Effect of Multiplication and Charge Layers on the Gain in InGaAsSb/AlGaAs Avalanche Photodiodes at Room Temperature
Abstract
:1. Introduction
2. APD Structure and Simulation Models
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saleh, M.A.; Hayat, M.M.; Sotirelis, P.P.; Holmes, A.L.; Campbell, J.C.; Saleh, B.E.A.; Teich, M.C. Impact-ionization and noise characteristics of thin III-V avalanche photodiodes. IEEE Trans. Electron Devices 2001, 48, 2722–2731. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z.; Zhu, M.; Xu, J.; Li, X. Optimization of InGaAs/InAlAs Avalanche Photodiodes. Nanoscale Res. Lett. 2017, 12, 33. [Google Scholar] [CrossRef]
- Meng, X.; Tan, C.H.; Dimler, S.; David, J.P.R.; Ng, J.S. 1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature. Opt. Express 2014, 22, 22608. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chen, J. Optimization of the Linearity of InGaAs/InAlAs SAGCM APDs. J. Light. Technol. 2019, 37, 3459–3464. [Google Scholar] [CrossRef]
- Martyniuk, P.; Wang, P.; Rogalski, A.; Gu, Y.; Jiang, R.; Wang, F.; Hu, W. Infrared avalanche photodiodes from bulk to 2D materials. Light. Sci. Appl. 2023, 12, 212. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wang, W.; Li, Y.; Qu, H.; Fan, L.; Chen, X.; Zhu, Y.; Gu, Y.; Wang, Y.; Zheng, C.; et al. Material Defects and Dark Currents in InGaAs/InP Avalanche Photodiode Devices. IEEE Trans. Electron Devices 2022, 69, 4944–4949. [Google Scholar] [CrossRef]
- Liu, W.; Shi, Z.; Gao, J. Enhanced initial photocurrent caused by the multiplication process at punch-through voltage in InGaAs/InP avalanche photodiode with highly doped charge layer. Infrared Phys. Technol. 2022, 124, 104218. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y. Study on impact ionization in charge layer of InP/InGaAs SAGCM avalanche photodiodes. Opt. Quantum Electron. 2015, 47, 2689–2696. [Google Scholar] [CrossRef]
- Ma, Y.-J.; Zhang, Y.-G.; Gu, Y.; Chen, X.-Y.; Zhou, L.; Xi, S.-P.; Li, H.-S.-B.-Y. Low Operating Voltage and Small Gain Slope of InGaAs APDs with p-Type Multiplication Layer. IEEE Photonics Technol. Lett. 2015, 27, 661–664. [Google Scholar] [CrossRef]
- Marshall, A.R.J.; Craig, A.P.; Reyner, C.J.; Huffaker, D.L. GaAs and AlGaAs APDs with GaSb absorption regions in a separate absorption and multiplication structure using a hetero-lattice interface. Infrared Phys. Technol. 2015, 70, 168–170. [Google Scholar] [CrossRef]
- Nada, M.; Hoshi, T.; Yamazaki, H.; Hashimoto, T.; Matsuzaki, H. Linearity improvement of high-speed avalanche photodiodes using thin depleted absorber operating with higher order modulation format. Opt. Express 2015, 23, 27715. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yao, J.; Li, L.; Ge, H.; Wang, L.; Zhu, L.; Chen, Q.; Lu, H.; Chen, B. High-speed InAlAs digital alloy avalanche photodiode. Appl. Phys. Lett. 2023, 123, 191102. [Google Scholar] [CrossRef]
- Williams, G.M.; Compton, M.; Ramirez, D.A.; Hayat, M.M.; Huntington, A.S. Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise. IEEE J. Electron Devices Soc. 2013, 1, 54–65. [Google Scholar] [CrossRef]
- Benker, M.; Gu, G.; Senckowski, A.; Xiang, B.; Dwyer, C.; Adams, R.; Xie, Y.; Nagarajan, R.; Li, Y.; Lu, X. Room-Temperature (RT) Extended Short-Wave Infrared (e-SWIR) Avalanche Photodiode (APD) with a 2.6 µm Cutoff Wavelength. Micromachines 2024, 15, 941. [Google Scholar] [CrossRef]
- Craig, A.P.; Jain, M.; Meriggi, L.; Cann, T.; Niblett, A.; Collins, X.; Marshall, A.R.J. Extended short-wave infrared linear and Geiger mode avalanche photodiodes, based on 6.1 Å materials. Appl. Phys. Lett. 2019, 114, 053501. [Google Scholar] [CrossRef]
- Dadey, A.A.; Jones, A.H.; March, S.D.; Bank, S.R.; Campbell, J.C. Separate absorption, charge, and multiplication staircase avalanche photodiodes. Appl. Phys. Lett. 2024, 124, 081101. [Google Scholar] [CrossRef]
- Ren, M.; Maddox, S.J.; Woodson, M.E.; Chen, Y.; Bank, S.R.; Campbell, J.C. AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes. Appl. Phys. Lett. 2016, 108, 191108. [Google Scholar] [CrossRef]
- Ronningen, T.J.; Kodati, S.H.; Jin, X.; Lee, S.; Jung, H.; Tao, X.; Lewis, H.I.J.; Schwartz, M.; Gajowski, N.; Martyniuk, P.; et al. Ionization coefficients and excess noise characteristics of AlInAsSb on an InP substrate. Appl. Phys. Lett. 2023, 123, 131110. [Google Scholar] [CrossRef]
- Li, N.; Sun, J.; Jia, Q.; Song, Y.; Jiang, D.; Wang, G.; Xu, Y.; Niu, Z. High Performance nBn Detectors Based on InGaAsSb Bulk Materials for Short Wavelength Infrared Detection. AIP Adv. 2019, 9, 105106. [Google Scholar] [CrossRef]
- Collins, X.; White, B.; Cao, Y.; Osman, T.; Taylor-Mew, J.; Ng, J.S.; Tan, C.H. Low-noise AlGaAsSb avalanche photodiodes for 1550 nm light detection. In Optical Components and Materials XIX; Digonnet, M.J., Jiang, S., Eds.; SPIE: San Francisco, CA, USA, 2022; p. 16. [Google Scholar] [CrossRef]
- Sheridan, B.; Collins, X.; Taylor-Mew, J.; White, B.; Ng, J.S.; Tan, C.H. An Extremely Low Noise-Equivalent Power Photoreceiver Using High-Gain InGaAs/AlGaAsSb APDs. J. Light. Technol. 2025, 43, 741–746. [Google Scholar] [CrossRef]
- Jin, X.; Zhao, S.; Craig, A.P.; Tian, O.; Gilder, L.; Yi, X.; Carmichael, M.; Golding, T.; Tan, C.H.; Marshall, A.R.J.; et al. High-performance room temperature 2.75 µm cutoff In0.22Ga0.78As0.19Sb0.81/Al0.9Ga0.1As0.08Sb0.92 avalanche photodiode. Optica 2024, 11, 1632–1638. [Google Scholar] [CrossRef]
- Crosslight Device Simulation Software-General Manual; Crosslight Software Inc.: Vancouver, BC, Canada, 2019.
- Ji, X.; Liu, B.; Xu, Y.; Tang, H.; Li, X.; Gong, H.; Shen, B.; Yang, X.; Han, P.; Yan, F. Deep-Level Traps Induced Dark Currents in Extended Wavelength InxGa1−xAs/InP Photodetector. J. Appl. Phys. 2013, 114, 224502. [Google Scholar] [CrossRef]
- Moussa, R.; Abdiche, A.; Abbar, B.; Guemou, M.; Riane, R.; Murtaza, G.; Omran, S.B.; Khenata, R.; Soyalp, F. Ab Initio Investigation of the Structural, Electronic and Optical Properties of Cubic GaAs1−xPx Ternary Alloys Under Hydrostatic Pressure. J. Electron. Mater. 2015, 44, 4684–4699. [Google Scholar] [CrossRef]
- Kim, J.O.; Nguyen, T.D.; Ku, Z.; Urbas, A.; Kang, S.-W.; Lee, S.J. Short Wavelength Infrared Photodetector and Light Emitting Diode Based on InGaAsSb. In Infrared Technology and Applications XLIII; Andresen, B.F., Fulop, G.F., Hanson, C.M., Miller, J.L., Norton, P.R., Eds.; Proceedings of SPIE: San Francisco, CA, USA, 2017; Volume 10177, p. 101772M. [Google Scholar] [CrossRef]
- Schaefer, S.T.; Gao, S.; Webster, P.T.; Kosireddy, R.R.; Johnson, S.R. Absorption Edge Characteristics of GaAs, GaSb, InAs, and InSb. J. Appl. Phys. 2020, 127, 165705. [Google Scholar] [CrossRef]
- Craig, A.P.; Jain, M.; Wicks, G.; Golding, T.; Hossain, K.; McEwan, K.; Howle, C.; Percy, B.; Marshall, A.R.J. Short-Wave Infrared Barriode Detectors Using InGaAsSb Absorption Material Lattice Matched to GaSb. Appl. Phys. Lett. 2015, 106, 201103. [Google Scholar] [CrossRef]
- Shim, K.; Rabitz, H.; Dutta, P. Band Gap and Lattice Constant of GaxIn1−xAsySb1−y. J. Appl. Phys. 2000, 88, 7157–7161. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band Parameters for III–V Compound Semiconductors and Their Alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef]
- Manyk, T.; Rutkowski, J.; Kopytko, M.; Kłos, K.; Martyniuk, P. Theoretical Study of Quaternary nBp InGaAsSb SWIR Detectors for Room Temperature Condition. Materials 2024, 17, 5482. [Google Scholar] [CrossRef]
- Chynoweth, A.G. Ionization Rates for Electrons and Holes in Silicon. Phys. Rev. 1958, 109, 1537–1540. [Google Scholar] [CrossRef]
Parameters | Electron | Hole |
SRH lifetime (ns) | 250 | 250 |
Radiative coefficient (cm3/s) | 1.0 × 10−10 | 1.0 × 10−10 |
Auger coefficient (cm6/s) | 1.0 × 10−28 | 1.0 × 10−28 |
Impact coefficient a (cm−1) | 4.0 × 106 | 2.2 × 106 |
Impact coefficient b (V/cm) | 1.8 × 106 | 3.0 × 106 |
Effective masses, (me;mh)/m0; | 0.036 | 0.415/0.035 |
Layer | Material | Thickness (nm) | Doping Concentration (cm−3)/Type | Energy Gap (eV) | Name of Layer |
---|---|---|---|---|---|
8 | GaSb | 100 | 2 × 1018/p | 0.72 | Contact |
7 | Al0.20Ga0.80Sb | 100 | 2 × 1016/p | 0.93 | Barrier |
6 | In0.14Ga0.86As0.10Sb0.90 | 2000 | 1 × 1015/p | 0.56 | Absorber |
5 | In0.10Ga0.90As0.10Sb0.90 | 100 | 1 × 1015/p | 0.58 | Gradient |
4 | In0.10Ga0.90As0.10Sb0.90 | 60 | 8 × 1017/p | 0.58 | Charge |
3 | In0.05Ga0.95As0.10Sb0.90 | 200 | 1 × 1016/p | 0.62 | Multiplication |
2 | In0.05Ga0.95As0.10Sb0.90 | 400 | 2 × 1018/n | 0.62 | Contact |
1 | GaSb | 500 | 2 × 1018/n | 0.72 | Buffer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manyk, T.; Rutkowski, J.; Kłos, K.; Gajowski, N.; Krishna, S.; Martyniuk, P. Effect of Multiplication and Charge Layers on the Gain in InGaAsSb/AlGaAs Avalanche Photodiodes at Room Temperature. Sensors 2025, 25, 2255. https://doi.org/10.3390/s25072255
Manyk T, Rutkowski J, Kłos K, Gajowski N, Krishna S, Martyniuk P. Effect of Multiplication and Charge Layers on the Gain in InGaAsSb/AlGaAs Avalanche Photodiodes at Room Temperature. Sensors. 2025; 25(7):2255. https://doi.org/10.3390/s25072255
Chicago/Turabian StyleManyk, Tetiana, Jarosław Rutkowski, Krzysztof Kłos, Nathan Gajowski, Sanjay Krishna, and Piotr Martyniuk. 2025. "Effect of Multiplication and Charge Layers on the Gain in InGaAsSb/AlGaAs Avalanche Photodiodes at Room Temperature" Sensors 25, no. 7: 2255. https://doi.org/10.3390/s25072255
APA StyleManyk, T., Rutkowski, J., Kłos, K., Gajowski, N., Krishna, S., & Martyniuk, P. (2025). Effect of Multiplication and Charge Layers on the Gain in InGaAsSb/AlGaAs Avalanche Photodiodes at Room Temperature. Sensors, 25(7), 2255. https://doi.org/10.3390/s25072255