Amperometric DNA-Peroxidase Sensor for the Detection of Pharmaceutical Preparations
Abstract
:1. Introduction
2. Experimental
2.1. Apparatus
2.2. Reagents
2.3. DNA-sensor development
2.4. Procedures
2.4.1. Signal measurement
2.4.2. Pharmaceuticals determination
3. Results and Discussion
3.1. Investigation of the marker signal
3.2. Determination of sulfonamides
3.3. Anthracyclines determination
Conclusion
Acknowledgments
References and Notes
- Keusgen, M. Biosensors: New Approaches in Drug Discovery. Naturwissenschaften. 2002, 89, 433–444. [Google Scholar]
- Coté, G. L.; Lec, R. M.; Pishko, M. V. Emerging Biomedical Sensing Technologies and Their Applications. IEEE Sensors J. 2003, 3, 251–266. [Google Scholar]
- D'Orazio, P. Biosensors in clinical chemistry. Clin. Chim. Acta 2003, 334, 41–69. [Google Scholar]
- Gooding, J. J. Electrochemical DNA Hybridization Biosensors. Electroanalysis. 2002, 14, 1149–1156. [Google Scholar]
- Meric, B.; Kerman, K.; Ozkan, D.; Kara, P.; Erensoy, S.; Akarka, U. S.; Mascini, M.; Ozsoz, M. Electrochemical DNA Biosensor for the Detection of TT and Hepatitus B Virus from PCR Amplified Real Samples by Using Methylene Blue. Talanta. 2002, 56, 837–846. [Google Scholar]
- Wang, J.; Rivas, G.; Cai, X.; Chicharro, M.; Parrado, C.; Dontha, N.; Begleiter, A.; Mowat, M.; Palecek, E.; Nielsen, P.E. Detection of Point Mutationin the p53 Gene Using a Peptide Nucleic Acid Biosensor. Anal.Chim.Acta. 1997, 344, 111–118. [Google Scholar]
- Evtugyn, G.; Mingaleva, A; Budnikov, H.; Stoikova, E.; Vinter, V.; Eremin, S. Affinity Biosensors Based on Disposable Screen-Printed Electrodes Modified with DNA. Anal. Chim. Acta. 2003, 479, 125–134. [Google Scholar]
- Erdem, A.; Ozsoz, M. Electrochemical DNA Biosensors Based on DNA-Drug Interactions. Electroanalysis. 2002, 14, 965–974. [Google Scholar]
- Abreu, F.C.; Goulart, M.O.F.; Oliveira Brett, A.M. Detection of the Damage Caused to DNA by Niclosamide Using an Electrochemical DNA-Biosensor. Biosens. Bioelectron. 2002, 17, 913–919. [Google Scholar]
- Zhang, H-M.; Li, N.-Q. Electrochemical Studies of the Interaction of Adriamycin to DNA. J. Pharm. Biomed. Anal. 2000, 22, 67–73. [Google Scholar]
- Tian, L.; Wei, W.; Mao, Y. Kinetic Studies of the Interaction Between Antitumor Antibiotics and DNA Using Quartz Crystal Microbalance. Clin. Biochem. 2004, 37, 120–127. [Google Scholar]
- Kerman, K.; Meric, B.; Ozkan, D.; Kara, P.; Erdem, A.; Ozsoz, M. Electrochemical DNA Biosensor for the Determination of Benzo[a]pyrene-DNA Adducts. Anal. Chim. Acta. 2001, 450, 45–52. [Google Scholar]
- Fojta, M. Electrochemical Sensors for DNA Interactions and Damage. Electroanalysis. 2002, 14, 1449–1463. [Google Scholar]
- Bucková, M.; Labuda, J.; Sandula, J.; Krizková, L.; Stepánek, I.; Duracková, Z. Detection of Damage to DNA and Antioxidative Activity of Yeast Polysaccharides at the DNA-Modified Screen-Printed Electrode. Talanta. 2002, 56, 939–947. [Google Scholar]
- Meric, B.; Kerman, K.; Ozkan, D.; Kara, P.; Ozsoz, M. Indicator-free electrochemical DNA biosensor based on adenine and guanine signals. Electroanalysis. 2002, 14, 1245–1250. [Google Scholar]
- Szalai, V. A.; Thorp, H. H. Electrocatalysis of guanine electron transfer: new insights from submillimeter carbon electrodes. J. Phys. Chem. B. 2000, 104, 6851–6859. [Google Scholar]
- Marrazza, G.; Chianella, I.; Mascini, M. Disposable DNA Electrochemical Sensor for Hybridization Detection. Biosens. Bioelectron. 1999, 14, 43–51. [Google Scholar]
- Bardea, A.; Dagan, A.; Willner, I. Amplified Electronic Transduction of Oligonucleotide Interactions: Novel Routes for Tay–Sachs Biosensors. Anal. Chim. Acta. 1999, 385, 33–43. [Google Scholar]
- Wang, J.; Kawde, A.-N.; Musameh, M.; Rivas, G. Dual Enzyme Electrochemical Coding for Detecting DNA Hybridization. Analyst. 2002, 127, 1279–1282. [Google Scholar]
- Carpini, G.; Lucarelli, F.; Marrazza, G.; Mascini, M. Oligonucleotide-Modified Screen-Printed Gold Electrodes for Enzyme-Amplified Sensing of Nucleic Acids. Biosens. Bioelectron. 2004, 20, 167–175. [Google Scholar]
- Nakayama, M.; Ihara, T.; Nakano, K.; Maeda, M. DNA Sensors Using a Ferrocene-Oligonucleotide Conjugate. Talanta. 2002, 56, 857–866. [Google Scholar]
- Xu, Ch.; Cai, H.; He, P.; Fang, Y. Electrochemical Detection of Sequence-Specific DNA Using a DNA Probe Labeled with Aminoferrocene and Chitosan Modified Electrode Immobilized with ssDNA. Analyst. 2001, 126, 62–65. [Google Scholar]
- Tani, A.; Thomson, A. J.; Butt, J. N. Methylene Blue as an Electrochemical Discriminator of Single and Double-Stranded Oligonucleotides Immobilised on Gold Substrates. Analyst. 2001, 126, 1756–1759. [Google Scholar]
- Gu, J.; Lu, X.; Ju, H. DNA Sensor for Recognition of Native Yeast DNA Sequence with Methylene Blue as an Electrochemical Hybridization Indicator. Electroanalysis. 2002, 14, 949–954. [Google Scholar]
- Erdem, A.; Kerman, K.; Meric, B.; Ozkan, D.; Kara, P.; Ozsoz, M. DNA Biosensor for Microcystis spp. Sequence Detection by Using Methylene Blue and Ruthenium Complex as Electrochemical Hybridization Labels. Turk. J. Chem. 2002, 26, 851–862. [Google Scholar]
- Riera, X.; Caubet, A.; Lopez, C.; Moreno, V. Study of Electrochemical Properties of Pd(II) and Pt(II) Complexes Containing Ferrocenyl Ligands and their Interaction with DNA. Polyhedron. 1999, 18, 2549–2555. [Google Scholar]
- Maruyama, K.; Mishima, Y.; Minagawa, K.; Motonaka, J. Electrochemical and DNA-Binding Properties of Dipyridophenazine Complexes of Os(II). J. Electroanal. Chem. 2001, 510, 96–102. [Google Scholar]
- Rusling, J.F. Sensors for Toxicity of Chemicals and Oxidative Stress Based on Electrochemical Catalytic DNA Oxidation. Biosens. Bioelectron. 2004, 20, 1022–1028. [Google Scholar]
- Popovich, N. D.; Eckhardt, A. E.; Mikulecky, J. C.; Napier, M. E.; Thomas, R. S. Electrochemical Sensor for Detection of Unmodified Nucleic Acids. Talanta. 2002, 56, 821–828. [Google Scholar]
- Del Pozo, M. V.; Alonso, C.; Pariente, F.; Lorenzo, E. Electrochemical DNA Sensing Using Osmium Complexes as Hybridization Indicators. Biosens.Bioelectron. 2005, 20, 1549–1558. [Google Scholar]
- Liu, B.; Liu, Z.; Chen, D.; Kong, J.; Deng, J. An Amperometric Biosensor Based on the Coimmobilization of Horseradish Peroxidase and Methylene Blue on a α-Type Zeolite Modified Electrode. Fresenius J. Anal. Chem. 2000, 367, 539–544. [Google Scholar]
- Wang, B.; Dong, S. Sol–Gel-Derived Amperometric Biosensor for Hydrogen Peroxide Based on Methylene Green Incorporated in Nafion Film. Talanta. 2000, 51, 565–572. [Google Scholar]
- Rohs, R.; Sklenar, H. Methylene Blue Binding to DNA with Alternating AT Base Sequence: Minor Groove Binding is Favored over Intercalation. J.Biomolecular Structure Dynamics. 2004, 21, 699–711. [Google Scholar]
- Gu, T.; Hasebe, Y. Peroxidase and Methylene Blue - Incorporated Double Stranded DNA-Polyamide Complex Membrane for Electrochemical Sensing of Hydrogen Peroxide. Anal. Chim. Acta. 2004, 525, 191–198. [Google Scholar]
Sulfonamide | LOD, nmnol L-1 | Sensitivity, Δi/Δlog(C, nmol L-1) | Concentration range, nmol L-1 |
---|---|---|---|
SMX | 0.002 | 0.73 | 0.005-0.2 |
SDZ | 0.1 | 0.80 | 0.1-1.0 |
SMZ | 0.01 | 0.30 | 0.02-2 |
SG | 0.1 | 0.33 | 0.1-10 |
© 2005 by MDPI ( http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Evtugyn, G.A.; Goldfarb, O.E.; Budnikov, H.C.; Ivanov, A.N.; Vinter, V.G. Amperometric DNA-Peroxidase Sensor for the Detection of Pharmaceutical Preparations. Sensors 2005, 5, 364-376. https://doi.org/10.3390/s5060364
Evtugyn GA, Goldfarb OE, Budnikov HC, Ivanov AN, Vinter VG. Amperometric DNA-Peroxidase Sensor for the Detection of Pharmaceutical Preparations. Sensors. 2005; 5(6):364-376. https://doi.org/10.3390/s5060364
Chicago/Turabian StyleEvtugyn, G. A., O. E. Goldfarb, H. C. Budnikov, A. N. Ivanov, and V. G. Vinter. 2005. "Amperometric DNA-Peroxidase Sensor for the Detection of Pharmaceutical Preparations" Sensors 5, no. 6: 364-376. https://doi.org/10.3390/s5060364
APA StyleEvtugyn, G. A., Goldfarb, O. E., Budnikov, H. C., Ivanov, A. N., & Vinter, V. G. (2005). Amperometric DNA-Peroxidase Sensor for the Detection of Pharmaceutical Preparations. Sensors, 5(6), 364-376. https://doi.org/10.3390/s5060364