Electric Control of Photonic Spin Hall Effect in Surface Plasmon Resonance Systems for Multi-Functional Sensing
Abstract
1. Introduction
2. Theory and Model
3. Simulation Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bliokh, K.Y.; Niv, A.; Kleiner, V.; Hasman, E. Geometrodynamics of spinning light. Nat. Photonics 2008, 2, 748–753. [Google Scholar] [CrossRef]
- Aiello, A.; Woerdman, J.P. Role of beam propagation in Goos–Hänchen and Imbert–Fedorov shifts. Opt. Lett. 2008, 33, 1437–1439. [Google Scholar] [CrossRef] [PubMed]
- Hermosa, N.; Nugrowati, A.M.; Aiello, A.; Woerdman, J.P. Spin Hall effect of light in metallic reflection. Opt. Lett. 2011, 36, 3200–3202. [Google Scholar] [CrossRef]
- Onoda, M.; Murakami, S.; Nagaosa, N. Hall Effect of Light. Phys. Rev. Lett. 2004, 93, 4. [Google Scholar] [CrossRef]
- Lodahl, P.; Mahmoodian, S.; Stobbe, S.; Rauschenbeutel, A.; Schneeweiss, P.; Pichler, H.; Zoller, P. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 2015, 87, 347–400. [Google Scholar] [CrossRef]
- Minkyung, K.; Dasol, L.; Yeseul, K.; Junsuk, R. Nanophotonic-assisted precision enhancement of weak measurement using spin Hall effect of light. Nanophotonics 2022, 11, 4591–4600. [Google Scholar] [CrossRef]
- Mi, C.; Chen, S.; Wu, W.; Zhang, W.; Zhou, X.; Ling, X.; Shu, W.; Luo, H.; Wen, S. Precise identification of graphene layers at the air-prism interface via a pseudo-Brewster angle. Opt. Lett. 2017, 42, 135–4138. [Google Scholar] [CrossRef]
- Zhou, X.; Ling, X.; Luo, H.; Wen, S. Identifying graphene layers via spin Hall effect of light. Appl. Phys. Lett. 2012, 101, 251602. [Google Scholar] [CrossRef]
- Qiu, X.; Zhou, X.; Hu, D.; Du, J.; Gao, F.; Zhang, Z.; Luo, H. Determination of magneto-optical constant of Fe films with weak measurements. Appl. Phys. Lett. 2014, 105, 131111. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, H.; Pan, J.; Zhang, S.; Zheng, H.; Zhong, Y.; YU, J.; Chen, Z. Black phosphorus terahertz sensing based on photonic spin Hall effect. Opt. Express 2020, 28, 25869–25878. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Xiang, Y.; Xu, J.; Liu, S.; Dong, P. Highly Sensitive Refractive Index Sensing Based on Photonic Spin Hall Effect and Its Application on Cancer Detection. IEEE Sens. J. 2022, 22, 12754–12760. [Google Scholar] [CrossRef]
- Cheng, J.; Cheng, C.; Li, Z.; Liu, S. Ultra-sensitive multi-tasking photonic spin Hall effect sensor controlled by external pressure. Sens. Actuators A Phys. 2025, 390, 116625. [Google Scholar] [CrossRef]
- Sui, J.; Zou, J.; Liao, S.; Li, B.; Zhang, H. High sensitivity multiscale and multitasking terahertz Janus sensor based on photonic spin Hall effect. Appl. Phys. Lett. 2023, 122, 231105. [Google Scholar] [CrossRef]
- Lokesh, A.; Kamal, K.; Ravindra, K.S. Photonic spin Hall effect-based ultra-sensitive refractive index sensor for haemoglobin sensing applications. Opt. Laser Technol. 2024, 170, 110183. [Google Scholar]
- Liu, J.; Zeng, K.; Xu, W.; Chen, S.; Luo, H.; Wen, S. Ultrasensitive detection of ion concentration based on photonic spin Hall effect. Appl. Phys. Lett. 2019, 115, 251102. [Google Scholar] [CrossRef]
- Hosten, O.; Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 2008, 319, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ling, X. Enhanced Photonic Spin Hall Effect Due to Surface Plasmon Resonance. IEEE Sens. J. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, X.; Shu, W.; Wen, S.; Fan, D. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection. Phys. Rev. A 2011, 84, 043806. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Q.; Guo, J.; Zhang, J.; Chen, S.; Dai, X.; Xiang, Y. Resonant optical tunneling-induced enhancement of the photonic spin Hall effect. J. Phys. Appl. Phys. 2018, 51, 145104. [Google Scholar] [CrossRef]
- Wang, J.; Shi, L.; Zi, J. Spin Hall effect of light via momentum-space topological vortices around bound states in the continuum. Phys. Rev. Lett. 2022, 129, 236101. [Google Scholar] [CrossRef]
- Wu, F.; Liu, T.; Long, Y.; Xiao, S.; Chen, G. Giant photonic spin Hall effect empowered by polarization-dependent quasibound states in the continuum in compound grating waveguide structures. Phys. Rev. B 2023, 107, 165428. [Google Scholar] [CrossRef]
- Wan, G.; Ma, Z.; Xue, Y.; Zhang, C.; Chen, Y.; Zhou, X. Photonic spin Hall effect at an optical bound state in the continuum. Phys. Rev. B 2025, 111, 085411. [Google Scholar] [CrossRef]
- Wu, F.; She, Y.; Cheng, Z.; Wu, J.; Qi, X.; Wei, Q.; Chen, H. Strong polarization-dependent photonic bandgap and giant photonic spin Hall effect in a one-dimensional photonic crystal entirely composed of all-dielectric metamaterials. Phys. Condens. Matter 2023, 670, 415348. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Q.; Guo, J.; Zhang, J.; Chen, S.; Dai, X.; Xiang, Y. Enhanced Photonic Spin Hall Effect with a Bimetallic Film Surface Plasmon Resonance. Plasmonics 2018, 13, 1467–1473. [Google Scholar] [CrossRef]
- Tan, X.J.; Zhu, X.S. Enhancing photonic spin Hall effect via long-range surface plasmon resonance. Opt. Lett. 2016, 41, 2478–2481. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Jiang, X.; You, Q.; Guo, J.; Dai, X. Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance. Photon. Res. 2017, 5, 467–472. [Google Scholar] [CrossRef]
- Cheng, J.; Li, R.; Cheng, C.; Zhang, Y.; Liu, S.; Dong, P. Multi-functional photonic spin Hall effect sensor controlled by phase transition. Chin. Phys. B 2024, 33, 074203. [Google Scholar] [CrossRef]
- Cao, Y.; Sheng, L.; Cheng, J.; Mei, W.; Ling, X. Dynamically tunable photonic spin Hall effect based on insulating-metallic phase transition of Vanadium Dioxide. Opt. Laser Technol. 2024, 174, 110583. [Google Scholar] [CrossRef]
- Yang, J.; Yuan, S.; Li, Q.; Chen, Y.; Zhou, X. Wide-range electrically tunable photonic spin Hall effect in a quasi-PT-symmetric structure. Opt. Lett. 2022, 47, 4957–4960. [Google Scholar] [CrossRef]
- Tang, T.; Li, J.; Luo, L.; Sun, P.; Yao, J. Magneto-optical modulation of photonic spin Hall effect of graphene in terahertz region. Adv. Opt. Mater. 2018, 6, 1701212. [Google Scholar] [CrossRef]
- Dong, P.; Cheng, J.; Da, H.; Yan, X. Controlling photonic spin Hall effect in graphene-dielectric structure by optical pumping. New J. Phys. 2020, 22, 113007. [Google Scholar] [CrossRef]
- Cheng, J.; Xiang, Y.; Li, R.; Liu, S.; Dong, P. Actively manipulating the photonic spin Hall effect by bias-assisted light-induced carrier injection. Opt. Lett. 2022, 47, 5747–5750. [Google Scholar] [CrossRef]
- Dong, P.; Xiang, Y.; Cheng, J. Photonic Spin Hall Effect as a Highly Sensitive Refractive Index Sensing Platform for Glucose. Ann. Phys. 2024, 536, 2300351. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhou, Z.X.; Tian, H.; Liu, D.J.; Shen, Y.Q. Electric control of enhanced lateral shift owing to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal. J. Opt. 2010, 12, 045708. [Google Scholar] [CrossRef]
- Offersgaard, J.F.; Skettrup, T. Electro-optic properties of thin metallic layers. J. Opt. Soc. Am. B 1993, 10, 1457–1463. [Google Scholar] [CrossRef]
- Riswan, M.; Widianto, E.; Istiqomah, N.I.; Driyo, C.; Arifin, M.; Santoso, I.; Suharyadi, E. Tuning optical properties of Au thin film using electric field for surface plasmon resonance biosensor application. Opt. Mater. 2024, 150, 115221. [Google Scholar] [CrossRef]
- De Toro, J.A.; Serrano, M.D.; Cabañes, A.G.; Cabrera, J.M. Accurate interferometric measurement of electro-optic coefficients: Application to quasi-stoichiometric LiNbO3. Opt. Commun. 1998, 154, 23–27. [Google Scholar] [CrossRef]
- Luo, H.; Ling, X.; Zhou, X.; Shu, W.; Wen, S.; Fan, D. Enhancing or suppressing the spin Hall effect of light in layered nanostructures. Phys. Rev. A 2011, 84, 033801. [Google Scholar] [CrossRef]
- PubChem Compound Summary for CID 1119, Sulfur Dioxide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/SulfurDioxide (accessed on 28 August 2025).
- Optical Constants of Air, Ciddor 1996. Available online: https://refractiveindex.info/?shelf=other&book=air&page=Ciddor#google_vignette (accessed on 28 August 2025).
- Refractive Index of Sulfur Dioxide (Pure): Data Extracted from the Landolt-Börnstein Book Series and Associated Databases. Available online: https://materials.springer.com/interactive?systemId=22647&propertyId=Refractive+Index (accessed on 28 August 2025).
- Passaro, V.M.; Troia, B.; De Leonardis, F. A generalized approach for design of photonic gas sensors based on Vernier-effect in mid-IR. Sens. Actuators Chem. 2012, 168, 402–420. [Google Scholar] [CrossRef]
- Xu, Y.; Bai, P.; Zhou, X.; Akimov, Y.; Png, C.E.; Ang, L.K.; Wu, L. Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth. Adv. Opt. Mater. 2019, 7, 1801433. [Google Scholar] [CrossRef]
- Shimizu, Y.; Tan, S.L.; Murata, D.; Maruyama, T.; Ito, S.; Chen, Y.; Gao, W. Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions. Opt. Express 2016, 24, 2788–2805. [Google Scholar] [CrossRef] [PubMed]
- Lü, T.; Lang, X.; Han, Y. Optical fiber sensor for small angle and infinite angle detection. Rev. Sci. Instrum. 2008, 79, 053105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, L.; Fan, J.; Chen, X.; Chen, X.; Zhou, H.; Li, R. Terahertz angle sensor based on the asymmetry coupling of the square and L-shaped structure. Photonics Nanostruct.-Fundam. Appl. 2024, 61, 101288. [Google Scholar] [CrossRef]
Refractive Index of Sensing Medium (n) | Angle Detection Range (θ) | ) |
---|---|---|
1.0000 | 27.0082°–27.0095° | 1.13 × 104 μm/° |
1.0001 | 27.0113°–27.0126° | 1.13 × 104 μm/° |
1.0005 | 27.0239°–27.0252° | 1.13 × 104 μm/° |
1.001 | 27.0395°–27.0408° | 1.13 × 104 μm/° |
1.005 | 27.1647°–27.2660° | 1.00 × 104 μm/° |
1.01 | 27.3216°–27.3229° | 0.89 × 104 μm/° |
1.02 | 27.6350°–27.6363° | 0.30 × 104 μm/° |
Refractive Index of Sensing Medium (n) | Angle Detection Range (θ) | ) |
---|---|---|
1.00000 | 26.66974°–26.66992° | 4.91 × 105 μm/° |
1.00001 | 26.67005°–26.67023° | 4.95 × 105 μm/° |
1.00005 | 26.67129°–26.67147° | 5.07 × 105 μm/° |
1.0001 | 26.67284°–26.67302° | 5.20 × 105 μm/° |
1.0005 | 26.68520°–26.68538° | 5.64 × 105 μm/° |
1.001 | 26.70055°–26.70083° | 5.31 × 105 μm/° |
1.002 | 26.73144°–26.73162° | 6.49 × 105 μm/° |
1.01 | 26.97895°–26.97900° | 9.28 × 106 μm/° |
1.02 | 27.28925°–27.28943° | 4.87 × 105 μm/° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; Li, R.; Cheng, J. Electric Control of Photonic Spin Hall Effect in Surface Plasmon Resonance Systems for Multi-Functional Sensing. Sensors 2025, 25, 5383. https://doi.org/10.3390/s25175383
Ding J, Li R, Cheng J. Electric Control of Photonic Spin Hall Effect in Surface Plasmon Resonance Systems for Multi-Functional Sensing. Sensors. 2025; 25(17):5383. https://doi.org/10.3390/s25175383
Chicago/Turabian StyleDing, Jiaye, Ruizhao Li, and Jie Cheng. 2025. "Electric Control of Photonic Spin Hall Effect in Surface Plasmon Resonance Systems for Multi-Functional Sensing" Sensors 25, no. 17: 5383. https://doi.org/10.3390/s25175383
APA StyleDing, J., Li, R., & Cheng, J. (2025). Electric Control of Photonic Spin Hall Effect in Surface Plasmon Resonance Systems for Multi-Functional Sensing. Sensors, 25(17), 5383. https://doi.org/10.3390/s25175383