SMA-YOLO: A Novel Approach to Real-Time Vehicle Detection on Edge Devices
Abstract
1. Introduction
- (1)
- A lightweight road vehicle detection model called SMA-YOLO for embedded devices with limited storage and computing power is constructed by replacing the backbone network of the YOLOv7 model with MobileNetV3.
- (2)
- The ACON activation function is introduced to replace the SiLU activation function in the original YOLOv7 model, which enhances the model’s generalization ability and the information transfer efficiency between feature layers.
- (3)
- The SimAM attention mechanism module is integrated in the backbone network, which effectively improves the feature extraction ability of the model.
- (4)
- The SIoU is adopted as the loss function to optimize the model and further enhance the detection performance.
2. Related Work
3. Improved Model SMA-YOLO Based on YOLOv7
3.1. Feature Extraction Network MobileNetV3
3.2. ACON Activation Function
3.3. SimAM Attention Mechanisms
3.4. Loss Function
4. Experiments and Discussions
4.1. Experiment Preparation
4.1.1. Environment Configuration
4.1.2. Dataset
4.1.3. Evaluation Metrics
4.1.4. Implementation Details
4.2. Experimental Results and Analysis
4.2.1. Ablation Study
4.2.2. Comparison with State-of-the-Art Methods
4.2.3. Comparison of Visualization Results
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dimitrakopoulos, G.; Demestichas, P. Intelligent transportation systems. IEEE Veh. Technol. Mag. 2010, 5, 77–84. [Google Scholar] [CrossRef]
- Dong, L. Research on the industrial development of intelligent transportation system in China. In Proceedings of the 2020 5th International Conference on Electromechanical Control Technology and Transportation, Nanchang, China, 15–17 May 2020. [Google Scholar]
- Liang, L.; Ma, H.; Zhao, L.; Xie, X.; Hua, C.; Zhang, M.; Zhang, Y. Vehicle Detection Algorithms for Autonomous Driving: A Review. Sensors 2024, 24, 3088. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Narayan, S.; Mittal, S. A survey of deep learning techniques for vehicle detection from UAV images. J. Syst. Archit. 2021, 117, 102152. [Google Scholar] [CrossRef]
- Zhou, Z.; Dong, X.; Li, Z.; Yu, K.; Ding, C.; Yang, Y. Spatio-Temporal Feature Encoding for Traffic Accident Detection in VANET Environment. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19772–19781. [Google Scholar] [CrossRef]
- Adewopo, V.; Elsayed, N. Smart City Transportation: Deep Learning Ensemble Approach for Traffic Accident Detection. IEEE Access 2024, 12, 59134–59147. [Google Scholar] [CrossRef]
- Ren, Y. Intelligent Vehicle Violation Detection System Under Human–Computer Interaction and Computer Vision. Int. J. Comput. Intell. Syst. 2024, 17, 40. [Google Scholar] [CrossRef]
- Sinha, D.; Divya, S.; Anjali, C.; Keethigha, R.K. Traffic Signal Violation Detection System using YOLOv3. In Proceedings of the 2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC-ROBINS), Coimbatore, India, 17–19 April 2024. [Google Scholar]
- Reda, M.; Onsy, A.; Haikal, A.Y.; Ghanbari, A. Path planning algorithms in the autonomous driving system: A comprehensive review. Robot. Auton. Syst. 2024, 174, 104630. [Google Scholar] [CrossRef]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 21–23 September 2005. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Bochkovskiy, A.; Wang, C.; Liao, H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar] [CrossRef]
- Wang, C.; Bochkovskiy, A.; Liao, H. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. arXiv 2019, arXiv:1905.02244. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, X.; Liu, M.; Sun, J. Activate or not: Learning customized activation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Yang, L.; Zhang, R.Y.; Li, L. SimAM: A simple, parameter-free attention module for convolutional neural networks. In Proceedings of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021. [Google Scholar]
- Gevorgyan, Z. SIoU loss: More powerful learning for bounding box regression. arXiv 2022, arXiv:2205.12740. [Google Scholar] [CrossRef]
- Nesti, T.; Boddana, S.; Yaman, B. Ultra-Sonic Sensor Based Object Detection for Autonomous Vehicles. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Vancouver, BC, Canada, 18–22 June 2023. [Google Scholar]
- Poza-Lujan, J.L.; Uribe-Chavert, P.; Posadas-Yagüe, J.L. Low-cost modular devices for on-road vehicle detection and charaterisation. Des. Autom. Embed. Syst. 2023, 27, 85–102. [Google Scholar] [CrossRef]
- Sohail, M.; Khan, A.U.; Sandhu, M.; Shoukat, I.A.; Jafri, M.; Shin, H. Radar sensor based machine learning approach for precise vehicle position estimation. Sci. Rep. 2023, 13, 13837. [Google Scholar] [CrossRef]
- Fan, Y.; Tian, S.; Sheng, Q.; Li, J.; Chen, J.; Wang, B.; Ma, J. A coarse-to-fine vehicle detection in large SAR scenes based on GL-CFAR and PRID R-CNN. Int. J. Remote Sens. 2023, 44, 2518–2547. [Google Scholar] [CrossRef]
- Yao, R.; Uchiyama, T. Analysis of Magnetic Signatures for Vehicle Detection Using Dual-Axis Magneto-Impedance Sensors. IEEE Sens. J. 2023, 24, 8721–8730. [Google Scholar] [CrossRef]
- He, R.; Mao, G.; Hui, Y.; Cheng, Q. Geomagnetic Sensor Based Abnormal Parking Detection in Smart Roads. In Proceedings of the 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023. [Google Scholar]
- Oluwatobi, A.N.; Tayo, A.O.; Oladele, A.T.; Adesina, G.R. The design of a vehicle detector and counter system using inductive loop technology. Procedia Comput. Sci. 2012, 183, 493–503. [Google Scholar] [CrossRef]
- Ali, S.S.M.; George, B.; Vanajakshi, L.; Venkatraman, J. A Multiple Inductive Loop Vehicle Detection System for Heterogeneous and Lane-Less Traffic. IEEE Trans. Instrum. Meas. 2012, 61, 1353–1360. [Google Scholar]
- Wang, Z.; Zhan, J.; Duan, C.; Guan, X.; Lu, P.; Yang, K. A Review of Vehicle Detection Techniques for Intelligent Vehicles. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 3811–3831. [Google Scholar] [CrossRef]
- Song, Y.; Hong, S.; Hu, C.; He, P.; Tao, L.; Tie, Z.; Ding, C. MEB-YOLO: An Efficient Vehicle Detection Method in Complex Traffic Road Scenes. Comput. Mater. Contin. 2023, 75, 5761–5784. [Google Scholar] [CrossRef]
- SP, K.; Mohandas, P. DETR-SPP: A fine-tuned vehicle detection with transformer. Multimed. Tools Appl. 2024, 83, 25573–25594. [Google Scholar]
- Tao, L.; Hong, S.; Lin, Y.; Chen, Y.; He, P.; Tie, Z. A Real-Time License Plate Detection and Recognition Model in Unconstrained Scenarios. Sensors 2024, 24, 2791. [Google Scholar] [CrossRef]
- Gao, X.; Yu, A.; Tan, J.; Gao, X.; Zeng, X.; Wu, C. GSD-YOLOX: Lightweight and more accurate object detection models. J. Vis. Commun. Image Represent. 2024, 98, 104009. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision & Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; Dollár, P. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, C.; Wang, Q.; Yang, W. CMS R-CNN: An efficient cascade multi-scale region-based convolutional neural network for accurate 2D small vehicle detection. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019. [Google Scholar]
- Li, C.; Qu, Z.; Wang, S.; Liu, L. A method of cross-layer fusion multi-object detection and recognition based on improved faster R-CNN model in complex traffic environment. Pattern Recognit. Lett. 2021, 145, 127–134. [Google Scholar] [CrossRef]
- Chen, W.; Qiao, Y.; Li, Y. Inception-SSD: An improved single shot detector for vehicle detection. J. Ambient Intell. Humaniz. Comput. 2020, 13, 5047–5053. [Google Scholar] [CrossRef]
- Simon, M.; Milz, S.; Amende, K.; Gross, H.M. Complex-YOLO: An euler-region-proposal for real-time 3D object detection on point clouds. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 9–14 September 2018. [Google Scholar]
- Ge, P.; Guo, L.; He, D.; Huang, L. Light-weighted vehicle detection network based on improved YOLOv3-tiny. Int. J. Distrib. Sens. Netw. 2022, 18, 15501329221080665. [Google Scholar] [CrossRef]
- Wu, H.; Hua, Y.; Zou, H.; Ke, G. A lightweight network for vehicle detection based on embedded system. J. Supercomput. 2022, 78, 18209–18224. [Google Scholar] [CrossRef]
- Taheri Tajar, A.; Ramazani, A.; Mansoorizadeh, M. A lightweight Tiny-YOLOv3 vehicle detection approach. J. Real-Time Image Process. 2021, 18, 2389–2401. [Google Scholar] [CrossRef]
- Yuan, D.L.; Xu, Y. Lightweight Vehicle Detection Algorithm Based on improved YOLOv4. Eng. Lett. 2021, 29, 277–286. [Google Scholar]
- Bie, M.; Liu, Y.; Li, G.; Hong, J.; Li, J. Real-time vehicle detection algorithm based on a lightweight You-Only-Look-Once (YOLOv5n-L) approach. Expert Syst. Appl. 2023, 213, 119108. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Yu, D.; Yuan, Z. YOLOv8-FDD: A Real-Time Vehicle Detection Method Based on Improved YOLOv8. IEEE Access 2024, 12, 136280–136296. [Google Scholar] [CrossRef]
- Xie, Y.; Du, D.; Bi, M. YOLO-ACE: A Vehicle and Pedestrian Detection Algorithm for Autonomous Driving Scenarios Based on Knowledge Distillation of YOLOv10. IEEE Internet Things J. 2025, 12, 30086–30097. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, D.; Wang, H. MCA-YOLOv7: An Improved UAV Target Detection Algorithm Based on YOLOv7. IEEE Access 2024, 12, 42642–42649. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Wang, Z.; Jiang, Y. YOLOv7-RAR for Urban Vehicle Detection. Sensors 2023, 23, 1801. [Google Scholar] [CrossRef]
- Ning, Z.; Wang, H. YOLOv7-RDD: A Lightweight Efficient Pavement Distress Detection Model. IEEE Trans. Intell. Transp. Syst. 2024, 25, 6994–7002. [Google Scholar] [CrossRef]
- Lyu, S.; Chang, M.; Du, D.; Wen, L.; Qi, H.; Li, Y.; Wei, Y.; Ke, L.; Hu, T.; Coco, M.; et al. UA-DETRAC 2017: Report of AVSS2017 & IWT4S challenge on advanced traffic monitoring. In Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance, Lecce, Italy, 29 August–1 September 2017. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar] [CrossRef]
- Yang, G.; Feng, W.; Jin, J.; Lei, Q.; Li, X.; Gui, G.; Wang, W. Face Mask Recognition System with YOLOV5 Based on Image Recognition. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications, Chengdu, China, 11–14 December 2020. [Google Scholar]
- Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. arXiv 2019, arXiv:1904.08189. [Google Scholar] [CrossRef]
- Long, X.; Deng, K.; Wang, G.; Zhang, Y.; Dang, Q.; Gao, Y.; Shen, H.; Ren, J.; Han, S.; Ding, E.; et al. PP-YOLO: An effective and efficient implementation of object detector. arXiv 2020, arXiv:2007.12099. [Google Scholar] [CrossRef]
Input | Operator | Exp Size | #Out | SE | NL | s |
---|---|---|---|---|---|---|
2242 × 3 | conv2d, 3 × 3 | - | 16 | - | HS | 2 |
1122 × 16 | bneck, 3 × 3 | 16 | 16 | √ | RE | 2 |
562 × 16 | bneck, 3 × 3 | 72 | 24 | - | RE | 2 |
282 × 24 | bneck, 3 × 3 | 88 | 24 | - | RE | 1 |
282 × 24 | bneck, 5 × 5 | 96 | 40 | √ | HS | 2 |
142 × 40 | bneck, 5 × 5 | 240 | 40 | √ | HS | 1 |
142 × 40 | bneck, 5 × 5 | 240 | 40 | √ | HS | 1 |
142 × 40 | bneck, 5 × 5 | 120 | 48 | √ | HS | 1 |
142 × 48 | bneck, 5 × 5 | 144 | 48 | √ | HS | 1 |
142 × 48 | bneck, 5 × 5 | 288 | 96 | √ | HS | 2 |
72 × 96 | bneck, 5 × 5 | 576 | 96 | √ | HS | 1 |
72 × 96 | bneck, 5 × 5 | 576 | 96 | √ | HS | 1 |
72 × 96 | conv2d, 1 × 1 | - | 576 | √ | HS | 1 |
72 × 576 | pool, 7 × 7 | - | - | - | - | 1 |
12 × 576 | conv2d 1 × 1, NBN | - | 1024 | - | HS | 1 |
12 × 1024 | conv2d 1 × 1, NBN | - | k | - | - | 1 |
Method | Params (106) | GFLOPS (G) | Model Size (M) | mAP | FPS |
---|---|---|---|---|---|
YOLOv7 | 37.87 | 105.3 | 71.44 | 99.09% | 10.08 |
YOLOv7+simAM | 28.07 | 35.3 | 55.12 | 99.56% | 14.36 |
YOLOv7+SIoU | 37.24 | 105.3 | 71.44 | 99.77% | 8.07 |
YOLOv7+MobileNet | 4.48 | 10.3 | 14.75 | 98.35% | 19.87 |
YOLOv7+ACON | 38.41 | 105.8 | 73.78 | 99.53% | 10.48 |
SMA-YOLO | 4.47 | 10.4 | 14.7 | 99.37% | 16.81 |
Method | Input Size | Model Size (M) | FPS | Params (106) | mAP | GFLOPs (G) |
---|---|---|---|---|---|---|
SSD [35] | 300 × 300 | 94.4 | 10.56 | 24.01 | 76.58% | 61.105 |
YOLOX-s [53] | 640 × 640 | 34.7 | 36.7 | 8.96 | 92.55% | 26.642 |
EfficientDet [36] | 512 × 512 | 16.16 | 44.8 | 3.88 | 92.78% | 4.64 |
Faster R-CNN (VGG16) [12] | 600 × 600 | 521.65 | 27.36 | 136.70 | 94.86% | 0.273 |
YOLOv4 [14] | 416 × 416 | 245.01 | 29.24 | 64.02 | 95.65% | 59.78 |
Faster R-CNN (Resnet50) [12] | 600 × 600 | 108.66 | 27.84 | 28.36 | 97.05% | 0.0566 |
YOLOv5 [54] | 640 × 640 | 27.50 | 26.88 | 7.09 | 97.12% | 16.402 |
Centernet [55] | 512 × 512 | 125.25 | 23.63 | 32.72 | 97.64% | 69.942 |
PP-YOLO [56] | 640 × 640 | 203.13 | 11.58 | 4.60 | 98.73% | 45.12 |
YOLOv7 [15] | 640 × 640 | 71.44 | 10.08 | 37.87 | 99.09% | 105.3 |
YOLOv8n | 640 × 640 | 12.02 | 292.54 | 3.01 | 97.41% | 8.10 |
YOLOv9s | 640 × 640 | 28.68 | 105.33 | 7.17 | 98.74% | 26.70 |
YOLOv10n | 640 × 640 | 9.06 | 289.32 | 2.27 | 96.32% | 6.50 |
SMA-YOLO (ours) | 640 × 640 | 14.7 | 16.81 | 4.47 | 99.37% | 10.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Song, Y.; Lin, Y.; Tie, Z. SMA-YOLO: A Novel Approach to Real-Time Vehicle Detection on Edge Devices. Sensors 2025, 25, 5072. https://doi.org/10.3390/s25165072
Liu H, Song Y, Lin Y, Tie Z. SMA-YOLO: A Novel Approach to Real-Time Vehicle Detection on Edge Devices. Sensors. 2025; 25(16):5072. https://doi.org/10.3390/s25165072
Chicago/Turabian StyleLiu, Haixia, Yingkun Song, Yongxing Lin, and Zhixin Tie. 2025. "SMA-YOLO: A Novel Approach to Real-Time Vehicle Detection on Edge Devices" Sensors 25, no. 16: 5072. https://doi.org/10.3390/s25165072
APA StyleLiu, H., Song, Y., Lin, Y., & Tie, Z. (2025). SMA-YOLO: A Novel Approach to Real-Time Vehicle Detection on Edge Devices. Sensors, 25(16), 5072. https://doi.org/10.3390/s25165072