Spatial and Temporal Field-Scale Accuracy Assessment of a Multi-Sensor Spade for In Situ Soil Diagnostics: Performance and Limitations of the Stenon FarmLab for Precision Agriculture
Highlights
- While the Stenon Famlab proximal soil sensing device reliably measured physical soil properties such as temperature and texture, chemical parameters like Nmin, phosphorus, and SOC showed poor temporal stability and low spatial correlation.
- Cluster and semivariogram analyses revealed stable spatial patterns for some parameters (e.g., pH), supporting limited potential for management zone delineation.
- The investigated 2022/23 version of the Stenon FarmLab is not yet suitable for precision nutrient management, but has potential with improved calibration and environmental compensation algorithms.
Abstract
1. Introduction
- Which parameters can be reliably and repeatedly measured with the Stenon device, and which cannot?
- Are the measurements and temporal trends of individual parameters provided by the Stenon device realistic?
- What role do weather conditions (e.g., temperature, dryness, frost) play in the measurability and interpretability of the derived parameters?
- To what extent do management practices and varying soil conditions affect the measurements?
- Is it feasible to capture spatial soil patterns using the Stenon device, and if so, at what distances should measurements be conducted?
- Measurements at a single point over a defined period of time to investigate temporal variability and reproducibility.
- Measurements at multiple points within a field over a given time frame to assess spatial heterogeneity and temporal trends of various parameters.
- Measurements across different fields to evaluate the impact of site-specific conditions, management strategies, and fertilization practices.
- Measurements at different locations within a field over a defined period to (geo)statistically analyze the influence of measurement spacing on spatial patterns.
2. Materials and Methods
2.1. Site Descriptions
2.2. The Measurement Device—Stenon FarmLab
2.3. On-Site Data Collection
3. Results
3.1. Time Series Analysis for Location (a)
3.2. Correlation Analysis in Relation to Different Site Characteristics and Management Practices (Fields (b)–(f))
3.3. Derivation of Management Zones—Cluster Analysis for Field (b)
3.4. Geostatistics for Field (f)
3.5. Error Messages and Their Impact on Measurement Efficiency
4. Discussion
4.1. Time Series Analysis (Location (a))
4.2. Correlation Analysis (Fields (b)–(f))
4.3. Cluster Analysis (Field (b))
4.4. Geostatistics (Field (f))
4.5. Error Messages
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AUF | Faculty for Agriculture, Civil and Environmental Engineering, Rostock University |
| SOC | Soil Organic Content |
References
- Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Electrochemical Soil Nitrate Sensor for In Situ Real-Time Monitoring. Micromachines 2023, 14, 1314. [Google Scholar] [CrossRef] [PubMed]
- FAO. Standard Operating Procedure for Handling and Preparation of Soil Samples for Chemical and Physical Analyses; FAO: Rome, Italy, 2020; Available online: https://openknowledge.fao.org/items/baf9a23f-1429-45e3-867f-cbb090fd5c0a (accessed on 10 December 2024).
- Sibley, K.J.; Brewster, G.R.; Astatkie, T.; Adsett, J.F.; Struik, P.C. In-Field Measurement of Soil Nitrate Using an Ion-Selective Electrode. In Advances in Measurement Systems; Kr, M., Ed.; InTech: London, UK, 2010; ISBN 978-953-307-061-2. [Google Scholar]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9780123849052. [Google Scholar]
- Ruma, F.Y.; Munnaf, M.A.; De Neve, S.; Mouazen, A.M. Management zone-specific N mineralization rate es-timation in unamended soil. Precis. Agric. 2023, 24, 1906–1931. [Google Scholar] [CrossRef]
- Scudiero, E.; Teatini, P.; Manoli, G.; Braga, F.; Skaggs, T.H.; Morari, F. Workflow to Establish Time-Specific Zones in Precision Agriculture by Spatiotemporal Integration of Plant and Soil Sensing Data. Agronomy 2018, 8, 253. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J.T.; Cammarano, D.; Sartori, L. A strategic and tactical management approach to select op-timal N fertilizer rates for wheat in a spatially variable field. Eur. J. Agron. 2011, 35, 215–222. [Google Scholar] [CrossRef]
- Hardie, M. Review of Novel and Emerging Proximal Soil Moisture Sensors for Use in Agriculture. Sensors 2020, 20, 6934. [Google Scholar] [CrossRef]
- Najdenko, E.; Lorenz, F.; Dittert, K.; Olfs, H.-W. Rapid in-field soil analysis of plant-available nutrients and pH for precision agriculture—A review. Precis. Agric. 2024, 25, 3189–3218. [Google Scholar] [CrossRef]
- DLG Test Service. DLG-Prüfbericht 7197 Stenon FarmLab Mit Software Version d-1.3.0 und Kalibrier Modell p-2.1.0 (DLG Test Report 7197 Stenon FarmLab with Software Version d-1.3.0 and Calibration Model p-2.1.0). 2021. Available online: https://www.dlg.org/tests/landtechnik-betriebsmittel/pruefberichte/test-stenon-farmlab-mit-softwareversion-d-130-und-kalibriermodell-p-210 (accessed on 30 May 2025).
- Böhrnsen, A. Bodensensor Stenon FarmLab 1.6: Weit weg vom Labor (Soil Sensor Stenon FarmLab 1.6: Far Away from the Lab). 2022. Available online: https://www.profi.de/technisch/elektronik/bodensensor-stenon-farmlab-16-weit-weg-vom-labor-29623.html (accessed on 26 October 2024).
- Bauer, C.; Mann, T.; Höcker, S.; Raible, S.; Butz, A.; Breuer, J.; Möller, K. Digitale und konventionelle Bo-denanalyse—Erste Vergleichsergebnisse des Einsatzes des Stenon FarmLab Gerätes unter praxisnahen Be dingungen in Baden-Württemberg (Digital and conventional soil analysis—First comparative results of the use of the Stenon FarmLab device under practical conditions in Baden-Württemberg). In Proceedings of the VDLUFA-Kongress, Halle Saale, Darmstadt, 13–16 September 2022; pp. 33–44. [Google Scholar]
- Olfs, H.W. Was kann der digitale Spaten? (What can the digital spade do?). Top Agrar 2021, 12, 61–64. [Google Scholar]
- Lustenberger, A.; Mäder, P.; Bünemann, E.; Carrel, K. Erfahrungsbericht zum digitalen Bodenspaten Farmlab (Field report on the Farmlab digital soil spade). BIO Aktuell.ch 2023. [Google Scholar]
- Vikuk, V.; Spirkaneder, A.; Noack, P.; Duemig, A. Validation of a sensor-system for real-time measurement of mineralized nitrogen in soils. Smart Agric. Technol. 2024, 7, 100390. [Google Scholar] [CrossRef]
- Steiger, A.; Qaswar, M.; Bill, R.; Mouazen, A.M.; Grenzdörffer, G. Comparing the handheld Stenon FarmLab soil sensor with a Vis-NIR multi-sensor soil sensing platform. Smart Agric. Technol. 2025, 10, 100717. [Google Scholar] [CrossRef]
- Landesamt für innere Verwaltung M-V; Amt für Geoinformation, Vermessung und Katasterwesen. WFS Amt-Liches Liegenschaftskatasterinformationssystem MV NAS-Konform (WFS_MV_ALKIS_NAS) (WFS Official Real Estate Cadastre Information System MV NAS-Compliant). Available online: https://www.geoportal-mv.de/portal/Suche/Metadatenuebersicht/Details/WFS%20Amtliches%20Liegenschaftskatasterinfor-mationssystem%20MV%20NAS-konform%20(WFS_MV_ALKIS_NAS)/1f109676-d00f-4952-b47b-e93af951d769 (accessed on 14 November 2024).
- Stenon. Sachgerechte Validierung des Stenon FarmLab Sensorsystems unter Berücksichtigung von Messvolumen und Bodenheterogenität (Proper Validation of the Stenon FarmLab Sensor System, Taking Into Account Measurement Volume and Soil Heterogeneity). Available online: https://blog.stenon.io/wp-content/uploads/2021/11/2021-09-16-Sachgerechte-Validierung-von-FarmLab_final.pdf (accessed on 12 November 2024).
- Meermans, J.; van Wesemael, B.; Goidts, E.; van Molle, M.; de Baets, S.; de Ridder, F. Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands, 1960–2006. Glob. Change Biol. 2011, 17, 466–479. [Google Scholar] [CrossRef]
- Leinweber, P.; Schulten, H.-R.; Körschens, M. Seasonal variations of soil organic matter in a long-term agricultural experiment. Plant Soil 1994, 160, 225–235. [Google Scholar] [CrossRef]
- Córdova, S.C.; Kravchenko, A.N.; Miesel, J.R.; Robertson, G.P. Soil carbon change in intensive agriculture after 25 years of conservation management. Geoderma 2025, 453, 117133. [Google Scholar] [CrossRef]
- Patil, R.H.; Laedgsmand, M.; Olesen, J.E.; Porter, J.R. Growth and yield response of winter wheat to soil warming and rainfall patterns. J. Agric. Sci. 2010, 148, 553–566. [Google Scholar] [CrossRef]
- Johnson, D.W.; Glass, D.W.; Murphy, J.D.; Stein, C.M.; Miller, W.W. Nutrient hot spots in some sierra Nevada forest soils. Biogeochemistry 2010, 101, 93–103. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, J.-L.; Zhao, X.-R.; Yang, S.-H.; Mulder, J.; Dörsch, P.; Zhang, G.-L. Seasonal dynamics of soil pH and N transformation as affected by N fertilization in subtropical China: An in situ 15N labeling study. Sci. Total Environ. 2022, 816, 151596. [Google Scholar] [CrossRef]
- Methodenbuch Band I. Die Untersuchung von Böden (Method Book Volume I. The Investigation of Soils); Ver-band Deutscher Landwirtschaftlicher Untersuchungs und Forschungsanstalten, Ed.; VDLUFA: Darmstadt, Germany, 2000. [Google Scholar]
- Meteostat. Rostock/Warnemünde. Available online: https://meteostat.net/de/station/10170?t=2023-05-01/2023-08-31 (accessed on 3 September 2024).
- Domsch, H.; Giebel, A. Estimation of Soil Textural Features from Soil Electrical Conductivity Recorded Using the EM38. Precis. Agric. 2004, 5, 389–409. [Google Scholar] [CrossRef]
- Kieta, K.A.; Owens, P.N.; Vanrobaeys, J.A.; Lobb, D.A. Seasonal Changes in Phosphorus in Soils and Vegetation of Vegetated Filter Strips in Cold Climate Agricultural Systems. Agriculture 2022, 12, 233. [Google Scholar] [CrossRef]
- Magid, J.; Nielsen, N.E. Seasonal variation in organic and inorganic phosphorus fractions of temperate-climate sandy soils. Plant Soil 1992, 144, 155–165. [Google Scholar] [CrossRef]
- Wuest, S.B.; Durfee, N. Temporal variability is a major source of uncertainty in soil carbon measurements. Soil Sci. Soc. Am. J. 2024, 88, 830–845. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Devlin, S.J. Locally weighted regression: An approach to regression analysis by local fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Chen, S.; Du, T.; Wang, S.; Parsons, D.; Wu, D.; Guo, X.; Li, D. Quantifying the effects of spatial-temporal variability of soil properties on crop growth in management zones within an irrigated maize field in Northwest China. Agric. Water Manag. 2021, 244, 106535. [Google Scholar] [CrossRef]
- Metwally, M.S.; Shaddad, S.M.; Liu, M.; Yao, R.-J.; Abdo, A.I.; Li, P.; Jiao, J.; Chen, X. Soil Properties Spatial Variability and Delineation of Site-Specific Management Zones Based on Soil Fertility Using Fuzzy Clustering in a Hilly Field in Jianyang, Sichuan, China. Sustainability 2019, 11, 7084. [Google Scholar] [CrossRef]
- Aggag, A.M.; Alharbi, A. Spatial Analysis of Soil Properties and Site-Specific Management Zone Delineation for the South Hail Region, Saudi Arabia. Sustainability 2022, 14, 16209. [Google Scholar] [CrossRef]
- de Oliveira, J.F.; Mayi, S.; Marchão, R.L.; Corazza, E.J.; Hurtado, S.C.; Malaquias, J.V.; Tavares Filho, J.; Brossard, M.; Guimarães, M.d.F. Spatial variability of the physical quality of soil from management zones. Precis. Agric. 2019, 20, 1251–1273. [Google Scholar] [CrossRef]
- Kingsley, J.; Lawani, S.O.; Esther, A.O.; Ndiye, K.M.; Sunday, O.J.; Penížek, V. Predictive Mapping of Soil Properties for Precision Agriculture Using Geographic Information System (GIS) Based Geostatistics Models. MAS 2019, 13, 60. [Google Scholar] [CrossRef]
- Shit, P.K.; Bhunia, G.S.; Maiti, R. Spatial analysis of soil properties using GIS based geostatistics models. Model. Earth Syst. Environ. 2016, 2, 107. [Google Scholar] [CrossRef]
- Kerry, R.; Oliver, M.A. Average variograms to guide soil sampling. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 307–325. [Google Scholar] [CrossRef]
- Stenon. Error Codes, Description and Solution. Available online: https://stenon.atlassian.net/wiki/spaces/WEB/pages/938770499/Error+Codes+Description+and+Solution (accessed on 13 September 2024).
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Xiong, X.; Lyu, M.; Deng, C.; Li, X.; Lu, Y.; Lin, W.; Jiang, Y.; Xie, J. Carbon and Nitrogen Availability Drives Sea-sonal Variation in Soil Microbial Communities along an Elevation Gradient. Forests 2022, 13, 1657. [Google Scholar] [CrossRef]
- Lin, S.; Wang, S.; Si, Y.; Yang, W.; Zhu, S.; Ni, W. Variations in eco-enzymatic stoichiometric and microbial char-acteristics in paddy soil as affected by long-term integrated organic-inorganic fertilization. PLoS ONE 2017, 12, e0189908. [Google Scholar] [CrossRef]
- Li, F.; Chen, L.; Zhang, J.; Yin, J.; Huang, S. Bacterial Community Structure after Long-term Organic and Inorganic Fertilization Reveals Important Associations between Soil Nutrients and Specific Taxa Involved in Nutrient Transformations. Front. Microbiol. 2017, 8, 187. [Google Scholar] [CrossRef] [PubMed]
- Mäder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, Energetic, and Economic Compari-sons of Organic and Conventional Farming Systems. BioScience 2005, 55, 573. [Google Scholar] [CrossRef]
- Tahir, S.; Marschner, P. Clay Addition to Sandy Soil Reduces Nutrient Leaching—Effect of Clay Concentration and Ped Size. Commun. Soil Sci. Plant Anal. 2017, 48, 1813–1821. [Google Scholar] [CrossRef]
- Ismail, S.M.; Ozawa, K. Improvement of crop yield, soil moisture distribution and water use efficiency in sandy soils by clay application. Appl. Clay Sci. 2007, 37, 81–89. [Google Scholar] [CrossRef]
- Kerry, R.; Ingram, B.; Oliver, M.; Frogbrook, Z. Soil sampling and sensed ancillary data requirements for soil mapping in precision agriculture I. delineation of management zones to determine zone averages of soil properties. Precis. Agric. 2024, 25, 1181–1211. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Ramon, H. Development of on-line measurement system of bulk density based on on-line measured draught, depth and soil moisture content. Soil Tillage Res. 2006, 86, 218–229. [Google Scholar] [CrossRef]
- Poeplau, C.; Prietz, R.; Don, A. Plot-scale variability of organic carbon in temperate agricultural soils—Implications for soil monitoring. J. Plant Nutr. Soil Sci. 2022, 185, 403–416. [Google Scholar] [CrossRef]
- Schmidinger, J.; Barkov, V.; Vogel, S.; Atzmueller, M.; Heuvelink, G.B.M. Kriging prior Regression: A Case for Kriging-Based Spatial Features with TabPFN in Soil Mapping. arXiv 2025, arXiv:2509.09408. [Google Scholar]
- Hummel, J.; Sudduth, K.; Hollinger, S. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Comput. Electron. Agric. 2001, 32, 149–165. [Google Scholar] [CrossRef]










| Field | Total Area [ha] | Predominant Soil Type | Cultivated Crop | Management Method |
|---|---|---|---|---|
| a | - | Loamy sand | - | - |
| b | 10 | Slightly loamy sand to clayey loam | Wheat | Conventional |
| c | 11 | Loamy to highly loamy sand | Wheat | Conventional |
| d | 9 | Loamy sand | Rye | Organic |
| e | 1 | Slightly loamy to loamy sand | Rye | Conventional |
| f | 20 | Loamy sand | Potatoes | Conventional + irrigation |
| Field | Date | Fertilizer Type | Amount/ha | Nverf./ha |
|---|---|---|---|---|
| a | - | - | - | - |
| b | 13.02.2023 | Urea (46% N) | 100 kg | 46 kg |
| 16.03.2023 | NPK (15/15/15) | 100 kg | 15 kg | |
| 18.04.2023 | Urea (46% N) | 100 kg | 46 kg | |
| 13.05.2023 | Urea (46% N) | 100 kg | 46 kg | |
| c | 14.02.2023 | SSA 2023 | 180 kg | 38 kg |
| 28.03.2023 | KAS + MgO | 300 kg | 81 kg | |
| 04.04.2023 | Menure (Spring 2023) | 25.27 m3 | 43 kg | |
| d | - | - | - | |
| e | 19.03.2023 | NPK (15/15/15) | 120 kg | 15 kg |
| 22.04.2024 | Urea (46% N) | 120 kg | 46 kg | |
| f | 21.04.2023 | PPL 23 | 2.2 t | 40 kg |
| 24.04.2023 | Urea (46% N) | 200 kg | 92 kg |
| Field | Nov 22 | Dec 22 | Jan 23 | Feb 23 | Mar 23 | Apr 23 | May 23 | Jun 23 | Jul 23 | Aug 23 | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|
| a | - | - | - | - | - | - | 28 | 17 | 14 | 15 | 74 |
| b | 45 | - | - | 43 | 41 | 42 | 35 | - | - | 33 | 239 |
| c | 22 | - | 23 | - | 24 | 22 | 16 | - | - | 17 | 124 |
| d | - | - | - | 11 | 32 | 31 | 24 | - | - | 7 | 105 |
| e | - | - | - | - | - | 88 | 2 | - | - | 18 | 108 |
| f | 35 | 62 | 66 | 86 | 97 | 81 | - | - | 25 | 85 | 537 |
| Total | 102 | 62 | 89 | 140 | 184 | 264 | 105 | 17 | 39 | 175 | 1.187 |
| Area | Sampling Approach |
|---|---|
| a | Sampling of a specific measuring point (very small study area) Time series analysis |
| b | Sampling of predefined tiles in the study area Correlation + cluster analysis |
| c | |
| d | |
| e | |
| f | Randomized sampling of the entire study area Geostatistical analysis |
| Nmin [kg/ha] | P [mg/100 g] | K [mg/100 g] | Mg [mg/100 g] | SOC [%] | Moisture Content [%] | pH | Soil Temp. [°C] | |
|---|---|---|---|---|---|---|---|---|
| Count | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 |
| Mean | 81.58 | 18.03 | 10.90 | 8.48 | 1.83 | 12.44 | 6.65 | 19.74 |
| Std | 23.44 | 5.26 | 1.02 | 1.89 | 0.46 | 3.74 | 0.25 | 3.45 |
| CV | 0.29 | 0.29 | 0.09 | 0.22 | 0.25 | 0.30 | 0.04 | 0.17 |
| Min | 44.00 | 7.50 | 9.00 | 3.50 | 1.00 | 7.60 | 6.10 | 10.70 |
| 25% | 67.25 | 13.98 | 10.13 | 7.23 | 1.50 | 9.70 | 6.50 | 18.00 |
| 50% | 77.00 | 17.40 | 10.90 | 8.45 | 1.70 | 11.20 | 6.65 | 20.10 |
| 75% | 92.75 | 22.00 | 11.60 | 9.78 | 2.10 | 14.38 | 6.88 | 22.28 |
| Max | 165.00 | 34.30 | 13.90 | 13.00 | 3.30 | 21.20 | 7.10 | 25.50 |
| Count | Mean | Std | Min | 25% | 50% | 75% | Max |
|---|---|---|---|---|---|---|---|
| 510 | 04:04 | 01:34 | 01:44 | 03:09 | 03:37 | 04:21 | 14:33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grenzdörffer, G.J.; Wienken, J.S.; Steiger, A. Spatial and Temporal Field-Scale Accuracy Assessment of a Multi-Sensor Spade for In Situ Soil Diagnostics: Performance and Limitations of the Stenon FarmLab for Precision Agriculture. Sensors 2025, 25, 7430. https://doi.org/10.3390/s25247430
Grenzdörffer GJ, Wienken JS, Steiger A. Spatial and Temporal Field-Scale Accuracy Assessment of a Multi-Sensor Spade for In Situ Soil Diagnostics: Performance and Limitations of the Stenon FarmLab for Precision Agriculture. Sensors. 2025; 25(24):7430. https://doi.org/10.3390/s25247430
Chicago/Turabian StyleGrenzdörffer, Görres J., Jonas S. Wienken, and Alexander Steiger. 2025. "Spatial and Temporal Field-Scale Accuracy Assessment of a Multi-Sensor Spade for In Situ Soil Diagnostics: Performance and Limitations of the Stenon FarmLab for Precision Agriculture" Sensors 25, no. 24: 7430. https://doi.org/10.3390/s25247430
APA StyleGrenzdörffer, G. J., Wienken, J. S., & Steiger, A. (2025). Spatial and Temporal Field-Scale Accuracy Assessment of a Multi-Sensor Spade for In Situ Soil Diagnostics: Performance and Limitations of the Stenon FarmLab for Precision Agriculture. Sensors, 25(24), 7430. https://doi.org/10.3390/s25247430

