A Multi-Objective Optimization Method for Cylindrical Surface Ultrasonic Array Parameters Based on BPNN and NSGA-II
Abstract
1. Introduction
2. Optimization Parameters and Objective Function
2.1. Acoustic Field of the Cylindrical Phased Array
2.2. Performance Parameters of the Cylindrical Phased Array
2.2.1. Main Lobe Width
2.2.2. Side Lobe Level
2.2.3. Sound Pressure Distribution Uniformity
2.3. Multi-Objective Function
2.4. Constraints
- Dynamic array element number : , The value of should ensure sufficient aperture and beam control accuracy while avoiding excessive hardware complexity and increased cost.
- Center frequency : , The selected value of must balance the penetration capability of the acoustic wave in the wellbore medium with the ability to resolve defects.
- Array element spacing : The spacing , associated with the deflection angle , of the acoustic beam, must be constrained to prevent the generation of grating lobes.
3. Optimization Methods
3.1. BPNN
3.2. NSGA-II
4. Simulation of the Optimization Results
4.1. Single-Objective Optimization Using BPNN
4.1.1. Construction of BPNN
4.1.2. Performance of BPNN
4.1.3. Single-Objective Optimization Results
4.2. Multi-Objective Optimization Using NSGA-II
4.2.1. Construction of NSGA-II
4.2.2. Multi-Objective Optimization Results
- HPBW: Reflects signal focusing ability; the smaller the value, the better the performance. As the core objective, it has the highest priority, directly corresponding to the “resolution-first” requirement.
- PSLL: Reflects anti-interference capability; the smaller the value (i.e., the more negative), the better the performance. It serves as a secondary objective.
- SPDUNI: Reflects signal stability; the smaller the value, the better the performance. It serves as a secondary objective.
5. Discussion
5.1. Acoustic Field Simulation
5.1.1. Acoustic Field Simulation Based on BPNN Optimized Parameters
5.1.2. Acoustic Field Simulation Based on NSGA-II Optimized Parameters
5.2. Parameter Trends
- Advantages of NSGA-II: The solutions obtained by NSGA-II provide superior resolution compared with those of the BPNN algorithm, and their beam focusing performance is highly comparable to that of the instrument solution. This fully verifies the technical effectiveness of NSGA-II in optimizing beam geometric parameters.
- Law of the Central Angle: Based on the performance data of the BPNN predicted solutions, the NSGA-II multi-objective optimization solution set, and the actual instrument configuration, when the lateral resolution of the ten core solutions ranges from 1.08 to 1.43 mm, achieving an overall high-precision level of approximately 1 mm, the corresponding central angle of the cylindrical surface lies within 37.2–43.4°.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| NSGA-II | Non-dominated Sorting Genetic Algorithm II |
| BPNN | Backpropagation Neural Network |
| HPBW | Half Power Beam Width |
| PSLL | Peak Side Lobe Level |
| SPDUNI | Sound Pressure Distribution Uniformity |
References
- Luo, M.; Feng, Y.C.; Gui, Y.; Deng, J.G.; Han, C. Development status and prospect of key technologies for high temperature and high pressure drilling. Pet. Sci. Bull. 2021, 6, 228–244. [Google Scholar] [CrossRef]
- Ajayi, T.; Gupta, I. A review of reactive transport modeling in Wellbore Integrity Problems. J. Pet. Sci. Eng. 2019, 175, 785–803. [Google Scholar] [CrossRef]
- Luo, L.C.; Zhang, H.Z.; Zhang, J.M.; Li, T.W.; Qiu, M.X. Situation and Development Trend of Chinese and Foreign Oil and Gas Exploration and Development. Pet. Sci. Technol. Forum 2024, 43, 18–24. [Google Scholar] [CrossRef]
- Mohammed, A.I.; Oyeneyin, B.; Atchison, B.; Njuguna, J. Casing structural integrity and failure modes in a range of well types—A Review. J. Nat. Gas Sci. Eng. 2019, 68, 102898. [Google Scholar] [CrossRef]
- Iizuka, Y.; Awajiya, Y. High sensitivity EMAT system using chirp pulse compression and its application to crater end detection in continuous casting. J. Phys. Conf. Ser. 2014, 520, 012011. [Google Scholar] [CrossRef]
- Zemanek, J.; Glenn, E.E.; Norton, L.J.; Caldwell, R.L. Formation evaluation by inspection with the Borehole televiewer. Geophysics 1970, 35, 254–269. [Google Scholar] [CrossRef]
- Demirci, U.; Oralkan, O.; Johnson, J.A.; Ergun, A.S.; Karaman, M.; Khuri-Yakub, B.T. Capacitive micromachined ultrasonic transducer arrays for medical imaging: Experimental results. In Proceedings of the 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263), Atlanta, GA, USA, 7–10 October 2001. [Google Scholar] [CrossRef]
- Moini, A.; Nikoozadeh, A.; Oralkan, O.; Choe, J.W.; Sarioglu, A.F.; Stephens, D.N. Volumetric intracardiac imaging using a fully integrated CMUT ring array: Recent developments. In Proceedings of the 2011 IEEE International Ultrasonics Symposium, Orlando, FL, USA, 18–21 October 2011. [Google Scholar] [CrossRef]
- Yang, X.B.; Yin, G.J.; Tian, Y.; Guo, J.Z. Generating an Adjustable Focused Field with an Annular Shape Using a Cylindrical Acoustic Transducer Array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Vos, H.C.L.; Schepers, R.; Vogel, J.A. An ultrasonic circular array transducer for pipeline and borehole inspection. In Proceedings of the IEEE 1988 Ultrasonics Symposium Proceedings, Chicago, IL, USA, 2–5 October 1988. [Google Scholar] [CrossRef]
- Dong, H.; Shi, F.F.; Kong, C.; Zhang, B.X. Design of an ultrasonic phased array transducer for imaging borehole wall. In Proceedings of the 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Jinan, China, 30 October–2 November 2015. [Google Scholar] [CrossRef]
- Dolph, C.L. A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam Width and Side-Lobe Level. Proc. IEEE 1946, 34, 335–348. [Google Scholar] [CrossRef]
- Wooh, S.C.; Shi, Y.J. Optimization of Ultrasonic Phased Arrays. In Review of Progress in Quantitative Nondestructive Evaluation; Thompson, D.O., Chimenti, D.E., Eds.; Springer: Boston, MA, USA, 1998; pp. 883–890. [Google Scholar] [CrossRef]
- Blum, F.; Jarzynski, J.; Jacobs, L.J. A focused two-dimensional air-coupled ultrasonic array for non-contact generation. NDT E Int. 2004, 38, 634–642. [Google Scholar] [CrossRef][Green Version]
- Li, S.; Xu, C.G.; Xiao, D.G.; Zhou, S.Y.; Yang, T.X. Multi-Objective Optimal Mathematical Model of Geometrical Parameters of Ultrasonic Phased Arrays Transducer. Nondestr. Test. 2009, 31, 589–592. Available online: https://d.wanfangdata.com.cn/periodical/CiNQZXJpb2RpY2FsQ0hJMjAyNTA1MjIyMDI1MDUyNzE3MTU0NhINd3NqYzIwMDkwODAwMRoId2tiYmxnbWU%3D (accessed on 8 July 2025).[Green Version]
- Ding, S.F.; Su, C.Y.; Yu, J.Z. An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 2011, 36, 153–162. [Google Scholar] [CrossRef]
- Venkatesan, D.; Kannan, K.; Saravanan, R. A genetic algorithm-based artificial neural network model for the optimization of machining processes. Neural Comput. Appl. 2009, 18, 135–140. [Google Scholar] [CrossRef]
- Deng, F.Q.; Zhang, B.X.; Wang, D.; Song, G.P. Radiation Acoustic Field of a Linear Phased Array on a Cylindrical Surface. Chin. Phys. Lett. 2006, 23, 3297–3300. [Google Scholar] [CrossRef]
- Prabhakara, P.; Mielentz, F.; Stolpe, H.; Behrens, M.; Lay, V.; Niederleithinger, E. Validation of Novel Ultrasonic Phased Array Borehole Probe by Using Simulation and Measurement. Sensors 2022, 22, 9823. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.L.; Qin, H.G.; Peng, C. High-Frequency 64-Element Ring-Annular Array Transducer: Development and Preclinical Validation for Intravascular Ultrasound Imaging. Biosensors 2025, 15, 169. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Chen, D.D.; Wang, L.W.; Luo, X.J.; Fei, C.L.; Li, D.; Shan, G.B.; Yang, Y.T. Recent Development and Perspectives of Optimization Design Methods for Piezoelectric Ultrasonic Transducers. Micromachines 2021, 12, 779. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.W.; You, F.C.; Li, Y.; Xiao, H. A Real Time Method Based on Deep Learning for Reconstructing Holographic Acoustic Fields from Phased Transducer Arrays. Micromachines 2023, 14, 1108. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Fischer, A.; Izmailov, A.F.; Solodov, M.V. The Levenberg–Marquardt method: An overview of modern convergence theories and more. Comput. Optim. Appl. 2024, 89, 33–67. [Google Scholar] [CrossRef]
- Troup, D. Phased Array Ultrasonic Tools Provide Precise Measurement of Geometrically Complex Components Such as Nipple Profiles Downhole, Confirming Safety Critical Dimensions. In Proceedings of the SPE/ICoTA’19 Well Intervention Conference and Exhibition, The Woodlands, TX, USA, 26–27 March 2019. [Google Scholar] [CrossRef]
- Stepanishen, P.R. Transient Radiation from Pistons in an Infinite Planar Baffle. J. Acoust. Soc. Am. 1970, 48, 101. [Google Scholar] [CrossRef]
- Dube, N. Introduction to Phased Array Ultrasonic Technology Applications: R/D Tech Guideline; Olympus NDT: Waltham, MA, USA, 2004; pp. 118–119. Available online: https://visco.com.vn/download/Introduction_to_Phased_Array_Ultrasonic_Technology_Applications.pdf (accessed on 18 January 2025).















| Rank | N | fc (kHz) | d (mm) | Score |
|---|---|---|---|---|
| SPACE Vernier | 32 | 1000 | 0.829 | 0.093 |
| NSGA-II 1 | 32 | 908.8 | 0.798 | 0.118 |
| NSGA-II 2 | 32 | 914.7 | 0.796 | 0.142 |
| NSGA-II 3 | 31 | 908.9 | 0.799 | 0.165 |
| NSGA-II 4 | 31 | 918.4 | 0.797 | 0.169 |
| NSGA-II 5 | 31 | 918.6 | 0.795 | 0.174 |
| NSGA-II 6 | 31 | 924.2 | 0.797 | 0.178 |
| BPNN 1 | 37 | 722.2 | 0.800 | 0.285 |
| BPNN 2 | 27 | 722.2 | 1.000 | 0.465 |
| BPNN 3 | 17 | 555.6 | 0.800 | 0.854 |
| Parametric Solutions | Lateral −3 dB Width | Lateral −6 dB Width | Elevation −3 dB Width | Elevation −6 dB Width |
|---|---|---|---|---|
| SPACE Vernier | 3.14 | 4.30 | 3.94 | 5.46 |
| NSGA-II 1 | 3.40 | 4.71 | 4.20 | 5.78 |
| NSGA-II 2 | 3.46 | 4.80 | 4.29 | 5.90 |
| NSGA-II 3 | 3.47 | 4.81 | 4.16 | 5.74 |
| NSGA-II 4 | 3.48 | 4.83 | 4.18 | 5.76 |
| NSGA-II 5 | 3.49 | 4.84 | 4.18 | 5.76 |
| NSGA-II 6 | 3.55 | 4.93 | 4.28 | 5.89 |
| BPNN 1 | 3.78 | 5.26 | 5.34 | 7.39 |
| BPNN 2 | 4.17 | 5.72 | 5.33 | 7.36 |
| BPNN 3 | 10.01 | 13.95 | 6.76 | 9.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Cao, X.; Zhao, J.; Dai, Y.; Li, C.; Chen, H. A Multi-Objective Optimization Method for Cylindrical Surface Ultrasonic Array Parameters Based on BPNN and NSGA-II. Sensors 2025, 25, 6762. https://doi.org/10.3390/s25216762
Zeng X, Cao X, Zhao J, Dai Y, Li C, Chen H. A Multi-Objective Optimization Method for Cylindrical Surface Ultrasonic Array Parameters Based on BPNN and NSGA-II. Sensors. 2025; 25(21):6762. https://doi.org/10.3390/s25216762
Chicago/Turabian StyleZeng, Xin, Xueshen Cao, Jiaheng Zhao, Yuyu Dai, Chao Li, and Hao Chen. 2025. "A Multi-Objective Optimization Method for Cylindrical Surface Ultrasonic Array Parameters Based on BPNN and NSGA-II" Sensors 25, no. 21: 6762. https://doi.org/10.3390/s25216762
APA StyleZeng, X., Cao, X., Zhao, J., Dai, Y., Li, C., & Chen, H. (2025). A Multi-Objective Optimization Method for Cylindrical Surface Ultrasonic Array Parameters Based on BPNN and NSGA-II. Sensors, 25(21), 6762. https://doi.org/10.3390/s25216762

