexual P. falciparum parasites (IC50 = 8.9 µM) with a dual 

MoA: blocking protein translation in the apicoplast and inhibiting the 20s proteasome of the parasite 

[58]. Thiostrepton is similarly only moderately potent against the five development stages of 

gametocytes (IC50 ranging from 1.82 to 3.4 µM) [4], but has a 14-fold enhanced activity against micro-

gametes compared to macro-gametes (Figure 2, Table 1) [9]. This compound significantly reduces P. 

berghei oocyst development in An. stephensi mosquito midguts as well as reducing the number of 

sporozoites per mosquito [59]. Dactinomycin (a known transcription inhibitor in eukaryotic cells) and 

romidepsin (histone deacetylase inhibitor) [49] both show sub-micromolar gametocytocidal activity 

(Figure 2, Table 1), with in vivo transmission-blocking activity only confirmed for romidepsin [60]. 

Although these oligopeptides do show potency, their large MW and poor solubility detracts from 

their development as TCP-5 candidates. 

The glycosides adriamycin (a DNA synthesis inhibitor) and plicamycin (a RNA synthesis 

inhibitor) [49] similarly show sub-micromolar gametocytocidal activity (Figure 2, Table 1), indicating 

that inhibitors of essential nucleotide synthesis processes are affective against the transmissible forms 

of the parasite. This extends to transcription inhibitors such as puromycin [4,6,7], with equipotent in 

vitro activity against all five development stages of P. falciparum gametocytes [4]. This compound 

additionally has the advantage of being fast acting against P. falciparum macro-gametes (< 1 h) [50]. 

Similarly, the antibiotic cycloheximide has an almost exactly similar profile to puromycin, killing all 
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P. falciparum gametocyte stages, and being fast acting against macro-gametes [50], whilst also 

blocking P. berghei ookinetes development (Figure 2, Table 1) [61]. 

The macrolide chlorotonil A is highly potent against late-stage gametocytes (Figure 2, Table 1) 

[62]. Despite a plethora of investigations examining their transmission-blocking potential, the 

antibiotics tetracycline, fosmidomycin and deferoxamine have consistently proved to be inactive 

against both P. falciparum gametocytes (IC50 values >12.5 µM) and macro-gametes with the latter two 

compounds additionally unable to block P. berghei ookinete development in vitro [4,50,61]. All three 

compounds failed to significantly reduce the development of P. falciparum parasites into oocysts in 

mosquito vector (Supplementary File) [63]. 

Preliminary assessment of two usnic acid derivatives, designated BT37 and BT122, showed them 

to be potent in vivo (both had > 99% inhibition of oocyst formation at 250 µg/mL) [64]. Dose-response 

studies for inhibition of oocyst formation were estimated using logistic regression to range from 35 

to 234 µM for both derivatives [64]. While both these derivatives were incapable of blocking 

exflagellation of mature micro-gametes, they did inhibit transformation of zygotes-ookinetes 

(Supplementary File) [64]. 

2.1.3. Mycotoxins 

Fibrinogen-related protein 1 (FREP 1) is one of the many proteins that facilitate mosquito 

infection by Plasmodium parasites and thus transmission [65]. An in vitro screen of a library of crude 

fungal extracts for compounds that disrupt interaction of FREP 1 with Plasmodium parasites identified 

three active extracts, with that from Aspergillus niger (92% inhibition of FREP 1-Plasmodium 

association) being the most potent [66]. P-orlandin was identified as the active principle from this 

extract and has in vivo transmission-blocking activity against oocysts (Figure 2, Table 1) [66]. 

Aphidicolin (a DNA synthesis inhibitor, mycotoxin from Cephalosporum aphidicola) [67,68] is active by 

inhibiting exflagellation of P. falciparum micro-gametes [64], without displaying overt toxicity (Figure 

2, Table 1). 
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Figure 2. Chemical structures of highly potent microbial-derived compounds targeting P. falciparum 

transmissible stages. 

Table 1. Transmission-blocking activity of microbial-derived natural product compounds. (Further 

details provided in Supplementary File.). 

Compound  MW cLogP 

Transmission-Blocking Stage Activity  

(IC50, µM/% inhibition @ >5 µM a or <0.5 µM b) References 

EG  LG  Mic Mac ESS Ooc 

Ionophores 

Salinomycin 751 5 0.014 0.006   0.035 0.002 c; 0.018 d [45] 

Nigericin 724 4.69 0.003 0.001     [45] 

Monensin 670 3.74 0.002 0.006   0.017 0.002 c; 0.001 d [45] 

Maduramicin 934 1.47  0.015    100% e [48,49] 

Peptides, glycosides and miscellaneous 

Epoxomicin 554 2.12 99.8% a 0.0004 Inactive 0.008  100% b [48,50–54] 

Carmaphycin B 515 3.31  0.160     [57] 

Thiostrepton 1664 −1.04 2.8 1.8 0.096 1.4 8 Active a [4,9,59] 

Dactinomycin 1255 0.6  0.015     [49] 

Romidepsin 540 1.39  0.637    Active b [49,60] 
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Adriamycin 579 0.36  0.526     [49] 

Plicamycin 1085 0.25  0.833     [49] 

Puromycin 471 −0.22 0.103 0.110  100% a   [4,6,7,50] 

Cycloheximide 281 1.3 0.6 0.477  100% a 100% a  [50,61] 

Chlorotonil A 479 4.81  0.030     [62] 

Mycotoxins          

P-Orlandin 410 3.18      56.7% a; 35.3% a [66] 

Aphidicolin 338 2.39   100% b    [64] 

a % inhibition > 5 µM, b % inhibition < 0.5 µM, c Oocysts intensity; d Oocysts prevalence; e % inhibition 

of oocysts intensity at 4 mg/kg. MW and consensus LogP (cLogP) calculated using SwissADME online 

suite [69]. EG–early-stage gametocytes; LG–late-stage gametocytes; Mic–micro-gametes; Mac–macro-

gametes; ESS–early sporogonic stages; Ooc–oocysts. 

2.2. Plant-Derived Natural Products  

2.2.1. Terpenes and Terpenoids 

Sesquiterpene lactones are emerging as a good starting point in search of transmission-blocking 

drugs with several studies proving their potential. The most widely investigated member of this class 

of compounds is artemisinin, along with its derivatives (Figure 3, Table 2). These agents have 

consistently been shown in vitro to be potent against early-stage P. falciparum gametocytes [4,5,7] but 

their activity against late-stage gametocytes is rather ambiguous with conflicting data (in some 

instances >100-fold differences in IC50 values) [4,6,7,51,70]. Such discrepancies can be explained by 

variation in stage composition of parasite cultures and dissimilarities in sensitivity of the different 

assay platforms used [40]. Nonetheless, artemisinin sterilises mature micro-gametocytes and blocks 

macro-gamete development [9,50]. While artemisinin does not inhibit P. berghei ookinetes 

development in vitro, it blocks P. falciparum oocysts formation in Anopheles mosquito [63,71]. Clinical 

studies have shown artemisinin derivatives to reduce gametocyte density and carriage time [72,73]. 

However, artemisinin-based combination therapies (ACTs) are unable to clear off the transmittable 

mature stage V gametocytes clinically [74]. 

Additional sesquiterpene compounds have been investigated from plant species belonging to 

the Asteraceae family. Parthenin and parthenolide (from the Asteraceae family members Parthenium 

hysterophorus and Tanacetum parthenium, respectively), inhibit exflagellation of micro-gametes and 

block ookinete-oocysts development [75]. From another Asteraceae plant species, Artemisia afra, two 

previously undocumented gametocytocidal guaianolide sesquiterpene lactone compounds (1α,4α-

dihydroxybishopsolicepolide and yomogiartemin) were shown to have µM gametocytocidal activity, 

the former with a three-fold selectivity towards late-stage compared to early-stage gametocytes 

(Figure 3, Table 2, Supplementary File) [76]. From Vernonia amygdalina (Asteraceae), two 

sesquiterpene lactones were isolated, vernodalol and vernolide, with both showing only marginal 

ESS activity (Figure 3, Table 2, Supplementary File) [77]. A germacranolide sesquiterpene lactone 

from Daucus virgatus (Apiaceae), daucovirgolides G, was the only compound with marked potency 

in vitro, strongly inhibiting ESS development (Figure 3, Table 2, Supplementary File) [78,79]. 

Taxol (a diterpene isolated from the plant Taxus brevifolia (Taxaceae) [80]) (Figure 3, Table 2, 

Supplementary File), that inhibit transformation of P. gallinaceum zygotes into ookinetes in vitro by 

targeting microtubules, within 6 h [81]. Furthermore, zygotes exposed to different dosages of these 

drugs for 4 h failed to develop into oocysts in midguts of Aedes aegypti mosquitoes [81]. 

Azadirachta indica (Meliaceae), the neem tree native to India where it has been used for >3500 

years for malaria treatment, has been comprehensively studied for its transmission-blocking activity 

[82–89]. A. indica fractions are active in vitro against both early- and late-stage P. falciparum 

gametocytes (IC50 = 0.001 µg/mL) [85,87]. Transmission-blocking activity of A. indica has been 

conclusively demonstrated in vivo (by blocking P. berghei gametocyte-ESS development) and ex vivo 

(inhibiting P. falciparum gametocyte and oocyst development) [83,84]. The potency of A. indica against 
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sexual stages of Plasmodium has been ascribed to limonoids (a class of terpenoids produced by the 

plant species), with azadirachtin A being the most prominent. Azadirachtin A, along with three of its 

synthetic derivatives (Supplementary File), are similarly potent against P. berghei micro-gametes (IC50 

ranging from 1.8 to 2.7 µM) (Figure 3, Table 2, Supplementary File) [82]. Structure-activity 

relationship analysis showed that the hemi-acetal moiety on carbon-11 to be critical for the observed 

pharmacological effect of these compounds. Azadirachtin A additionally inhibits exflagellation of 

gametes ex vivo and blocks development of ESS [88]. The MoA of azadirachtin A has been elucidated 

to be an impairment of microtubules formation during exflagellation [90]. In contrast to its potency 

against gametes, azadirachtin A is inactive against asexual Plasmodium parasites [90]. Another 

limonoid shown to have activity against ESS stages is deacetylnimbin [89]. Unlike azadirachtin A, 

deacetylnimbin has the advantage of being thermally and chemically stable [89]. This is an important 

property to consider in developing drugs targeting the ESS development process in the mosquito 

(contraceptive drugs) since they ought to have a long half-life equal to the peripheral circulation 

period of gametocytes which can be as long as 55 days [89,91]. Structural comparisons between 

deacetylnimbin, azadirachtin A and other A. indica compounds namely, nimbin (poorly active against 

ESS) and salannin (inactive against ESS), suggested that the presence of a free hydroxyl moiety was 

crucial for potency [89]. Gedunin, a limonoid highly active in vitro against asexual Plasmodium 

parasites, has been inferred to have an inhibitory effect on the development of oocysts in the mosquito 

vector while existing data suggests both azadirone and azadidarione to be incapable of blocking 

oocysts development (Supplementary File) [84]. 

2.2.2. Alkaloids, Steroids and Miscellaneous 

The gametocytocidal activity of quinine has been a subject of investigation since the 1940s [92]. 

In some studies, quinine is reported to be more selectively potent towards early-stage P. falciparum 

gametocytes than to late-stage gametocytes (> 15-fold variation in IC50 values) (Figure 3, Table 2, 

Supplementary File) [4,5,51], whilst other studies show a six-fold late-stage gametocytes preference 

[7,49]. Interestingly, quinine is reported to be active against P. vivax and P. malariae gametocytes [93]. 

While it has poor activity inhibiting development of P. falciparum macro-gametes [50] and is incapable 

of arresting P. berghei ookinete development in vitro [61], quinine is able to block P. falciparum oocyst 

development in vivo [63]. Other alkaloids including dihydronitidine and heitziquinone, isolated from 

the plant species Zanthoxylum heitzii (Rutaceae), also showed activity against ookinete development 

in vitro [94]. The quinazoline alkaloid, tryptanthrin and its synthetic derivatives designated NT1 and 

T8, have significant gametocytocidal activity in vitro (Figure 3, Table 2, Supplementary File) [95]. 

However, of the three agents only NT1 strongly inhibited exflagellation of micro-gametes 

(Supplementary File) [95]. Cryptolepine and a root extract of its parent plant, Cryptolepis sanguinolenta 

(Lindl.) Schlechter (Periplocaceae) both demonstrate moderate gametocytocidal activity [96]. The 

MoA of cryptolepine on asexual Plasmodium parasites has been deciphered to be partly due to 

inhibition of β-haematin formation [97], a non-viable late-stage gametocyte target [4]. Another 

alkaloid with demonstrated late-stage gametocyte activity is the protein translation inhibitor 

omacetaxine [49]. 

While steroids have this far received minimal attention within the malaria transmission-blocking 

drug discovery field, a few studies have provided interesting insights into their TCP-5 credentials. 

Withaferin A (a transcription inhibitor) is one such compound being highly potent against late-stage 

gametocytes (Figure 3, Table 2) [49]. Three steroids, designated SN-1, SN-2 and SN-4, isolated from 

the plant, Solanum nudum Dunal (Solanaceae), were assessed against ex vivo P. vivax parasites. Only 

compounds SN-1 and SN-2 significantly reduced infectivity [98], although this could not be discerned 

from solubilising agents included such as polyvinylpyrrolidone (PVP). Encouragingly, SN-2 further 

significantly reduced oocyst density, a phenotypical effect not observed for PVP (Supplementary File) 

[98]. The results from this study are important as they do point to natural products being useful in 

targeting sporogonic stages of P. vivax. In a recent study, a derivative of the steroid sarachine, 

designated 1o, was demonstrated to be active against early, mid and late-stage P. falciparum 

gametocytes as well as in blocking P. berghei oocysts development in vivo (Supplementary File) [99]. 
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Figure 3. Chemical structures of selected plant-derived compounds with some described activity 

(including only moderate) against P. falciparum transmissible stages. * 1α,4α-

dihydroxybishopsolicepolide. 

Additional screens for transmission-blocking activity associated with plant extracts include a 

screen of extracts from 12 plant species against late-stage gametocytes of P. falciparum in vitro with 

only extracts of five species, Terminalia macroptera (Combretaceae), Combretum collinum 

(Combretaceae), Argenome mexicana (Papaveraceae), Zanthoxylum zanthoxyloïdes (Rutaceae) and 

Lophira lanceolate (Ochnaceae) [100]. Most extracts had moderate activity (IC50 ranging from 20.6 to 

54.7 µg/mL) with only the stem bark ethanol extract of L. lanceolate demonstrating good activity (IC50 

= 11.4 µg/mL) [100]. A bioassay-guided approach led to the isolation of seven biflavonoid compounds 

from L. lanceolate including lophirone E which was 100-fold more active towards late-stage 

gametocytes compared to asexual stage P. falciparum parasites (Figure 3, Table 2) [101]. Interestingly, 

screening L. lanceolate extracts against ESS led the isolation of a different set of compounds, 

(glucolophirone C, and the lanceolins A and B, IC50 values ranging from 10.95 µM to 113.58 µM), 

indicating stage-specific activities (Supplementary File) [102]. 

Paton et al. [103] recently demonstrated that exposure of female Anopheles mosquitoes to 

relatively low concentrations of atovaquone (an analogue of a plant-derived natural compound 

which targets cytochrome b) shortly after P. falciparum infection rapidly blocked zygote-ookinete 

development inside the mosquitoes midgut. This consequently led to failure of oocysts development, 

rendering the mosquitoes non-infective (Supplementary File) [103]. Atovaquone could be 

administered in a way that mimicked contact with an insecticide on a bed net. Its lipophilic nature 

allowed for its rapid absorption via the mosquito’s legs and into the midgut where it exerted its 

sporogonic effect. The study opens up new, previously unexplored avenues which, if properly 
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exploited, may have a profound effect on malaria transmission contributing immensely towards the 

elimination and eradication solution. 

Table 2. Transmission-blocking activity of plant-derived natural product compounds. (Further details 

provided in Supplementary File.). 

Compound  
M

W 

cLog

P 

Transmission-Blocking Stage Activity  

(IC50, µM/% inhibition @ > 5 µM a) References 

EG  LG  Mic Mac ESS Ooc 

Terpenes and Terpenoids 

Artemisinin 282 2.5 
0.01

2  

0.03

7  
0.224 

0.12

0  

Inactiv

e  

93% 
a 

[4,6,7,9,50,51,63,70,7

1] 

1α,4α-* 320 0.97 17.5  6.3           [76] 

Vernodalol 392 1.45         18.7    [77] 

Daucovirgolide 

G 
446 3.63         

82.3 b; 

48.4 c 
  [78,79] 

Taxol 853 3.39     ~80% a  [81] 

Azadirachtin A 720 1.08     3.5    17.2    [82,88] 

Deacetylnimbin 498 2.77     6 to 25  [89] 

Alkaloids, Steroids and Miscellaneous 

Quinine 324 2.81 0.44 
0.31

8 
 

29% 
a 

22.6% a 
85% 

a 
[4,5,7,49–51,61,63] 

Dihydronitidine 349 3.65     1.7  [94] 

Tryptanthrin 248 2.16 
95% 

d 
 

Inactiv

e 
   [95] 

Omacetaxine 545 2.47  
0.08

3 
    [49] 

Withaferin A 470 3.45  
0.37

2 
    [49] 

Lophirone E 372 3.95  0.14     [101] 
a % inhibition at 5 µM; b ESS development; c Zygote-ookinete development, d % Inhibition of 

development at concentration equal to IC90 value against asexual stages; * 1α,4α-

dihydroxybishopsolicepolide. MW and cLogP calculated using SwissADME online suite [69]. EG–

early-stage gametocytes; LG–late-stage gametocytes; Mic–micro-gametes; Mac–macro-gametes; ESS–

early sporogonic stages; Ooc–oocysts. 

2.3.  Herbal Remedies as Gametocytocidal Agents 

Ten herbal products used for malaria treatment in Ghana showed activity (at 100 µg/mL) in vitro 

against both early and late-stage P. falciparum gametocytes. Interestingly, at 1 µg/mL, the herbal 

product YF, was significantly more potent against late-stage gametocytes in comparison to early-

stage gametocytes, whereas herbal product RT used at sub-optimal concentrations (IC10 of asexual 

parasite stages) had the lowest number of gametocytes [104], indicating some preferential killing of 

gametocytes in these extracts. Some asexual Plasmodium parasite cultures treated with herbal 

products also had a higher gametocytaemia in comparison to untreated cultures [104], implying that 

this form of stress (similar to that observed for some antimalarial drugs [105–108]) induces 

transformation to sexual development. This makes it that much more important to identify 

compounds that do kill early- and late-stage gametocytes. 

2.4.  Endectocidal Activity of Plant Extracts Against Anopheles 

While extracts of plants and plant-derived natural products have been investigated primarily as 

insecticides or larvacides (reviewed by Rongnoparut et al. [109] and Kishore et al. [110]), their 

endectocidal activity (where mosquitoes ingest either the extracts of plants or plant-derived 

compounds and is thereby killed) is poorly explored. A model endectocidal drug for transmission-

blocking is ivermectin [111], a 16-membered macrocyclic lactone semisynthetic derivative drug of 
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avermectin, which is a complex natural product originally isolated from the bacterium Streptomyces 

avermectinius [112,113]. Its MoA is associated with hyperpolarization of cells due to influx of Cl−, due 

to inhibition of glutamate-gated chloride channels (GluCl) [114,115]. In a clinical study, ivermectin 

decreased An. gambiae and An. funestus mortality by four to seven-fold, 24 h after ingestion [116], and 

kills outdoor-feeding An. arabiensis mosquito vector when delivered through cattle [117] for up to 21 

days post-treatment [118]. Enticingly, ivermectin also possesses good activity against asexual P. 

falciparum parasites and late-stage gametocytes (IC50′s of 0.1 and 0.5 µM, respectively, Supplementary 

File) [119]. It remains to be seen if this will translate to epidemiological impact in decreasing the 

parasite transmission burden, in addition to its success against the mosquito vector. 

In the search for new endectocides, Kenyan plant species (including Tithonia diversifolia 

(Asteraceae) and Ricinus communis (Euphorbiaceae)) were active at LC50 values of 8.30 and 8.69 

mg/mL after 3 days and 1.53 and 2.56 mg/mL after 7 days of feeding, respectively [120], with two 

active compounds isolated (3-carboxy-4-methoxy-N-methyl-2-pyridone and ricinine). Interestingly, 

the survival of mosquitoes fed on fruits of Mangifera indica (Anacardiaceae) or parts of Thevetia 

neriifolia (Apocynaceae) or Barleria lupilina (Acanthaceae) was decreased by 50–95% [121]. A. indica 

and Z. heitzii extracts also have pronounced endectocitocidal properties [122,123]. 

2.5. . Transmission-blocking Activities of Synthetic Derivatives of Natural Compound Analogues Currently 

in Clinical Trials 

The natural compound analogue and clinical antimalarial drug candidates KAE609 (cipargamin) 

[124] and OZ439 (artefenomel) (structural design inspired by artemisinin) [125] have transmission-

blocking properties both in vitro and in vivo [4,38,126,127]. The spiroindolone KAE609 inhibits in 

vitro gametocyte development with sub-micromolar concentrations [126], whilst the endoper{oxide 

OZ439′s potent (IC50 < 10 nM) gametocytocidal potency is limited to late-stages in vitro [4]. However, 

OZ439 inhibits exflagellation (>65% at 10 µM) [71] and macro-gametogenesis (IC50 = 0.15 µM) [50]. P. 

falciparum transmission-blocking of both compounds has been confirmed in vivo [50,126]. Although 

KAE609 cleared P. vivax gametocytes [127] within 8 h and OZ439 reduced P. vivax gametocytaemia 

in vivo by >90% within 24 h [38], the clinical efficacy of both compounds against P. falciparum 

gametocytes still remains inconclusive [38,127]. 

3. Future Perspectives 

While natural product compounds show varied activity against transmission-blocking stages, 

pragmatic strategies adopted for further discovery of new entities should be refined to ensure 

selection of high-quality, potent hits to expedite their subsequent discovery and development. This 

includes stringent selection of natural compound libraries, plants and microbial species to increase 

the probability of getting hit compounds, given the expansiveness and abundance of the plant 

kingdom (>300 000 plant species on Earth [128]). While the ethnobotany approach has been pivotal 

in the discovery of chemotherapeutic agents [29,129], unfortunately, transmission-blocking is not a 

topic one comes across in folk medicine, making it difficult to formulate a question that will lead to 

identification of plants used for this purpose. Having noted that some plant families e.g. Asteraceae 

and Meliaceae, are rich sources of prolific compounds potent against most transmission-blocking 

stages (Figure 1b) [75,82–84,89], a rational approach in selecting plants for screening against sexual 

stage Plasmodium parasites will have to focus on members of these plant families documented in 

ethnobotanical surveys. The vast unique marine vegetation that produce novel chemical structures 

[130] should also be explored for transmission-blocking antimalarials. Novel, previously 

unculturable bacteria also present huge untapped source of chemical diversity. 

Alternative sources are the de novo screen of natural product libraries in medium- to high-

throughput format. It is now clearly indicated that driving screens based on asexual stage potency 

may not identify transmission-blocking specific compounds and as such we recommend parallel 

screens against different parasite life cycle stages or at the start, screening driven primarily on the 

transmissible forms, after which activity against other stages can be determined for hits obtained 

[131,132]. For such natural product libraries, stringent go/no go criteria need to be defined, similar to 
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screening any other small molecule libraries. However, natural product hits need to be clearly 

evaluated very early on in the screening cascade for drug-like characteristics before proceeding to a 

hit-to-lead optimisation phase. In line with the innovative thought and approach of the MMV Malaria 

Boxes [133], we propose the assembling of a box consisting of a set of structurally diverse natural 

compounds with proven antiplasmodial activity, that could be used as interrogative control set. 

Since different assay read-outs might vary with the MoA of small molecules, the reliability of 

these assay platforms currently used to screen for gametocytocidal activity needs to be rigorously 

interrogated and ‘standardised’ to screen extracts against sexual stage Plasmodium parasites at 

medium- to high-throughput scale. This will need to extend further to clearly defining protocols to 

adopt such as reference control compounds (and possible extracts) per each stage to be used per assay 

(providing bench mark IC50 values of each standard reference drug/extract), standard incubation 

periods and set potency levels (either % inhibition of development/viability at specified concentration 

or IC50 values) that will serve to guide as to which extracts will be prioritised for the next phase, that 

is, isolation, purification and identification of bioactive principles. All of the above is entirely 

dependent on the ability to isolate and purify bioactive compounds from extracts. Classical bioassay-

guided fractionation approaches have been expansively employed within the malaria field [134–136], 

whilst cutting-edge technologies for improved isolation of bioactive compounds have been 

developed and should be explored for transmission-blocking discovery [134–138]. 

There is reason to believe that natural product compounds will retain their potency following 

oral administration to mosquitoes, such as when it collects a blood meal. On the basis of this 

knowledge, it is a worth-while effort to screen natural products, reported in literature to be highly 

potent insecticidal agents, in search of new endectocidal compounds. Another prudent strategy to 

explore in search of endectocides is to examine natural products known to target unique invertebrate 

ion channels e.g. GluCl with the advantage of potential increased selectivity towards mosquitos and 

therefore reduced toxicity. It remains to be seen if such novel compounds will indeed be able to 

impact epidemiologically to reduce malaria transmission. 

4. Concluding Remarks 

Optimal adoption of a transmission-blocking strategy will be crucial for efforts to eliminate and 

subsequently eradicate malaria to be successful. Perhaps the clearest evidence of the transmission-

blocking role of natural products is that currently the only WHO recommended transmission-

blocking drug, primaquine, is a derivative of a natural product compound, quinine. It is therefore 

encouraging to note that natural products do have a potential as a viable rich source of transmission-

blocking drugs. The activity of such products described against sexual stage parasites of the two most 

prevalent malaria causing species, P. falciparum and P. vivax and some of the most prolific Anopheles 

vector mosquitoes, therefore encourages the further exploration of the vast untapped natural product 

resources for malaria elimination strategies. 

Supplementary Materials: The following are available online at www.mdpi.com/1424-8247/13/9/251/s1, Table 

S1: Supplementary File.  
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