Nanomaterial-Mediated Electrochemical and Optical Biosensors and Their Application in Tumour Marker Detection
Abstract
1. Introduction
Classification | Advantages | Disadvantages | Ref. |
---|---|---|---|
Electrochemical Biosensor | High sensitivity, rapid detection, low fabrication cost, and ease of analysis | Weak stability | [30] |
Optical Biosensor | Strong selectivity, analytical accuracy, and ease of transport | Light quenching readily occurs, affecting detection results | [31] |
2. Nanomaterials and Electrochemical Biosensors
2.1. Nanozyme-Mimetic Catalysis Amplifies Electrochemical Signals
2.2. Nanomaterials Optimise Electrode Interfaces to Enhance Electrochemical Reactions
2.3. High-Surface-Area Nanomaterials Enhance Electrocatalytic Activity
3. Nanomaterials and Optical Biosensors
3.1. Surface-Enhanced Raman Scattering (SERS)-Based Nanosensor
3.2. Nanoscale Sensors Based on Colourimetry and Localised Surface Plasmon Resonance (LSPR)
3.3. Nanosensor Based on Electrochemical Luminescence
3.4. Fluorescence-Based Nanoscale Sensors
4. Clinical Applicability Assessment
5. Future Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cao, Y. Cancer-triggered systemic disease and therapeutic targets. Holist. Integr. Oncol. 2024, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y. Research highlights in cancer immunotherapy from basic discovery to clinical trial. Holist. Integr. Oncol. 2022, 1, 11. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, B.; Huang, G.; Liu, J.; Wei, W. Trends in cancer imaging. Trends Cancer 2024, 10, 1023–1037. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.; Xu, Z.; Ma, F.; Zhu, Q.; Tao, X.; Luo, X.; Zhang, H.; Chen, X. Suspected myometrial invasion on MRI is correlated with worse outcomes of fertility-preserving treatment in young women with endometrial cancer. Holist. Integr. Oncol. 2024, 3, 29. [Google Scholar] [CrossRef]
- Klotz, L.; Chin, J.; Black, P.C.; Finelli, A.; Anidjar, M.; Bladou, F.; Mercado, A.; Levental, M.; Ghai, S.; Chang, S.D.; et al. Comparison of Multiparametric Magnetic Resonance Imaging-Targeted Biopsy with Systematic Transrectal Ultrasonography Biopsy for Biopsy-Naive Men at Risk for Prostate Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 534–542. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, M.; Xu, Y.; Gu, X.; Zou, M.; Abudushalamu, G.; Yao, Y.; Fan, X.; Wu, G. Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol. Cancer 2023, 22, 7. [Google Scholar] [CrossRef]
- Yeasmin, S.; Ammanath, G.; Ali, Y.; Boehm, B.O.; Yildiz, U.H.; Palaniappan, A.; Liedberg, B. Colorimetric Urinalysis for On-Site Detection of Metabolic Biomarkers. ACS Appl. Mater. Interfaces 2020, 12, 31270–31281. [Google Scholar] [CrossRef]
- Zhou, Y.; Tao, L.; Qiu, J.; Xu, J.; Yang, X.; Zhang, Y.; Tian, X.; Guan, X.; Cen, X.; Zhao, Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct. Target. Ther. 2024, 9, 132. [Google Scholar] [CrossRef]
- Reddy, K.R.; McLerran, D.; Marsh, T.; Parikh, N.; Roberts, L.R.; Schwartz, M.; Nguyen, M.H.; Befeler, A.; Page-Lester, S.; Tang, R.; et al. Incidence and Risk Factors for Hepatocellular Carcinoma in Cirrhosis: The Multicenter Hepatocellular Carcinoma Early Detection Strategy (HEDS) Study. Gastroenterology 2023, 165, 1053–1063. [Google Scholar] [CrossRef]
- Yu, B.; Ma, W. Biomarker discovery in hepatocellular carcinoma (HCC) for personalized treatment and enhanced prognosis. Cytokine Growth Factor Rev. 2024, 79, 29–38. [Google Scholar] [CrossRef]
- Wang, J.; Wang, F.; Wang, N.; Zhang, M.Y.; Wang, H.Y.; Huang, G.L. Diagnostic and Prognostic Value of Protein Post-translational Modifications in Hepatocellular Carcinoma. J. Clin. Transl. Hepatol. 2023, 11, 1192–1200. [Google Scholar] [CrossRef]
- Esteban, E.P.; Almodovar-Abreu, L. A New Interpretation of the Standard PSA-Test. Res. Rep. Urol. 2020, 12, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Abu Rached, N.; Susok, L.; Becker, J.C. Serum neuron-specific enolase independently predicts outcomes of patients with Merkel cell carcinoma. Br. J. Dermatol. 2022, 187, 806–808. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, Y.; Li, C.; Yang, J.; Liu, D.; Wang, H.; Xu, R.; Zhang, Y.; Wei, Q. An ultrasensitive split-type electrochemical immunosensor based on controlled-release strategy for detection of CA19-9. Biosens. Bioelectron. 2023, 227, 115180. [Google Scholar] [CrossRef] [PubMed]
- Sarhadi, V.K.; Armengol, G. Molecular Biomarkers in Cancer. Biomolecules 2022, 12, 1021. [Google Scholar] [CrossRef]
- Kim, D.Y.; Toan, B.N.; Tan, C.K.; Hasan, I.; Setiawan, L.; Yu, M.L.; Izumi, N.; Huyen, N.N.; Chow, P.K.; Mohamed, R.; et al. Utility of combining PIVKA-II and AFP in the surveillance and monitoring of hepatocellular carcinoma in the Asia-Pacific region. Clin. Mol. Hepatol. 2023, 29, 277–292. [Google Scholar] [CrossRef]
- Inagaki, M.; Uchiyama, M.; Yoshikawa-Kawabe, K.; Ito, M.; Murakami, H.; Gunji, M.; Minoshima, M.; Kohnoh, T.; Ito, R.; Kodama, Y.; et al. Comprehensive circulating microRNA profile as a supersensitive biomarker for early-stage lung cancer screening. J. Cancer Res. Clin. Oncol. 2023, 149, 8297–8305. [Google Scholar] [CrossRef]
- Moyer, V.A. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2012, 157, 120–134. [Google Scholar] [CrossRef]
- Darwish, I.A.; Ali, M.A.H.; Alsalhi, M.S.; Zhang, D. A novel ultrasensitive chemiluminescence enzyme immunoassay by employment of a signal enhancement of horseradish peroxidase-luminol-hydrogen peroxide reaction for the quantitation of atezolizumab, a monoclonal antibody used for cancer immunotherapy. RSC Adv. 2024, 14, 8167–8177. [Google Scholar] [CrossRef]
- Xia, L.Y.; Tang, Y.N.; Zhang, J.; Dong, T.Y.; Zhou, R.X. Advances in the DNA Nanotechnology for the Cancer Biomarkers Analysis: Attributes and Applications. Semin. Cancer Biol. 2022, 86 Pt 2, 1105–1119. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ren, Q.; Liu, D.; Jiang, L.; Yang, Y.; Qiu, R.; Li, Z.; Zhang, M. Rotavirus-Inspired Nanointerface Engineered Biosensors for All-in-One Cancer Diagnosis. Nano Lett. 2025, 25, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, J.; Zeng, H.; Tang, J.; Tang, D. Recent advances in metal-organic framework-based photoelectrochemical and electrochemiluminescence biosensors. Analyst 2023, 148, 2200–2213. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Shoaie, N.; Jahanpeyma, F.; Zhao, J.; Azimzadeh, M.; Al Jamal, K.T. Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: A comprehensive overview. Biosens. Bioelectron. 2020, 161, 112222. [Google Scholar] [CrossRef]
- Reddy, Y.V.M.; Shin, J.H.; Palakollu, V.N.; Sravani, B.; Choi, C.H.; Park, K.; Kim, S.K.; Madhavi, G.; Park, J.P.; Shetti, N.P. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv. Colloid Interface Sci. 2022, 304, 102664. [Google Scholar] [CrossRef]
- Calidonio, J.M.; Gomez-Marquez, J.; Hamad-Schifferli, K. Nanomaterial and interface advances in immunoassay biosensors. J. Phys. Chem. C Nanomater. Interfaces 2022, 126, 17804–17815. [Google Scholar] [CrossRef]
- Darwish, M.A.; Abd-Elaziem, W.; Elsheikh, A.; Zayed, A.A. Advancements in nanomaterials for nanosensors: A comprehensive review. Nanoscale Adv. 2024, 6, 4015–4046. [Google Scholar] [CrossRef]
- Mousazadeh, M.; Daneshpour, M.; Rafizadeh Tafti, S.; Shoaie, N.; Jahanpeyma, F.; Mousazadeh, F.; Khosravi, F.; Khashayar, P.; Azimzadeh, M.; Mostafavi, E. Nanomaterials in electrochemical nanobiosensors of miRNAs. Nanoscale 2024, 16, 4974–5013. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, Z.; Gan, L.; Fan, D.; Qian, Z.; Sun, X.; Huang, Y. Electrochemical Sensor Based on Nanomaterials and Its Application in the Detection of Alpha Fetoprotein. Discov. Med. 2023, 35, 95–103. [Google Scholar] [CrossRef]
- Fahmy, H.M.; Abu Serea, E.S.; Salah-Eldin, R.E.; Al-Hafiry, S.A.; Ali, M.K.; Shalan, A.E.; Lanceros-Méndez, S. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomater. Sci. Eng. 2022, 8, 964–1000. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, S.; Liu, X.; Tang, Y.; Zhou, Y.; Wong, D.K.Y. Detection signal amplification strategies at nanomaterial-based photoelectrochemical biosensors. J. Mater. Chem. B 2020, 8, 7880–7893. [Google Scholar] [CrossRef]
- Olejnik, B.; Kozioł, A.; Brzozowska, E.; Ferens-Sieczkowska, M. Application of selected biosensor techniques in clinical diagnostics. Expert Rev. Mol. Diagn. 2021, 21, 925–937. [Google Scholar] [CrossRef]
- Chen, M.; Li, Y.; Han, R.; Chen, Q.; Jiang, L.; Luo, X. Click reaction-assisted construction of antifouling immunosensors for electrochemical detection of cancer biomarkers in human serum. Sens. Actuators B Chem. 2022, 363, 131810. [Google Scholar] [CrossRef]
- Chandra Barman, S.; Sharifuzzaman, M.; Zahed, M.A.; Park, C.; Yoon, S.H.; Zhang, S.; Kim, H.; Yoon, H.; Park, J.Y. A highly selective and stable cationic polyelectrolyte encapsulated black phosphorene based impedimetric immunosensor for Interleukin-6 biomarker detection. Biosens. Bioelectron. 2021, 186, 113287. [Google Scholar] [CrossRef] [PubMed]
- Park, J.A.; Seo, Y.; Sohn, H.; Park, C.; Min, J.; Lee, T. Recent Trends in Biosensors Based on Electrochemical and Optical Techniques for Cyanobacterial Neurotoxin Detection. BioChip J. 2022, 16, 146–157. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, D.; Chen, J.; Xiang, C.; Xiang, J.; Yang, M. Electrochemical Quantitation of the Glycosylation Level of Serum Neurofilament Light Chain for the Diagnosis of Neurodegeneration: An Interface-Solution Dual-Path Amplification Strategy. Anal. Chem. 2022, 94, 11433–11440. [Google Scholar] [CrossRef]
- Lu, J.; Wang, J.; Hu, X.; Gyimah, E.; Yakubu, S.; Wang, K.; Wu, X.; Zhang, Z. Electrochemical Biosensor Based on Tetrahedral DNA Nanostructures and G-Quadruplex-Hemin Conformation for the Ultrasensitive Detection of MicroRNA-21 in Serum. Anal. Chem. 2019, 91, 7353–7359. [Google Scholar] [CrossRef]
- Li, W.L.; Head-Gordon, T. Catalytic Principles from Natural Enzymes and Translational Design Strategies for Synthetic Catalysts. ACS Cent. Sci. 2021, 7, 72–80. [Google Scholar] [CrossRef]
- Cun, F.; Huang, Z.; Lin, Q.; Yu, G.; Chen, H.; Kong, J.; Weng, W. Hybridized Chain Reaction-Amplified Alkaline Phosphatase-Induced Ag-Shell Nanostructure for the Sensitive and Rapid Surface-Enhanced Raman Scattering Immunoassay of Exosomes. Anal. Chem. 2023, 95, 10025–10033. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Wang, J.; Cai, Y.; Niu, L.; Liu, X.; Liu, C.; Qi, H.; Liu, A. Copper sulfide nanoclusters with multi-enzyme-like activities and its application in acid phosphatase sensing based on enzymatic cascade reaction. Talanta 2021, 233, 122594. [Google Scholar] [CrossRef]
- Liu, C.; Cai, Y.; Wang, J.; Liu, X.; Ren, H.; Yan, L.; Zhang, Y.; Yang, S.; Guo, J.; Liu, A. Facile Preparation of Homogeneous Copper Nanoclusters Exhibiting Excellent Tetraenzyme Mimetic Activities for Colorimetric Glutathione Sensing and Fluorimetric Ascorbic Acid Sensing. ACS Appl. Mater. Interfaces 2020, 12, 42521–42530. [Google Scholar] [CrossRef]
- Komkova, M.A.; Karyakin, A.A. Prussian blue: From advanced electrocatalyst to nanozymes defeating natural enzyme. Mikrochim. Acta 2022, 189, 290. [Google Scholar] [CrossRef]
- Wu, J.; Lv, W.; Yang, Q.; Li, H.; Li, F. Label-free homogeneous electrochemical detection of MicroRNA based on target-induced anti-shielding against the catalytic activity of two-dimension nanozyme. Biosens. Bioelectron. 2021, 171, 112707. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.; Li, D.; Zhao, M.; Wu, H.; Shen, B.; Liu, P.; Ding, S. Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by cascade primer exchange reaction and MOF@ Pt@ MOF nanozyme. Biosens. Bioelectron. 2020, 168, 112554. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Liu, J.; Wang, J.; Zhao, H.; Ren, H.; Li, Z. Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ ZnO composites for ultrasensitive electrochemical detection of tumor biomarker. Biosens. Bioelectron. 2017, 97, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, K.; Okamoto, S.; Ishida, Y.; Konno, K.; Hoshino, K.; Furuta, T.; Takahashi, M.; Koike, M.; Isa, K.; Watanabe, M.; et al. Fluorochromized tyramide-glucose oxidase as a multiplex fluorescent tyramide signal amplification system for histochemical analysis. Sci. Rep. 2022, 12, 14807. [Google Scholar] [CrossRef]
- Nielsen, M.B.; Vavra, J.; Palmqvist, A.; Forbes, V.E. Long-term effects of sediment-associated silver nanoparticles and silver nitrate on the deposit-feeding polychaete Capitella teleta. Aquat. Toxicol. 2022, 242, 106046. [Google Scholar] [CrossRef]
- Li, G.; Wang, B.; Li, L.; Li, X.; Yan, R.; Liang, J.; Zhou, X.; Li, L.; Zhou, Z. H-rGO-Pd NPs Nanozyme Enhanced Silver Deposition Strategy for Electrochemical Detection of Glypican-3. Molecules 2023, 28, 2271. [Google Scholar] [CrossRef]
- Xie, X.; Zeng, J.; Lan, X.; Liu, X.; He, J.; Wu, P.; Huang, Y.; Chen, M.; Wu, M.; Li, G.; et al. High sensitivity electrochemical cholesterol biosensor based on amplification of ferrocene-tyramine deposition signal induced by RGO-hemin peroxide nano-enzyme. Microchem. J. 2025, 208, 112619. [Google Scholar] [CrossRef]
- Tian, Q.; Li, S.; Tang, Z.; Zhang, Z.; Du, D.; Zhang, X.; Niu, X.; Lin, Y. Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges. Adv. Healthc. Mater. 2025, 14, e2401630. [Google Scholar] [CrossRef]
- Fu, J.; Liu, Y. Single-Atom Nanomaterials in Electrochemical Sensors Applications. Chemosensors 2023, 11, 486. [Google Scholar] [CrossRef]
- Yang, Z.; Cao, B.; An, X.; Yu, Z.; Zhao, W.; Su, F.; Guan, G.; Zhang, Y.; Xie, Z.; Ye, B. Fabrication of nitrogen-carbon mediated γ-Mo(2)N nanocomposite based electrochemical sensor for rapid and sensitive determination of antioxidant 6-PPD in the environment. Talanta 2024, 266 Pt 2, 125072. [Google Scholar] [CrossRef] [PubMed]
- Sweety; Kumar, D. Electrochemical immunosensor based on titanium dioxide grafted MXene for EpCAM antigen detection. J. Colloid Interface Sci. 2023, 652 Pt A, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; He, B.; Liu, Y.; Wang, Y.; Wang, J.; Liang, Y.; Jin, H.; Wei, M.; Ren, W.; Suo, Z.; et al. A novel magneto-mediated electrochemical biosensor integrated DNAzyme motor and hollow nanobox-like Pt@ Ni-Co electrocatalyst as dual signal amplifiers for vanilla detection. Biosens. Bioelectron. 2023, 241, 115690. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Wu, R.; Wang, J.; Mao, J.; Nan, W. Detection of tumor marker CA72-4 with an electrochemical immunosensor based on MnO2 nanosheets and HNM-AuPtPd nanocomposites. Mikrochim. Acta 2024, 191, 239. [Google Scholar] [CrossRef]
- Bharti, A.; Agnihotri, N.; Prabhakar, N. A voltammetric hybridization assay for microRNA-21 using carboxylated graphene oxide decorated with gold-platinum bimetallic nanoparticles. Mikrochim. Acta 2019, 186, 185. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Daneshpour, M.; Karimi, B.; Omidfar, K. Simultaneous detection of gastric cancer-involved miR-106a and let-7a through a dual-signal-marked electrochemical nanobiosensor. Biosens. Bioelectron. 2018, 109, 197–205. [Google Scholar] [CrossRef]
- Pothipor, C.; Jakmunee, J.; Bamrungsap, S.; Ounnunkad, K. An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Anal. 2021, 146, 4000–4009. [Google Scholar] [CrossRef]
- Bastos-Soares, E.A.; da Silva Morais, M.S.; Funes-Huacca, M.; Sousa, R.M.O.; Brilhante-Da-Silva, N.; Roberto, S.A.; Prado, N.D.R.; Dos Santos, C.N.D.; Marinho, A.C.M.; Soares, A.M.; et al. Single-Domain Antibody-Gold Nanoparticle Bioconjugates as Immunosensors for the Detection of Hantaviruses. Mol. Diagn. Ther. 2024, 28, 479–494. [Google Scholar] [CrossRef]
- Yarjoo, S.; Siampour, H.; Khalilipour, M.; Sajedi, R.H.; Bagheri, H.; Moshaii, A. Gold nanostructure-enhanced immunosensing: Ultra-sensitive detection of VEGF tumor marker for early disease diagnosis. Sci. Rep. 2024, 14, 10450. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, R.; Liu, L.; Feng, S.; Xi, X.; Yu, W.; Gu, Y.; Wang, Y. Identification and characterization of shark VNARs targeting the Helicobacter pylori adhesin HpaA. Artif. Cells Nanomed. Biotechnol. 2023, 51, 509–519. [Google Scholar] [CrossRef]
- Khan, S.; Liu, Y.; Ernst, L.M.; Leung, L.Y.T.; Budylowski, P.; Dong, S.; Campisi, P.; Propst, E.J.; Wolter, N.E.; Grunebaum, E.; et al. Detection of Human CD38 Using Variable Lymphocyte Receptor (VLR) Tetramers. Cells 2020, 9, 950. [Google Scholar] [CrossRef]
- Cao, L.; Lu, S.; Guo, C.; Chen, W.; Gao, Y.; Ye, D.; Guo, Z.; Ma, W. A novel electrochemical immunosensor based on PdAgPt/MoS(2) for the ultrasensitive detection of CA 242. Front. Bioeng. Biotechnol. 2022, 10, 986355. [Google Scholar] [CrossRef]
- He, P.; Zhang, Q.; Liu, Q. Impedimetric aptasensor based on MOF based composite for measuring of carcinoembryonic antigen as a tumor biomarker. Chemosphere 2023, 338, 139339. [Google Scholar] [CrossRef] [PubMed]
- Kurbanoglu, S.; Ozkan, S.A. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal. 2018, 147, 439–457. [Google Scholar] [CrossRef] [PubMed]
- Zouari, M.; Campuzano, S.; Pingarrón, J.M.; Raouafi, N. Determination of miRNAs in serum of cancer patients with a label- and enzyme-free voltammetric biosensor in a single 30-min step. Mikrochim. Acta 2020, 187, 444. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Peng, J.; Pan, M.; Ming, Y.; Li, Y.; Yuan, L.; Liu, Q.; Han, R.; Hao, Y.; Yang, Y.; et al. A Nonenzymatic Hydrogen Peroxide Electrochemical Sensing and Application in Cancer Diagnosis. Small Methods 2021, 5, e2001212. [Google Scholar] [CrossRef]
- Xie, Y.; Tu, X.; Ma, X.; Fang, Q.; Lu, L.; Yu, Y.; Liu, G.; Liu, C. High-performance voltammetric sensor for dichlorophenol based on β-cyclodextrin functionalized boron-doped graphene composite aerogels. Nanotechnology 2019, 30, 185502. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, A.J.; Yuan, P.X.; Luo, X.; Xue, Y.; Feng, J.J. Three dimensional sea-urchin-like PdAuCu nanocrystals/ferrocene-grafted-polylysine as an efficient probe to amplify the electrochemical signals for ultrasensitive immunoassay of carcinoembryonic antigen. Biosens. Bioelectron. 2019, 132, 294–301. [Google Scholar] [CrossRef]
- Chang, J.; Wang, X.; Wang, J.; Li, H.; Li, F. Nucleic Acid-Functionalized Metal-Organic Framework-Based Homogeneous Electrochemical Biosensor for Simultaneous Detection of Multiple Tumor Biomarkers. Anal. Chem. 2019, 91, 3604–3610. [Google Scholar] [CrossRef]
- Qiu, Z.; Shu, J.; Tang, D. Bioresponsive Release System for Visual Fluorescence Detection of Carcinoembryonic Antigen from Mesoporous Silica Nanocontainers Mediated Optical Color on Quantum Dot-Enzyme-Impregnated Paper. Anal. Chem. 2017, 89, 5152–5160. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Wu, C.; Xiong, Y.; Zhan, Z.; Shen, C.; Lin, F.; Zhang, J.; Chen, P. Target proteins-regulated DNA nanomachine-electroactive substance complexes enable separation-free electrochemical detection of clinical exosome. Biosens. Bioelectron. 2024, 256, 116273. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Huang, Q.; Canady, T.D.; Barya, P.; Liu, S.; Arogundade, O.H.; Race, C.M.; Che, C.; Wang, X.; Zhou, L.; et al. Photonic crystal enhanced fluorescence emission and blinking suppression for single quantum dot digital resolution biosensing. Nat. Commun. 2022, 13, 4647. [Google Scholar] [CrossRef]
- Boudries, R.; Williams, H.; Paquereau-Gaboreau, S.; Bashir, S.; Hojjat Jodaylami, M.; Chisanga, M.; Trudeau, L.; Masson, J.F. Surface-Enhanced Raman Scattering Nanosensing and Imaging in Neuroscience. ACS Nano 2024, 18, 22620–22647. [Google Scholar] [CrossRef]
- Xu, L.; Chopdat, R.; Li, D.; Al-Jamal, K.T. Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes. Biosens. Bioelectron. 2020, 169, 112576. [Google Scholar] [CrossRef]
- Yang, R.; Liang, Y.; Hong, S.; Zuo, S.; Wu, Y.; Shi, J.; Cai, L.; Li, J.; Mao, H.; Ge, S.; et al. Novel Low-Temperature Chemical Vapor Deposition of Hydrothermal Delignified Wood for Hydrophobic Property. Polymers 2020, 12, 1757. [Google Scholar] [CrossRef]
- Cheng, S.; Kong, Q.; Hu, X.; Zhang, C.; Xian, Y. An Ultrasensitive Strand Displacement Signal Amplification-Assisted Synchronous Fluorescence Assay for Surface Proteins of Small Extracellular Vesicle Analysis and Cancer Identification. Anal. Chem. 2022, 94, 1085–1091. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Li, P.; Zhang, Y.; Du, L.; Wang, Y.; Zhang, C.; Wang, C. Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater. 2022, 144, 1–14. [Google Scholar] [CrossRef]
- Xu, J.; Cheng, C.; Shang, S.; Gao, W.; Zeng, P.; Jiang, S. Flexible, Reusable SERS Substrate Derived from ZIF-67 by Adjusting LUMO and HOMO and Its Application in Identification of Bacteria. ACS Appl. Mater. Interfaces 2020, 12, 49452–49463. [Google Scholar] [CrossRef]
- Nilghaz, A.; Mahdi Mousavi, S.; Amiri, A.; Tian, J.; Cao, R.; Wang, X. Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis. J. Agric. Food Chem. 2022, 70, 5463–5476. [Google Scholar] [CrossRef]
- Choi, N.; Dang, H.; Das, A.; Sim, M.S.; Chung, I.Y.; Choo, J. SERS biosensors for ultrasensitive detection of multiple biomarkers expressed in cancer cells. Biosens. Bioelectron. 2020, 164, 112326. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lang, J. Recent advances in the treatment for gynecologic oncology. Holist. Integr. Oncol. 2024, 3, 1. [Google Scholar] [CrossRef]
- Lan, T.; Zhao, Y.; Du, Y.; Ma, C.; Wang, R.; Zhang, Q.; Wang, S.; Wei, W.; Yuan, H.; Huang, Q. Fabrication of a Novel Au Star@ AgAu Yolk-Shell Nanostructure for Ovarian Cancer Early Diagnosis and Targeted Therapy. Int. J. Nanomed. 2023, 18, 3813–3824. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, H.; Sun, T.; Zhang, J.; Wang, L.; Zhang, Y.; Zhou, N. A fluorescence and SERS dual-mode biosensor for quantification and imaging of Mucin1 in living cells. Biosens. Bioelectron. 2025, 270, 116964. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, S.; Zhang, A.; Song, J.; Chang, J.; Wang, K.; Zhang, Y.; Li, S.; Liu, H.; Alfranca, G.; et al. Salivary Analysis Based on Surface Enhanced Raman Scattering Sensors Distinguishes Early and Advanced Gastric Cancer Patients from Healthy Persons. J. Biomed. Nanotechnol. 2018, 14, 1773–1784. [Google Scholar] [CrossRef]
- Pan, H.; Dong, Y.; Gong, L.; Zhai, J.; Song, C.; Ge, Z.; Su, Y.; Zhu, D.; Chao, J.; Su, S.; et al. Sensing gastric cancer exosomes with MoS2-based SERS aptasensor. Biosens. Bioelectron. 2022, 215, 114553. [Google Scholar] [CrossRef]
- Wang, H.; Da, L.; Yang, L.; Chu, S.; Yang, F.; Yu, S.; Jiang, C. Colorimetric fluorescent paper strip with smartphone platform for quantitative detection of cadmium ions in real samples. J. Hazard. Mater. 2020, 392, 122506. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Zhang, Y.; Dong, M.; Cao, L.; Jiang, K. A simple Ag-MoS2 hybrid nanozyme-based sensor array for colorimetric identification of biothiols and cancer cells. RSC Adv. 2024, 14, 31560–31569. [Google Scholar] [CrossRef]
- Lucio-Rivera, Z.; Gudgel, R.; Gorski, W. Toward the point-of-care testing of alkaline phosphatase in human serum. Biosens. Bioelectron. 2024, 265, 116694. [Google Scholar] [CrossRef]
- Cheng, C.; Dong, W.; Zhao, X.; Chen, J.; Wang, S.; Hu, Y.; Qing, Z. On-site visual quantification of alkaline phosphatase activity in cells using a smartphone-based approach. Anal. Chim. Acta 2025, 1336, 343528. [Google Scholar] [CrossRef]
- Nanda, B.P.; Rani, P.; Paul, P.; Aman; Ganti, S.S.; Bhatia, R. Recent trends and impact of localized surface plasmon resonance (LSPR) and surface-enhanced Raman spectroscopy (SERS) in modern analysis. J. Pharm. Anal. 2024, 14, 100959. [Google Scholar]
- Chen, R.; Guo, C.; Lan, G.; Luo, P.; Yi, J.; Wei, W. Highly sensitive surface plasmon resonance sensor with surface modified MoSe2/ZnO composite film for non-enzymatic glucose detection. Biosens. Bioelectron. 2023, 237, 115469. [Google Scholar] [CrossRef]
- Shahbazi, N.; Zare-Dorabei, R.; Naghib, S.M. Design of a Ratiometric Plasmonic Biosensor for Herceptin Detection in HER2-Positive Breast Cancer. ACS Biomater. Sci. Eng. 2022, 8, 871–879. [Google Scholar] [CrossRef]
- Meng, G.-R.; Yan, S.-H.; Li, M.-L.; Liu, J.-Q.; Shi, C.-X.; Ji, J.-Q.; Zhong, M.-Y.; Zhang, J.; Zhang, Y.-J.; Zhang, Y.-Q.; et al. An “on-off” ratiometric electrochemiluminescence biosensor based on LSPR-enhanced by Ag@ Au nanostructures combined with Pd NCs catalysing a single luminophore for MiRNA let-7a detection. Sens. Actuators B Chem. 2025, 422, 136574. [Google Scholar] [CrossRef]
- Zhao, Y.; Bouffier, L.; Xu, G.; Loget, G.; Sojic, N. Electrochemiluminescence with semiconductor (nano)materials. Chem. Sci. 2022, 13, 2528–2550. [Google Scholar] [CrossRef]
- Kirschbaum, S.E.; Baeumner, A.J. A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices. Anal. Bioanal. Chem. 2015, 407, 3911–3926. [Google Scholar] [CrossRef] [PubMed]
- Nesakumar, N.; Srinivasan, S.; Alwarappan, S. Graphene quantum dots: Synthesis, properties, and applications to the development of optical and electrochemical sensors for chemical sensing. Mikrochim. Acta 2022, 189, 258. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Su, Y.; Jiang, J.; Liang, Y.; Zhang, C. Ultrasensitive electrochemiluminescence detection of p53 gene by a novel cloth-based microfluidic biosensor with luminol-gold nanoparticles and hybridization chain reaction amplification. J. Lumin. 2020, 226, 117485. [Google Scholar] [CrossRef]
- Hu, L.; Shi, T.; Chen, J.; Cui, Q.; Yu, H.; Wu, D.; Ma, H.; Wei, Q.; Ju, H. Dual-quenching electrochemiluminescence resonance energy transfer system from CoPd nanoparticles enhanced porous g-C3N4 to FeMOFs-sCuO for neuron-specific enolase immunosensing. Biosens. Bioelectron. 2023, 226, 115132. [Google Scholar] [CrossRef]
- Jin, L.; Liu, W.; Xiao, Z.; Yang, H.; Yu, H.; Dong, C.; Wu, M. Recent Advances in Electrochemiluminescence Biosensors for Mycotoxin Assay. Biosensors 2023, 13, 653. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Cong, B.; Lai, W.; Jiang, M.; Ma, C.; Zhao, C.; Jiang, W.; Zhang, S.; Qi, Y.; Hong, C. An electrochemiluminescence resonance energy transfer biosensor based on Luminol-LDH and CuS@ Pt for detection of alpha-fetoprotein. Talanta 2023, 261, 124669. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wei, F.; Cui, Y.; Hou, L.; Lin, T. Fluorescence immunosensor based on functional nanomaterials and its application in tumor biomarker detection. RSC Adv. 2022, 12, 31369–31379. [Google Scholar] [CrossRef] [PubMed]
- Reja, S.I.; Minoshima, M.; Hori, Y.; Kikuchi, K. Recent advancements of fluorescent biosensors using semisynthetic probes. Biosens. Bioelectron. 2024, 247, 115862. [Google Scholar] [CrossRef]
- Alarfaj, N.A.; El-Tohamy, M.F.; Oraby, H.F. New Immunosensing-Fluorescence Detection of Tumor Marker Cytokeratin-19 Fragment (CYFRA 21-1) Via Carbon Quantum Dots/Zinc Oxide Nanocomposite. Nanoscale Res. Lett. 2020, 15, 12. [Google Scholar] [CrossRef]
- Liu, M.X.; Zhang, H.; Zhang, X.W.; Chen, S.; Yu, Y.L.; Wang, J.H. Nanozyme Sensor Array Plus Solvent-Mediated Signal Amplification Strategy for Ultrasensitive Ratiometric Fluorescence Detection of Exosomal Proteins and Cancer Identification. Anal. Chem. 2021, 93, 9002–9010. [Google Scholar] [CrossRef]
- Li, F.; Li, G.; Cao, S.; Liu, B.; Ren, X.; Kang, N.; Qiu, F. Target-triggered entropy-driven amplification system-templated silver nanoclusters for multiplexed microRNA analysis. Biosens. Bioelectron. 2021, 172, 112757. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, W.S.; Ding, S.N. Magnetic quantum dots barcodes using Fe3O4/TiO2 with weak spectral absorption in the visible region for high-sensitivity multiplex detection of tumor markers. Biosens. Bioelectron. 2023, 227, 115153. [Google Scholar] [CrossRef]
- Fan, H.; Li, R.; Chen, Y.; Da, Q.; Xiong, C.; Zhang, Y.; Qin, Z.; Liu, G.L.; Huang, L. Sample-to-answer point-of-care testing platform for quantitative detection of small molecules in blood using a smartphone-and microfluidic-based nanoplasmonic biosensor. Chem. Eng. J. 2024, 501, 157495. [Google Scholar] [CrossRef]
- Wang, X. Highlights the recent important findings in cancer heterogeneity. Holist. Integr. Oncol. 2023, 2, 15. [Google Scholar] [CrossRef]
- Dong, X.; Hu, X.; Yu, F.; Deng, P.; Jia, Y. Interpretable Causal System Optimization Framework for the Advancement of Biological Effect Prediction and Redesign of Nanoparticles. J. Am. Chem. Soc. 2024, 146, 22747–22758. [Google Scholar] [CrossRef]
- Ahmad, A.; Sala, F.; Paiè, P.; Candeo, A.; D’Annunzio, S.; Zippo, A.; Frindel, C.; Osellame, R.; Bragheri, F.; Bassi, A.; et al. On the robustness of machine learning algorithms toward microfluidic distortions for cell classification via on-chip fluorescence microscopy. Lab A Chip 2022, 22, 3453–3463. [Google Scholar] [CrossRef]
Classification | Nanosensing Strategy | Target | Linear Range/ LOD | Sample Type | Research and Development Phase | Ref. |
---|---|---|---|---|---|---|
Electrochemical Biosensor | Nanoenzymes catalyse substrate reactions on electrode surfaces, enhancing detection signals. | miRNA let-7a | 0.4–140 nM/ 0.25 nM | Hela cells | In vitro | [43] |
The marker–target–probe combination achieves signal amplification. | miRNA let-7a miRNA-21 | 0.01–10 pM/3.6 fM 0.02–10 pM/8.2 fM | Human serum | Small-sample validation | [71] | |
Nanozymes and the Cascade Primer Exchange Reaction (PER). | miRNA-21 | 1 fM–1 nM/ 0.29 fM | Human serum | Small-sample validation | [44] | |
Carboxylated graphene oxide modifies the electrode surface, with gold nanoparticles mediating target recognition. | miRNA-21 | 1 fM–1 μM/ 1 fM | Human serum | Small-sample validation | [56] | |
Metal ion functionalisation for preparing composite sensing interfaces enabling simultaneous detection of multiple biomarkers. | miRNA-21 miRNA-155 miRNA-210 | 0.001–1000 pM/ 0.04 fM 0.33 fM 0.28 fM | Human serum | Small-sample validation | [59] | |
Functionalised reduced graphene oxide probes react with electroactive molecules modified onto electrodes, yielding an oxidation peak. | miRNA-21 | 8 fM–2.0 pM/ 5.4 fM | Human serum | Small-sample validation | [67] | |
Nanozyme-catalysed in situ deposition of silver nanoparticles enhances the response signal. | GPC3 | 0.01–10 μg/mL /3.30 ng/mL | Human serum | Small-sample validation | [48] | |
Nanoenzymes and natural enzymes jointly catalyse the reaction. | AFP | 0.02–100,000 pg/mL /0.01 pg/mL | Human serum | Small-sample validation | [45] | |
Graphene provides binding sites for metallic nanoparticles, enhancing the response signal. | H2O2 | 0.01–0.05 × 10−6 M 0.15–8623 × 10−6 M /2.8 × 10–9 M | Mouse | In vitro | [68] | |
Nano-composites with enhanced electrocatalytic performance, optimised sensing interface | CA72-4 | 0.001~500 U/mL /1.78 × 10−5 U/mL | Human serum | Small-sample validation | [55] | |
Three-dimensional nanocrystals have been grafted with functional groups to enhance detection sensitivity. | CEA | 0.001–100 ng/mL /0.23 pg/mL | Human serum | Small-sample validation | [70] | |
Optical biosensor | Surface-enhanced Raman scattering enhanced by metallic elements | CYPA | -/7.76 × 10−10 μg/mL | Human plasma | Small-sample validation | [84] |
Surface-enhanced Raman scattering and fluorescence dual-signal detection. | MUC1 | -/1.16 fg/mL 1.19 fg/mL | Cancer cells | In vitro | [85] | |
Reaction between nanomaterials and target substances, followed by structural alteration to achieve signal amplification. | CD63 | 55–5.5 × 105 particles/μL /17 particles/μL | Cancer cells | In vitro | [87] | |
Nanozyme catalysis, smartphone imaging. | ALP | 0.001–100 U/L /0.47 mU/L | Human serum | Small-sample validation | [91] | |
The LSPR of metallic particles interacts with antibodies, incorporating silver nanoparticles to optimise detection ratios. | HER | 0.5–40 × 10−7 M /3.7 × 10−9 M | Human serum | Small-sample validation | [94] | |
LSPR-enhanced Ag@Au nanostructure biosensor | miRNA let-7a | 0.1 pM–10 aM /5.45 aM | Human serum | Small-sample validation | [95] | |
ECL-RET sensor with dual-emitter system. | AFP | 10−5–100 ng/mL /2.6 fg/mL | Human serum | Small-sample validation | [102] | |
Reaction accelerator composite nanomaterial P-C3N4-CoPd NPs modifies electrode, promoting conversion of K2S2O8 into active intermediate of luminescent system. | NSE | 0.00005–100 ng/mL /20.4 fg/mL | Human serum | Small-sample validation | [100] | |
Construction of a Fluorescent Sensing System Based on the Sandwich Method. | CYFRA 21-1 | 0.01–100 ng/mL /0.008 ng/mL | Human serum | Small-sample validation | [105] | |
PET-effect-based fluorescent colorimetric sensing platform. | Exosomes | -/2.5 × 103 per mL | Human serum | Small-sample validation | [106] | |
Combining an entropy-driven amplification system with silver nanoclusters for dual-signal amplification. | miRNA-141 miRNA-155 | -/6.1 pM 8.7 pM | Tumour tissue | In vitro | [107] |
Sensor Type | Method | Clinical Trial | Cancer Type | Clinical Standard | Classification | Year |
---|---|---|---|---|---|---|
Electrochemical Sensor | Impedance Method | NCT03929185 | Various Types | Pathological Diagnosis | Stage Technology/ Early trial | 2019 |
- | NCT04825002 | Prostate Cancer | Pathological Diagnosis | Stage Technology/ Early trial | 2021 | |
Impedance Method | ChiCTR2200058608 | Endometrial Cancer | Pathological Diagnosis | Early trial | 2022 | |
Optical Sensor | SERS | NCT06772376 | Non-Small Cell Lung Cancer | Pathological Diagnosis | Stage Technology/ Early trial | 2024 |
Optical spectromete | NCT02943044 | Head and Neck Squamous Cell Carcinoma | Pathological Diagnosis | Stage Technology/ Early trial | 2017 | |
- | NCT02068378 | Lung Cancer | Pathological Diagnosis | Completed trial | 2018 | |
FL | NCT02957370 | Bladder Cancer | cystoscopy | Stage Technology/ Early trial | 2021 | |
Semiconductor Sensor | Impedance Method | NCT06211010 | Tumors of the urinary system | Pathological Diagnosis | Completed trial | 2024 |
Nanopore Sensor | Nanopore | ChiCTR1900023951 | Breast Cancer | Pathological Diagnosis | Early trial | 2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Hei, J.; Zhao, T.; Liu, X.; Huang, Y. Nanomaterial-Mediated Electrochemical and Optical Biosensors and Their Application in Tumour Marker Detection. Sensors 2025, 25, 5902. https://doi.org/10.3390/s25185902
Wang X, Hei J, Zhao T, Liu X, Huang Y. Nanomaterial-Mediated Electrochemical and Optical Biosensors and Their Application in Tumour Marker Detection. Sensors. 2025; 25(18):5902. https://doi.org/10.3390/s25185902
Chicago/Turabian StyleWang, Xinlan, Jingyi Hei, Tao Zhao, Xiyu Liu, and Yong Huang. 2025. "Nanomaterial-Mediated Electrochemical and Optical Biosensors and Their Application in Tumour Marker Detection" Sensors 25, no. 18: 5902. https://doi.org/10.3390/s25185902
APA StyleWang, X., Hei, J., Zhao, T., Liu, X., & Huang, Y. (2025). Nanomaterial-Mediated Electrochemical and Optical Biosensors and Their Application in Tumour Marker Detection. Sensors, 25(18), 5902. https://doi.org/10.3390/s25185902