Optimized NRBO-VMD-AM-BiLSTM Hybrid Architecture for Enhanced Dissolved Gas Concentration Prediction in Transformer Oil Soft Sensors
Abstract
1. Introduction
2. Methodology
2.1. NRBO-Optimized VMD
2.1.1. Variational Mode Decomposition
2.1.2. Newton–Raphson-Based Optimizer
2.1.3. Parameter Optimization of VMD via NRBO
2.2. Bidirectional Long Short-Term Memory
2.3. Attention Mechanism
2.4. AM-BiLSTM Architecture
3. NRBO-VMD-AM-BiLSTM Forecasting Model
4. Prediction Results
4.1. Testing Platform
4.2. Experimental Data
4.3. Time-Series Data Preprocessing
4.4. Comparison of Algorithm Optimization Results
4.5. Prediction Results of NRBO-VMD-AM-BiLSTM Model
4.6. Performance Comparison of Different Models
4.7. Threshold Exceedance Prediction Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ward, S.A.; El-Faraskoury, A.; Badawi, M.; Ibrahim, S.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Towards Precise Interpretation of Oil Transformers Via Novel Combined Techniques based on DGA and Partial Discharge Sensors. Sensors 2021, 21, 2223. [Google Scholar] [CrossRef]
- Xing, Z.; He, Y.; Chen, J.; Wang, X.; Du, B. Health Evaluation of Power Transformer using Deep Learning Neural Network. Electr. Pow. Syst. Res. 2023, 215, 109016. [Google Scholar] [CrossRef]
- IEC 60599; Mineral Oil-Filled Electrical Equipment in Service—Guidance on the Interpretation of Dissolved and Free Gases Analysis. IEC: Geneva, Switzerland, 2015.
- Mohler, I.; Ujević Andrijić, Ž.; Bolf, N. Soft Sensors Model Optimization and Application for the Refinery Real-Time Prediction of Toluene Content. Chem. Eng. Commun. 2018, 205, 411–421. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, M. Rebooting Data-Driven Soft-Sensors in Process Industries: A Review of Kernel Methods. J. Process. Contr. 2020, 89, 58–73. [Google Scholar] [CrossRef]
- Lei, P.; Ma, F.; Zhu, C.; Li, T. LSTM Short-Term Wind Power Prediction Method based on Data Preprocessing and Variational Modal Decomposition for Soft Sensors. Sensors 2024, 24, 2521. [Google Scholar] [CrossRef]
- Bustamante, S.; Manana, M.; Arroyo, A.; Castro, P.; Laso, A.; Martinez, R. Dissolved Gas Analysis Equipment for Online Monitoring of Transformer Oil: A Review. Sensors 2019, 19, 4057. [Google Scholar] [CrossRef]
- Jin, L.; Kim, D.; Chan, K.Y.; Abu-Siada, A. Deep Machine Learning based Asset Management Approach for Oil-immersed Power Transformers using Dissolved Gas Analysis. IEEE Access 2024, 12, 27794–27809. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, Palo Alto, CA, USA, 2–9 February 2021; Volume 35, pp. 11106–11114. [Google Scholar] [CrossRef]
- Christina, A.J.; Salam, M.; Rahman, Q.; Wen, F.; Ang, S.; Voon, W. Causes of Transformer Tailures and Diagnostic Methods—A Review. Renew. Sustain. Energy Rev. 2018, 82, 1442–1456. [Google Scholar] [CrossRef]
- Kong, X.; Cai, B.; Yu, Y.; Yang, J.; Wang, B.; Liu, Z.; Shao, X.; Yang, C. Intelligent Diagnosis Method for Early Faults of Electric-Hydraulic Control System based on Residual Analysis. Reliab. Eng. Syst. Saf. 2025, 261, 111142. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Hou, K.; Li, Q.; Liu, H. Improved Information Entropy Weighted Vague Support Vector Machine Method for Transformer Fault Diagnosis. High Volt. 2022, 7, 510–522. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Wang, K.; Wang, J.; Zhou, T.; Zhang, Y. Optimal Dissolved Gas Ratios Selected by Genetic Algorithm for Power Transformer Tault Diagnosis based on Support Vector Machine. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1198–1206. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, A.; Xin, H.; Wang, J. Fault Early Warning of Wind Turbine Gearbox based on Multi-input Support Vector Regression and Improved Ant Lion Optimization. Wind Energy 2021, 24, 812–832. [Google Scholar] [CrossRef]
- Yan, W.; Lu, C.; Liu, Y.; Zhang, X.; Zhang, H. An Energy Data-Driven Approach for Operating Status Recognition of Machine Tools Based on Deep Learning. Sensors 2022, 22, 6628. [Google Scholar] [CrossRef]
- Tan, Y.; Zhao, G. Transfer Learning with Long Short-Term Memory Network for State-of-Health Prediction of Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2019, 67, 8723–8731. [Google Scholar] [CrossRef]
- Mirowski, P.; Lecun, Y. Statistical Machine Learning and Dissolved Gas Analysis: A Review. IEEE Trans. Power Deliv. 2012, 27, 1791–1799. [Google Scholar] [CrossRef]
- Baruah, N.; Maharana, M.; Nayak, S.K. Performance Analysis of Vegetable Oil-based Nanofluids used in Transformers. IET Sci. Meas. Technol. 2019, 13, 995–1002. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Adv. Adapt. Data Anal. 2008, 1, 1–41. [Google Scholar] [CrossRef]
- Xue, W.; Dai, X.; Zhu, J.; Luo, Y.; Yang, Y.A. Noise Suppression Method of Ground Penetrating Radar Based on EEMD and Permutation Entropy. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1625–1629. [Google Scholar] [CrossRef]
- Wang, N.; Li, W.; Li, J.; Li, X.; Gong, X. Prediction of Dissolved Gas Content in Transformer Oil Using the Improved SVR Model. IEEE Trans. Appl. Supercond. 2024, 34, 9002804. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Ding, C.; Ding, Q.C.; Feng, L.; Wang, Z.L. Prediction Model of Dissolved Gas in Transformer Oil Based on VMD-SMA-LSSVM. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 1432–1440. [Google Scholar] [CrossRef]
- Mahmoud, S.A.; Ahmed, E.; Maged, S.A.; Sami, E.F. Parameter Estimation of Proton Exchange Membrane Fuel Cells using Chaotic Newton-Raphson-based Optimizer. Res. Eng. 2024, 24, 103369. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based Optimizer: A New Metaheuristic Optimization Algorithm. Inf. Sci. 2020, 540, 131–159. [Google Scholar] [CrossRef]
- Sowmya, R.; Premkumar, M.; Jangir, P. Newton Raphson-based Optimizer: A New Population-based Metaheuristic Algorithm for Continuous Optimization Problems. Eng. Appl. Artif. Intel. 2024, 128, 107532. [Google Scholar] [CrossRef]
- Huang, C.-J.; Kuo, P.-H. A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities. Sensors 2018, 18, 2220. [Google Scholar] [CrossRef]
- Graves, A.; Schmidhuber, J. Framewise Phoneme Classification with Bidirectional LSTM Networks. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A Review on the Long Short-Term Memory Model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Valente, J.; Van Der Voort, M.; Tekinerdogan, B. Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing: A Systematic Literature Review. Remote Sens. 2021, 13, 2965. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, Y.; Wang, X.; Wang, F.; Jia, Y. Combined Ultra-Short-Term Photovoltaic Power Prediction based on CEEMDAN Decomposition and RIME Optimized AM-TCN-BiLSTM. Energy 2021, 318, 134847. [Google Scholar] [CrossRef]
Optimization Algorithm | Learning Rate | Neuron Count | Training Epochs |
---|---|---|---|
SMA | 0.00419 | 32 | 50 |
GA | 0.00772 | 44 | 52 |
SSA | 0.00801 | 37 | 71 |
PSO | 0.00407 | 56 | 74 |
NRBO | 0.00182 | 19 | 86 |
Model | RMSE/(µL/L) (Step 1) | MAPE/% (Step 1) | RMSE/(µL/L) (Step 2) | MAPE/% (Step 2) |
---|---|---|---|---|
LSTM | 1.55 | 3.31 | 2.39 | 5.34 |
BiLSTM | 1.3 | 2.38 | 1.84 | 4.65 |
NRBO-BiLSTM | 1.02 | 2.16 | 2.01 | 4.46 |
NRBO-BiGRU | 1.1 | 1.99 | 1.56 | 4.11 |
AM-NRBO-BiLSTM | 1.04 | 1.54 | 1.77 | 4.31 |
VMD-AM-BiLSTM | 0.94 | 1.51 | 1.34 | 3.69 |
VMD-AM-NRBO-BiGRU | 0.3 | 1.35 | 1.18 | 3.72 |
NRBO-EEMD-AM-BiLSTM | 0.28 | 0.86 | 1.16 | 3.55 |
NRBO-VMD-AM-BiLSTM | 0.102 | 0.47 | 0.91 | 2.52 |
Date | DGA (µL/L) | |||||||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CH4 | C2H6 | C2H4 | C2H2 | Total Hydrocarbon | |
17 September | 64.25 | 951.65 | 2581.39 | 26.33 | 14.01 | 22.06 | 0.00 | 62.4 |
18 September | 101.33 | 816.34 | 4222.24 | 74.05 | 23.17 | 80.90 | 0.94 | 179.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Li, W.; Li, X. Optimized NRBO-VMD-AM-BiLSTM Hybrid Architecture for Enhanced Dissolved Gas Concentration Prediction in Transformer Oil Soft Sensors. Sensors 2025, 25, 5182. https://doi.org/10.3390/s25165182
Wang N, Li W, Li X. Optimized NRBO-VMD-AM-BiLSTM Hybrid Architecture for Enhanced Dissolved Gas Concentration Prediction in Transformer Oil Soft Sensors. Sensors. 2025; 25(16):5182. https://doi.org/10.3390/s25165182
Chicago/Turabian StyleWang, Nana, Wenyi Li, and Xiaolong Li. 2025. "Optimized NRBO-VMD-AM-BiLSTM Hybrid Architecture for Enhanced Dissolved Gas Concentration Prediction in Transformer Oil Soft Sensors" Sensors 25, no. 16: 5182. https://doi.org/10.3390/s25165182
APA StyleWang, N., Li, W., & Li, X. (2025). Optimized NRBO-VMD-AM-BiLSTM Hybrid Architecture for Enhanced Dissolved Gas Concentration Prediction in Transformer Oil Soft Sensors. Sensors, 25(16), 5182. https://doi.org/10.3390/s25165182