Special Issue on Advanced Optical Technologies for Communications, Perception, and Chips
1. Introduction
2. Optical Communication: Speed, Security, and Novel Architectures
3. Optical Perception: Sensing, Intelligence, and Applications
4. Optical Chips and Computing: Devices and Integration
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Cao, X.; Luo, M.; Liu, J.; Ma, J.; Hao, Y.; Liu, Y. Speed of Light in Hollow-Core Photonic Bandgap Fiber Approaching That in Vacuum. Sensors 2024, 24, 6954. https://doi.org/10.3390/s24216954.
- Ullah, R.; Ullah, S.; Almadhor, A.; Alwageed, H.S.; Al-Atawi, A.A.; Ren, J.; Chen, S. A high-capacity optical metro access network: Efficiently recovering fiber failures with robust switching and centralized optical line terminal. Sensors 2024, 24, 1074. https://doi.org/10.3390/s24041074.
- Velasco, L.; Ahmadian, M.; Ortiz, L.; Brito, J.P.; Pastor, A.; Rivas, J.M.; Barzegar, S.; Comellas, J.; Martin, V.; Ruiz, M. Scenarios for Optical Encryption Using Quantum Keys. Sensors 2024, 24, 6631. https://doi.org/10.3390/s24206631.
- Shi, G.; Cheng, W.; Gao, X.; Wei, F.; Zhang, H.; Wang, Q. Enhancing Security in Visible Light Communication: A Tabu-Search-Based Method for Transmitter Selection. Sensors 2024, 24, 1906. https://doi.org/10.3390/s24061906.
- Liao, W.; Luan, T.; Yue, Y.; Wang, C. Ultrafast Time-Stretch Optical Coherence Tomography Using Reservoir Computing for Fourier-Free Signal Processing. Sensors 2025, 25, 3738. https://doi.org/10.3390/s25123738.
- Wang, X.; Xu, T.; An, D.; Sun, L.; Wang, Q.; Pan, Z.; Yue, Y. Face Mask Identification Using Spatial and Frequency Features in Depth Image from Time-of-Flight Camera. Sensors 2023, 23, 1596. https://doi.org/10.3390/s23031596.
- Yang, C.; Zhou, Z.; Gao, X.; Xu, Z.; Han, S.; Chong, Y.; Min, R.; Yue, Y.; Duan, Z. Compact silicon-arrayed waveguide gratings with low nonuniformity. Sensors 2024, 24, 5303. https://doi.org/10.3390/s24165303.
- Cięszczyk, S.; Kida, M.; Panas, P. Demodulation of Fibre Bragg Grating Sensors by Using Cumulative Sum as a Preprocessing Method. Sensors 2025, 25, 634. https://doi.org/10.3390/s25030634.
- Krause, E.E.; Malka, D. Optimizations of double titanium nitride thermo-optic phase-shifter heaters using SOI technology. Sensors 2023, 23, 8587. https://doi.org/10.3390/s23208587.
- Liu, Y.; Wang, Y.; Geng, W.; Zhao, W.; Zhang, H.; Zhang, W.; Pan, Z.; Yue, Y. Parabolic-index ring-core fiber supporting high-purity orbital angular momentum modes. Sensors 2023, 23, 3641. https://doi.org/10.3390/s23073641.
- Alvarez, L.B.; Montejo-Sánchez, S.; Rodríguez-López, L.; Azurdia-Meza, C.; Saavedra, G. A review of hybrid vlc/rf networks: Features, applications, and future directions. Sensors 2023, 23, 7545. https://doi.org/10.3390/s23177545.
- Alimi, I.A.; Monteiro, P.P. Revolutionizing Free-Space Optics: A Survey of Enabling Technologies, Challenges, Trends, and Prospects of Beyond 5G Free-Space Optical (FSO) Communication Systems. Sensors 2024, 24, 8036. https://doi.org/10.3390/s24248036.
References
- Al-Jumaili, A.H.A.; Muniyandi, R.C.; Hasan, M.K.; Paw, J.K.S.; Singh, M.J. Big Data Analytics Using Cloud Computing Based Frameworks for Power Management Systems: Status, Constraints, and Future Recommendations. Sensors 2023, 23, 2952. [Google Scholar] [CrossRef]
- Jeon, H.B.; Kim, S.M.; Moon, H.J.; Kwon, D.H.; Lee, J.W.; Chung, J.M.; Han, S.K.; Chae, C.B.; Alouini, M.S. Free-space optical communications for 6G wireless networks: Challenges, opportunities, and prototype validation. IEEE Commun. Mag. 2023, 61, 116–121. [Google Scholar] [CrossRef]
- Szymanowicz, S.; Rupprecht, C.; Vedaldi, A. Splatter image: Ultra-fast single-view 3D reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 17–21 June 2024; pp. 10208–10217. [Google Scholar]
- Belgaonkar, V.V.; Triveni, C.L.; Sundaraguru, R. Free space optical communication using OQPSK in the presence of strong atmospheric turbulence and losses. Opt. Quantum Electron. 2024, 56, 1669. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, C.; Luo, S.; Lau, K.Y.; Zheng, J.; Huang, L.; Zhang, A.; Sheng, L.; Ling, Q.; Guan, Z.; et al. Ultra-fast optical time-domain transformation techniques. Nat. Rev. Methods Prim. 2025, 5, 11. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, H.; Han, R.; Qin, H.; Yao, Z.; Liu, H.; Ma, Y.; Wan, X.; Li, G.; Chen, Y. High-speed flexible near-infrared organic photodiode for optical communication. Natl. Sci. Rev. 2024, 11, nwad311. [Google Scholar] [CrossRef]
- Pan, D.; Liu, Y.C.; Niu, P.; Zhang, H.; Zhang, F.; Wang, M.; Song, X.T.; Chen, X.; Zheng, C.; Long, G.L. Simultaneous transmission of information and key ex-change using the same photonic quantum states. Sci. Adv. 2025, 11, eadt4627. [Google Scholar] [CrossRef]
- Zhao, Z.; Kravtsov, V.; Wang, Z.; Zhou, Z.; Dou, L.; Huang, D.; Wang, Z.; Cheng, X.; Raschke, M.B.; Jiang, T. Applications of ultrafast nano-spectroscopy and nano-imaging with tip-based microscopy. eLight 2025, 5, 1. [Google Scholar] [CrossRef]
- Chen, R.; Ma, Y.; Zhang, C.; Xu, W.; Wang, Z.; Sun, S. All-optical perception based on partially coherent optical neural networks. Opt. Express 2025, 33, 1609–1624. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Z.; Zhao, X.; Liu, S.; Chen, Z.; Dong, W.-F.; Wang, S.; Sun, Y.L.; Wu, X. An all-optical multidirectional mechano-sensor inspired by biologically mechano-sensitive hair sensilla. Nat. Commun. 2024, 15, 2906. [Google Scholar] [CrossRef] [PubMed]
- Liżewski, K.; Tomczewski, S.; Borycki, D.; Węgrzyn, P.; Wojtkowski, M. Imaging the retinal and choroidal vasculature using spatio-temporal optical co-herence tomography (STOC-T). Biocybern. Biomed. Eng. 2024, 44, 95–104. [Google Scholar] [CrossRef]
- Shan, X.; Wang, Z.; Xie, J.; Han, J.; Tao, Y.; Lin, Y.; Zhao, X.; Ielmini, D.; Liu, Y.; Xu, H. Hemispherical retina emulated by plasmonic optoelec-tronic memristors with all-optical modulation for neuromorphic stereo vision. Adv. Sci. 2024, 11, 2405160. [Google Scholar] [CrossRef]
- Li, Y.; Ji, Q.; Jiao, S. Prompt learning and multi-scale attention for infrared and visible image fusion. Infrared Phys. Technol. 2025, 145, 105671. [Google Scholar] [CrossRef]
- Ji, T.; Fang, H.; Zhang, R.; Yang, J.; Wang, Z.; Wang, X. Plastic waste identification based on multimodal feature selection and cross-modal Swin Trans-former. Waste Manag. 2025, 192, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, C.; Nong, H.; Weng, J.; Wang, D.; Yu, Y.; Zhang, J.; Zhang, C.; Yu, J.; Zhang, Z.; et al. Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research. Opto-Electron. Adv. 2025, 8, 240152. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zhang, C.; Qiao, Y.; Deng, R.; Shi, Y.; Li, Z. On-Chip Direction-Multiplexed Meta-Optics for High-Capacity 3D Holography. Adv. Funct. Mater. 2024, 34, 2312705. [Google Scholar] [CrossRef]
- Lin, W.; Ota, Y.; Arakawa, Y.; Iwamoto, S. On-chip optical skyrmionic beam generators. Optica 2024, 11, 1588–1594. [Google Scholar] [CrossRef]
- Gagino, M.; Millan-Mejia, A.; Augustin, L.; Williams, K.; Bente, E.; Dolores-Calzadilla, V. Integrated optical phased array with on-chip amplification enabling programmable beam shaping. Sci. Rep. 2024, 14, 9590. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Mao, J.; Li, X.; Yuan, J.; Zheng, Y.; Zhai, C.; Dai, T.; Fu, Z.; Bao, J.; Yang, Y.; et al. Integrated optical entangled quantum vortex emitters. Nat. Photon. 2025, 19, 471–478. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, Y.; Liu, Y.; Ye, C.; Cao, Q.; Huang, P.; Kim, C.; Zheng, Y.; Oxenløwe, L.K.; Yvind, K.; et al. Integrated optical vortex microcomb. Nat. Photon. 2024, 18, 625–631. [Google Scholar] [CrossRef]
- Lv, C.; Meng, F.; Cui, L.; Jiao, Y.; Jia, Z.; Qin, W.; Qin, G. Voltage-controlled nonlinear optical properties in gold nanofilms via electrothermal effect. Nat. Commun. 2024, 15, 6372. [Google Scholar] [CrossRef]
- Chen, R.; Yan, W.; Liu, W.; Cheng, W.; Lu, Q.; Tan, Y.; Chen, F. Nonlinear tuning of multiple topological edge states in photovoltaic photonic lattices. Sci. Bull. 2025, 70, 1605–1610. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Zou, K.; Liu, C.; Yue, Y. Special Issue on Advanced Optical Technologies for Communications, Perception, and Chips. Sensors 2025, 25, 5278. https://doi.org/10.3390/s25175278
Xu T, Zou K, Liu C, Yue Y. Special Issue on Advanced Optical Technologies for Communications, Perception, and Chips. Sensors. 2025; 25(17):5278. https://doi.org/10.3390/s25175278
Chicago/Turabian StyleXu, Tianxu, Kaiheng Zou, Cong Liu, and Yang Yue. 2025. "Special Issue on Advanced Optical Technologies for Communications, Perception, and Chips" Sensors 25, no. 17: 5278. https://doi.org/10.3390/s25175278
APA StyleXu, T., Zou, K., Liu, C., & Yue, Y. (2025). Special Issue on Advanced Optical Technologies for Communications, Perception, and Chips. Sensors, 25(17), 5278. https://doi.org/10.3390/s25175278