Two-Color Fluorescence Thermometry Using Lock-in Amplifiers for Background Suppression
Abstract
1. Introduction
2. Method
2.1. Modeling
2.1.1. Modeling Background Suppression
2.1.2. Super-Gaussian Fourier Transforms
2.1.3. Temperature Modeling
- Instantaneous thermalization of the excited state levels.
- Both excited states have the same decay rate .
- The rate constants and are invariant with temperature.
2.2. Experimental
3. Results
3.1. Effect of Laser Repetition Rate
3.1.1. Signal Strength
3.1.2. Background Suppression
3.2. Lock-in Time Constant
3.3. Lock-in Roll-Off
3.4. Time Constant, Roll-Off, and Temperature Pulse Width
3.5. Pulse Width
3.6. β Parameter
3.7. Temperature Uncertainty Estimates
3.8. Summary and Application Notes
3.9. Comparison to Other Background Suppression Techniques
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Distribution Statement A
References
- Gross, G.; Smith, A.; Post, M. Surface thermometry by laser induced fluorescence. Rev. Sci. Instruments 1989, 60, 3702–3706. [Google Scholar] [CrossRef]
- Jovicic, G.; Zigan, L.; Will, S.; Leipertz, A. Luminescence Properties of the Thermographic Phosphors Dy3+: YAG and Tm3+: YAG for the Application in High Temperature Systems. Z. Phys. Chem. 2015, 229, 977. [Google Scholar] [CrossRef]
- Jovicic, G.; Zigan, L.; Will, S.; Leipertz, A. Phosphor thermometry in turbulent hot gas flows applying Dy:YAG and Dy:Er:YAG particles. Meas. Sci. Technol. 2015, 26, 015204. [Google Scholar] [CrossRef]
- Hertle, E.; Chepyga, L.; Batentschuk, M.; Zigan, L. Influence of codoping on the luminescence properties of YAG:Dy for high temperature phosphor thermometry. J. Lumin. 2017, 182, 200–207. [Google Scholar] [CrossRef]
- Lawrence, M.; Zhao, H.; Ganippa, L. Gas phase thermometry of hot turbulent jets using laser induced phosphorescence. Opt. Express 2013, 21, 12260. [Google Scholar] [CrossRef]
- Witkowski, D.; Rothamer, D.A. Investigation of aerosol phosphor thermometry (apt) measurement biases for Eu:BAM. Appl. Phys. B 2018, 124, 202. [Google Scholar] [CrossRef]
- Wang, X.D.; Wolfbeis, O.S.; Meier, R.J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 2013, 42, 7834–7869. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.R.; Gunawidjaja, R.; Gese, N.; Eilers, H. Two-color thermometric imaging of heterogeneous materials during pulsed laser heating. App. Phys. B 2020, 126, 158. [Google Scholar] [CrossRef]
- Anderson, B.; Gunawidjaja, R.; Eilers, H. Soluble Sm-based Ternary Complexes for Non-contact Molecular Thermometry. J. Lumin. 2018, 204, 341–348. [Google Scholar] [CrossRef]
- Anderson, B.R.; Gunawidjaja, R.; Eilers, H. Dy3+-doped Yttrium Complex Molecular Crystals for Two-color Thermometry in Heterogeneous Materials. J. Lumin. 2017, 188, 238–245. [Google Scholar] [CrossRef]
- Chepyga, L.M.; Osvet, A.; Brabec, C.J.; Batentschuk, M. High-temperature thermographic phosphor mixture YAP/YAG:Dy3+ and its photoluminescence properties. J. Lumin. 2017, 188, 582–588. [Google Scholar] [CrossRef]
- Chepyga, L.; Hertle, E.; Ali, A.; Zigan, L.; Osvet, A.; Brabec, C.; Batentschuk, M. Synthesis and photoluminescent properties of the Dy3+-doped YSO as a high-temperature thermographic phosphor. J. Lumin. 2018, 197, 23–30. [Google Scholar] [CrossRef]
- Chepyga, L.M.; Osvet, A.; Levchuk, I.; Ali, A.; Zorenko, Y.; Gorbenko, V.; Zorenko, T.; Fedorov, A.; Brabec, C.J.; Batentschuk, M. New silicate based thermographic phosphors Ca3Sc2Si3O12:Dy, Ca3Sc2Si3O12:Dy,Ce and their photoluminescence properties. J. Lumin. 2018, 202, 13–19. [Google Scholar] [CrossRef]
- Feist, J.P.; Heyes, A.L. Europium-doped Yttria-stabilized Zirconia for High-temperature Phosphor Thermometry. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2000, 214, 7–12. [Google Scholar] [CrossRef]
- Hertle, E.; Chepyga, L.; Batentschuk, M.; Will, S.; Zigan, L. Temperature-dependent luminescence characteristics of Dy3+ doped in various crystalline hosts. J. Lumin. 2018, 204, 64–74. [Google Scholar] [CrossRef]
- Yang, L.; Peng, D.; Shan, X.; Guo, F.; Liu, Y.; Zhao, X.; Xiao, P. “Oxygen quenching” in Eu-based thermographic phosphors: Mechanism and potential application in oxygen/pressure sensing. Sens. Actuators B Chem. 2018, 254, 578–587. [Google Scholar] [CrossRef]
- Hertle, E.; Will, S.; Zigan, L. Characterization of YAG:Dy,Er for thermographic particle image velocimetry in a calibration cell. Meas. Sci. Technol. 2017, 28, 025013. [Google Scholar] [CrossRef]
- Abram, C.; Fond, B.; Beyrau, F. Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles. Prog. Energy Combust. Sci. 2018, 64, 93–156. [Google Scholar] [CrossRef]
- Kempema, N.J.; Long, M.B. Boundary condition thermometry using a thermographic-phosphor-coated thin filament. Appl. Opt. 2016, 55, 4691. [Google Scholar] [CrossRef]
- Brübach, J.; Pflitsch, C.; Dreizler, A.; Atakan, B. On surface temperature measurements with thermographic phosphors: A review. Prog. Energy Combust. Sci. 2013, 39, 37–60. [Google Scholar] [CrossRef]
- Heyes, A.; Seefeldt, S.; Feist, J. Two-colour Phosphor Thermometry for Surface Temperature Measurement. Opt. Laser Technol. 2006, 38, 257–265. [Google Scholar] [CrossRef]
- Seyfried, H.; Sarner, G.; Omrane, A.; Richter, M.; Schmidt, H.; Aldén, M. Optical Diagnostics for Characterization of a Full-Size Fighter-Jet Afterburner. In Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, NV, USA, 6–9 June 2005; pp. 813–819. [Google Scholar]
- Seyfried, H.; Richter, M.; Aldén, M.; Schmidt, H. Laser-Induced Phosphorescence for Surface Thermometry in the Afterburner of an Aircraft Engine. AIAA J. 2007, 45, 2966–2971. [Google Scholar] [CrossRef]
- Seyfried, H.; Richter, M.; Nilsson, K.H.; Aldén, M.; Schmidt, H. Surface thermometry using laser-induced phosphorescence applied in the afterburner of an aircraft turbofan engine. In Proceedings of the Collection of Technical Papers—45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007; Volume 18, pp. 12794–12802. [Google Scholar]
- Sarner, G.; Omrane, A.; Seyfried, H.; Richter, M.; Schmidt, H.; Alden, M. Laser diagnostics applied to a full-size fighter jet afterburner. In Proceedings of the ASME Turbo Expo 2005—Gas Turbie Technology: Focus for the Future, Reno, NV, USA, 6–9 June 2005. [Google Scholar]
- Jaber, A.; Zigan, L.; Sakhrieh, A.; Leipertz, A. Surface temperature measurements in a porous media burner using a new laser-induced phosphorescence intensity ratio technique. Meas. Sci. Technol. 2013, 24, 075202. [Google Scholar] [CrossRef]
- Neal, N.J.; Jordan, J.; Rothamer, D. Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors. SAE Int. J. Engines 2013, 6, 300–318. [Google Scholar] [CrossRef]
- Feist, J.; Heyes, A.; Choy, K.; Su, B. Phosphor thermometry for high temperature gas turbine applications. In Proceedings of the ICIASF 99. 18th International Congress on Instrumentation in Aerospace Simulation Facilities. Record (Cat. No.99CH37025), Toulouse, France, 14–17 June 1999; pp. 6/1–6/7. [Google Scholar]
- Feist, J.; Heyes, A.; Seefeldt, S. Thermographic Phosphors for Gas Turbines: Instrumentation Development and Measurement Uncertainties. In Proceedings of the 11th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 8–11 July 2002. [Google Scholar]
- Feist, J.P.; Heyes, A.L.; Seefeldt, S. Oxygen quenching of phosphorescence from thermographic phosphors. Meas. Sci. Technol. 2003, 14, N17. [Google Scholar] [CrossRef]
- Alaruri, S.; McFarland, D.; Brewington, A.; Thomas, M.; Sallee, N. Development of a Fiber-Optic Probe for Thermographic Phosphor Measurements in Turbine Engines. Opt. Lasers Eng. 1995, 22, 17–31. [Google Scholar] [CrossRef]
- Aldén, M.; Omrane, A.; Richter, M.; Särner, G. Thermographic phosphors for thermometry: A survey of combustion applications. Prog. Energy Combust. Sci. 2011, 37, 422–461. [Google Scholar] [CrossRef]
- Alden, M.; Bood, J.; Li, Z.; Richter, M. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques. Proc. Combust. Inst. 2011, 33, 69–97. [Google Scholar] [CrossRef]
- Yu, M.; Särner, G.; Luijten, C.C.; Richter, M.; Aldén, M.; Baert, R.S.; De Goey, L.P. Survivability of thermographic phosphors (YAG:Dy) in a combustion environment. Meas. Sci. Technol. 2010, 21, 037002. [Google Scholar] [CrossRef]
- Hasegawa, R.; Sakata, I.; Yanagihara, H.; Johansson, B.; Omrane, A.; Alden, M. Two-dimensional gas phase temperature measurements using phosphor thermometry. App. Phys. B 2007, 88, 291–296. [Google Scholar] [CrossRef]
- Anderson, B.; Livers, S.; Gunawidjaja, R.; Eilers, H. Fiber-based Optical Thermocouples for Fast Temperature Sensing in Extreme Environments. Opt. Eng. 2019, 58, 097105. [Google Scholar] [CrossRef]
- Anderson, B.R.; Gese, N.J.; Mark, M.; Gunawidjaja, R.; Eilers, H. Optical thermocouples for explosive fireballs. AIP Conf. Proc. 2020, 2272, 060002. [Google Scholar]
- Zhang, Z.; Grattan, K.T.V.; Palmer, A.W. A novel signal processing scheme for a fluorescence based fiber-optic temperature sensor. Rev. Sci. Instruments 1991, 62, 1735–1742. [Google Scholar] [CrossRef]
- Zhang, Z.; Grattan, K.T.V.; Palmer, A.W. Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite. Rev. Sci. Instruments 1992, 63, 3869–3873. [Google Scholar] [CrossRef]
- Zhang, Z.; Grattan, K.T.V.; Palmer, A.W. Phase–locked detection of fluorescence lifetime. Rev. Sci. Instruments 1993, 64, 2531–2540. [Google Scholar] [CrossRef]
- Zhang, Z. Fiber Optic Fluorescence Thermometry. Ph.D. Thesis, City University of London, London, UK, 1993. [Google Scholar]
- Sun, T.; Zhang, Z.Y.; Grattan, K.T.V.; Palmer, A.W. Ytterbium-based fluorescence decay time fiber optic temperature sensor systems. Rev. Sci. Instruments 1998, 69, 4179–4185. [Google Scholar] [CrossRef]
- Wu, J.L.; Wang, Y.T. A fluorescence optic-fiber temperature sensor using phase-locked detection with pulse modulation single reference. J. Physics Conf. Ser. 2006, 48, 101–105. [Google Scholar] [CrossRef]
- Inman, K.; Wang, X. In-Situ Temperature Measurement on Cathode GDL in a PEMFC Using an Optical Fiber Temperature Sensor. J. Electrochem. Soc. 2013, 160, F496–F500. [Google Scholar] [CrossRef]
- Hashemi, A.; Jovicic, G.; Batentschuk, M.; Brabec, C.J.; Vetter, A. Contactless temperature determination using dual-channel lock-in phosphor thermometry. Meas. Sci. Technol. 2017, 28, 027001. [Google Scholar] [CrossRef]
- Khalid, A.; Kontis, K. Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications. Sensors 2008, 8, 5673–5744. [Google Scholar] [CrossRef]
- Dexter, D.; Heller, W. Capture and collision processes for excitons in alkali halides. Phys. Rev. 1951, 84, 377. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G.; Eliseeva, S.V. Basics of Lathanide Photophysics. In Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects; Hanninen, P., Harma, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Jüstel, T.; Bechtel, H.; Mayr, W.; Wiechert, D.U. Blue emitting BaMgAl10O17:Eu with a blue body color. J. Lumin. 2003, 104, 137–143. [Google Scholar] [CrossRef]
- Knappe, C.; Lindén, J.; Richter, M.; Aldén, M. Enhanced color ratio calibration for two-dimensional surface thermometry using laser-induced phosphorescence. Meas. Sci. Technol. 2013, 24, 085202. [Google Scholar] [CrossRef]
- Gonzalez, A.Y.; van Wachem, B.; Skinner, S.; Beyrau, F.; Heyes, A. On the kinetics of thermal oxidation of the thermographic phosphor BaMgAl10O17:Eu. Mater. Des. 2016, 108, 145–150. [Google Scholar] [CrossRef]
- Bizarri, G.; Moine, B. On phosphor degradation mechanism: Thermal treatment effects. J. Lumin. 2005, 113, 199–213. [Google Scholar] [CrossRef]
- Kim, K.-B.; Koo, K.-W.; Cho, T.-Y.; Chun, H.-G. Effect of heat treatment on photoluminescence behavior of BaMgAl10O17:Eu phosphors. Mater. Chem. Phys. 2003, 80, 682–689. [Google Scholar] [CrossRef]
- Kolesnikov, I.E.; Kalinichev, A.A.; Kurochkin, M.A.; Golyeva, E.V.; Terentyeva, A.S.; Kolesnikov, E.Y.; Lähderanta, E. Structural, luminescence and thermometric properties of nanocrystalline YVO4:Dy3+ temperature and concentration series. Sci. Rep. 2019, 9, 2043. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, S.; Jiang, G.; Chen, Y.; Duan, C.; Yin, M. Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry. Curr. Appl. Phys. 2014, 14, 1067–1071. [Google Scholar] [CrossRef]
- Chambers, M.; Clarke, D. Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry. Annu. Rev. Mater. Res. 2009, 39, 325–359. [Google Scholar] [CrossRef]
- Feist, J.; Heyes, A. The Characterization of Y2O2S:Sm Powder as a Thermographic Phosphor for High Temperature Applications. Meas. Sci. Technol. 2000, 11, 942–947. [Google Scholar] [CrossRef]
- Kissel, T.; Brübach, J.; Euler, M.; Frotscher, M.; Litterscheid, C.; Albert, B.; Dreizler, A. Phosphor thermometry: On the synthesis and characterisation of Y3Al5O12:Eu (YAG:Eu) and YAlO3:Eu (YAP:Eu). Mater. Chem. Phys. 2013, 140, 435–440. [Google Scholar] [CrossRef]
- Li, L.; Zhou, Y.; Qin, F.; Miao, J.; Zheng, Y.; Zhang, Z. Eu3+-based luminescence ratiometric thermometry. RSC Adv. 2020, 10, 9444–9449. [Google Scholar] [CrossRef] [PubMed]
- Hollerman, W.; Allison, S.; Goedeke, S.; Boudreaux, P.; Guidry, R.; Gates, E. Comparison of fluorescence properties for single crystal and polycrystalline YAG:Ce. IEEE Trans. Nucl. Sci. 2003, 50, 754–757. [Google Scholar] [CrossRef]
Lock-in Parameter | Background Suppression | Temperature Measurement |
---|---|---|
Frequency | • Increases with frequency | • No impact on temperature rise time or peak temperature. • Effects signal strength in combination with phosphor lifetime |
Time Constant | • Increases with time constant, but eventually reaches a point of diminishing returns. | • Rise time is linear in time constant, with the slope dependent on the roll-off. • Correct peak temperature is obtained as long as the pulse width is 10× greater than the time constant. • For shorter pulses the peak temperature decays exponentially with time constant. • Correlation coefficient between actual pulse and reproduced pulse decreases with time constant. |
Roll-off | • Significantly increases with roll-off up to 18 dB/oct, after which the increase per step is reduced. | • Rise time is linear in roll off, with the slope dependent on the time constant. • Peak temperature decays exponentially with roll off. |
Lifetime (μs) | Tmax (K). | Est. Fmax (kHz) | Est. τ (μs) | Ref. | |
---|---|---|---|---|---|
Dy:YAG | 660 | 1700 | 105.31 | 1054 | This study |
Dy:YVO4 | 158 | 673 | 477.03 | 547 | [54] |
Dy:BaYF5 | 1300 | 800 | 15.51 | 1230 | [55] |
Dy:YAM | 662 | 1000 | 104.68 | 1056 | [12] |
Dy:BSAS | 900 | 1700 | 51.35 | 1157 | [56] |
Dy,Er:YAG | 592 | 1650 | 129.08 | 1012 | [15] |
Dy:YAG(BN) | 606 | 1650 | 123.78 | 1021 | “ |
Dy,Er:YAG(BN) | 676 | 1650 | 100.38 | 1063 | ” |
Dy:YAP | 600 | 1700 | 126.02 | 1017 | “ |
Dy:YSZ | 390 | 1200 | 236.28 | 840 | ” |
Dy:YSZ(Ca) | 370 | 1100 | 250.86 | 819 | “ |
Dy,Er:YSZ(Ca) | 328 | 1100 | 284.47 | 772 | ” |
Dy:YSO | 438 | 1500 | 204.66 | 888 | “ |
Dy,Er:YSO | 354 | 1500 | 263.17 | 801 | ” |
Dy,Pr:YSO | 335 | 1500 | 278.57 | 780 | “ |
Dy:CASO | 563 | 1400 | 140.78 | 992 | ” |
Sm:Y2O2S | 400 | 1425 | 229.31 | 850 | [57] |
Eu:Y2O3 | 1392 | 1273 | 11.78 | 1238 | [31] |
Eu:YAlO3 | 1500 | 1300 | 8.52 | 1245 | [58] |
Eu:Y3Al5O12 | 3000 | 1470 | 0.10 | 1263 | [58] |
Eu:BAM | 2 | 900 | 1305.03 | 95 | [50] |
Eu:CaWO4 | 211 | 773 | 404.46 | 623 | [59] |
Ce:YAG | 0.1 | 923 | 1343.54 | 85 | [60] |
Pr:YAG | 190 | 1100 | 431.33 | 594 | [17] |
Tm:YAG | 100 | 1700 | 587.36 | 447 | “ |
Eu:Y2O3 | 1000 | 1300 | 38.06 | 1184 | ” |
Gated Detection | Reference Measurement | Lock-in Amplifier | |
---|---|---|---|
Advantages | Only requires a single probe, making it the simplest and cheapest method | In theory can handle background light interference significantly brighter than fluorescence signal. | With appropriate lock-in parameters it can account for background light interference significantly brighter than fluorescence signal. |
No impact on T profile Simple to ruggedize for field deployment | No impact on T profile Simple to ruggedize for field deployment | Only requires a single probe. | |
Disadvantages | Fails when background signal is bright on same time scale as fluorescence lifetime. | Requires two probes and detection systems increasing size, cost, and complexity. | Requires careful tuning of parameters to obtain sufficient background suppression. |
There is no grantee that the background seen by both probes are identical. | Choice of lock-in parameters impacts measured T profile | ||
Lock-in Amplifiers are sensitive to environment making field-deployment challenging. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, B.R.; Eilers, H. Two-Color Fluorescence Thermometry Using Lock-in Amplifiers for Background Suppression. Sensors 2025, 25, 6364. https://doi.org/10.3390/s25206364
Anderson BR, Eilers H. Two-Color Fluorescence Thermometry Using Lock-in Amplifiers for Background Suppression. Sensors. 2025; 25(20):6364. https://doi.org/10.3390/s25206364
Chicago/Turabian StyleAnderson, Benjamin R., and Hergen Eilers. 2025. "Two-Color Fluorescence Thermometry Using Lock-in Amplifiers for Background Suppression" Sensors 25, no. 20: 6364. https://doi.org/10.3390/s25206364
APA StyleAnderson, B. R., & Eilers, H. (2025). Two-Color Fluorescence Thermometry Using Lock-in Amplifiers for Background Suppression. Sensors, 25(20), 6364. https://doi.org/10.3390/s25206364