Instantiating the onEEGwaveLAD Framework for Real-Time Muscle Artefact Identification and Mitigation in EEG Signals
Abstract
1. Introduction
2. Related Work
3. The onEEGwaveLAD Framework
- is the -time EEG window length, in milliseconds of an EEG segment;
- is the sampling rate, the number of points of an EEG segment, for dealing with the granularity of denoising;
- is the mother wavelet, a function used for decomposing an EEG segment, employing the DWT decomposition scheme;
- is the IF sub-sampling size, the number of randomly sampled observations used to train each Extended Isolation Forest tree;
- is the number of IF trees for the Extended Isolation Forest algorithm to use for learning;
- is the buffer capacity, the amount of EEG windows composing the sliding buffer for storing the past EEG signal’s behaviour in the current recorded window;
- is the anomaly threshold, a scalar for deeming a vector of n-dimensions (the decomposition scales) as an outlier given its anomaly score, computed by querying the Extended Isolation Forest model;
- is the expansion step, the time locations to consider around each anomalous vector that must be denoised.
3.1. Window Length and Sampling Rate
3.2. Single-Channel EEG Decomposition
3.2.1. The Cone of Influence and Edge Effects
3.2.2. Asymmetry in DWT Decomposition and Scaleogram Formation
3.3. Artefact Identification via a Moving Buffer and the Isolation Forest Anomaly Detector
3.4. The Expansion Step and the Denoising Strategy
3.5. EEG Single-Channel Recomposition
4. Design and Methods
4.1. onEEGWaveLAD Parameter Setting
4.2. Research Hypothesis
4.3. Dataset
4.4. Ground Truth Formation
5. Findings and Discussion
In-Depth Within-Window Analysis on Denoising Capacity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Ground Truth Formation for Muscle Intervals
Algorithm A1 Muscle artefactual interval detection algorithm. |
|
Algorithm A2 Plausible muscle artefactual interval detection (ground truth formation). |
|
Appendix B. Comparisons of the SNR of Artefactual and Non-Artefactual Signals
Appendix C. Box-Plots of Jensen–Shannon Divergences for Subjects
Appendix D. Random Windows and Channels with Original and Denoised Signals in Artefactual Intervals
Appendix E. Random Windows and Channels with Original and Denoised Signals in Non-Artefactual Intervals
References
- Chen, X.; Xu, X.; Liu, A.; Lee, S.; Chen, X.; Zhang, X.; McKeown, M.J.; Wang, Z.J. Removal of muscle artifacts from the EEG: A review and recommendations. IEEE Sens. J. 2019, 19, 5353–5368. [Google Scholar] [CrossRef]
- Nolan, H.; Whelan, R.; Reilly, R.B. FASTER: Fully automated statistical thresholding for EEG artifact rejection. J. Neurosci. Methods 2010, 192, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Longo, L.; Reilly, R.B. onEEGwaveLAD: A fully automated online EEG wavelet-based Learning Adaptive Denoiser for artefacts identification and mitigation. PLoS ONE 2025, 20, e0313076. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaraswamy, S.D. High-frequency brain activity and muscle artifacts in MEG/EEG: A review and recommendations. Front. Hum. Neurosci. 2013, 7, 138. [Google Scholar] [CrossRef] [PubMed]
- Safieddine, D.; Kachenoura, A.; Albera, L.; Birot, G.; Karfoul, A.; Pasnicu, A.; Biraben, A.; Wendling, F.; Senhadji, L.; Merlet, I. Removal of muscle artifact from EEG data: Comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. EURASIP J. Adv. Signal Process. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Barthélemy, Q.; Mayaud, L.; Renard, Y.; Kim, D.; Kang, S.W.; Gunkelman, J.; Congedo, M. Online denoising of eye-blinks in electroencephalography. Neurophysiol. Clin. 2017, 47, 371–391. [Google Scholar] [CrossRef]
- McMenamin, B.W.; Shackman, A.J.; Maxwell, J.S.; Bachhuber, D.R.; Koppenhaver, A.M.; Greischar, L.L.; Davidson, R.J. Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG. Neuroimage 2010, 49, 2416–2432. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Jadhav, P.; Adapa, B.; Acharyya, A.; Naik, G.R. Online and automated reliable system design to remove blink and muscle artefact in EEG. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; IEEE: New York, NY, USA, 2015; pp. 6784–6787. [Google Scholar]
- Nicolaou, N.; Nasuto, S.J. Automatic artefact removal from event-related potentials via clustering. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2007, 48, 173–183. [Google Scholar] [CrossRef]
- Daly, I.; Scherer, R.; Billinger, M.; Müller-Putz, G. FORCe: Fully online and automated artifact removal for brain-computer interfacing. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 23, 725–736. [Google Scholar] [CrossRef]
- Schmoigl-Tonis, M.; Schranz, C.; Müller-Putz, G.R. Methods for motion artifact reduction in online brain-computer interface experiments: A systematic review. Front. Hum. Neurosci. 2023, 17, 1251690. [Google Scholar] [CrossRef]
- Dora, M.; Holcman, D. Adaptive single-channel EEG artifact removal with applications to clinical monitoring. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 286–295. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M. Minimax estimation via wavelet shrinkage. Ann. Stat. 1998, 26, 879–921. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M. Threshold selection for wavelet shrinkage of noisy data. In Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Baltimore, MD, USA, 3–6 November 1994; IEEE: New York, NY, USA, 1994; Volume 1, pp. A24–A25. [Google Scholar]
- Johnstone, I.M.; Silverman, B.W. Wavelet threshold estimators for data with correlated noise. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1997, 59, 319–351. [Google Scholar] [CrossRef]
- Bajaj, N.; Carrión, J.R.; Bellotti, F.; Berta, R.; De Gloria, A. Automatic and tunable algorithm for EEG artifact removal using wavelet decomposition with applications in predictive modeling during auditory tasks. Biomed. Signal Process. Control 2020, 55, 101624. [Google Scholar] [CrossRef]
- Shin, K.G.; Ramanathan, P. Real-time computing: A new discipline of computer science and engineering. Proc. IEEE 1994, 82, 6–24. [Google Scholar] [CrossRef]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef] [PubMed]
- Kobler, R.J.; Sburlea, A.I.; Lopes-Dias, C.; Schwarz, A.; Hirata, M.; Müller-Putz, G.R. Corneo-retinal-dipole and eyelid-related eye artifacts can be corrected offline and online in electroencephalographic and magnetoencephalographic signals. NeuroImage 2020, 218, 117000. [Google Scholar] [CrossRef]
- Mallat, S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Mallat, S.; Zhong, S. Characterization of signals from multiscale edges. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 710–732. [Google Scholar] [CrossRef]
- Al-Qazzaz, N.K.; Hamid Bin Mohd Ali, S.; Ahmad, S.A.; Islam, M.S.; Escudero, J. Selection of mother wavelet functions for multi-channel EEG signal analysis during a working memory task. Sensors 2015, 15, 29015–29035. [Google Scholar] [CrossRef]
- Gandhi, T.; Panigrahi, B.K.; Anand, S. A comparative study of wavelet families for EEG signal classification. Neurocomputing 2011, 74, 3051–3057. [Google Scholar] [CrossRef]
- Rafiee, J.; Tse, P.; Harifi, A.; Sadeghi, M. A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system. Expert Syst. Appl. 2009, 36, 4862–4875. [Google Scholar] [CrossRef]
- Dragotti, P.L.; Vetterli, M. Wavelet footprints: Theory, algorithms, and applications. IEEE Trans. Signal Process. 2003, 51, 1306–1323. [Google Scholar] [CrossRef]
- Chen, X.; Gupta, R.S.; Gupta, L. Exploiting the Cone of Influence for Improving the Performance of Wavelet Transform-Based Models for ERP/EEG Classification. Brain Sci. 2022, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Nobach, H.; Tropea, C.; Cordier, L.; Bonnet, J.P.; Delville, J.; Lewalle, J.; Farge, M.; Schneider, K.; Adrian, R. Review of some fundamentals of data processing. In Springer Handbooks; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1337–1398. [Google Scholar]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Lee, G.; Gommers, R.; Waselewski, F.; Wohlfahrt, K.; O’Leary, A. PyWavelets: A Python package for wavelet analysis. J. Open Source Softw. 2019, 4, 1237. [Google Scholar] [CrossRef]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [Google Scholar] [CrossRef]
- Murphy, R.B. On Tests for Outlying Observations; Princeton University: Princeton, NJ, USA, 1951. [Google Scholar]
- Windley, P.F. Trees, forests and rearranging. Comput. J. 1960, 3, 84–88. [Google Scholar] [CrossRef]
- Hariri, S.; Kind, M.C.; Brunner, R.J. Extended Isolation Forest. IEEE Trans. Knowl. Data Eng. 2021, 33, 1479–1489. [Google Scholar] [CrossRef]
- Young, R.K. Wavelet Theory and Its Applications; Springer Science & Business Media: New York, NY, USA, 2012; Volume 189. [Google Scholar]
- Yochum, M.; Binczak, S. A wavelet based method for electrical stimulation artifacts removal in electromyogram. Biomed. Signal Process. Control 2015, 22, 1–10. [Google Scholar] [CrossRef]
- Phadikar, S.; Sinha, N.; Ghosh, R.; Ghaderpour, E. Automatic muscle artifacts identification and removal from single-channel eeg using wavelet transform with meta-heuristically optimized non-local means filter. Sensors 2022, 22, 2948. [Google Scholar] [CrossRef]
- Atangana, R.; Tchiotsop, D.; Kenne, G.; Djoufack, L. Suitable mother wavelet selection for EEG signals analysis: Frequency bands decomposition and discriminative feature selection. Signal Image Process. Int. J. 2020, 11, 33–49. [Google Scholar] [CrossRef]
- Endres, D.M.; Schindelin, J.E. A new metric for probability distributions. IEEE Trans. Inf. Theory 2003, 49, 1858–1860. [Google Scholar] [CrossRef]
- Fuglede, B.; Topsoe, F. Jensen-Shannon divergence and Hilbert space embedding. In Proceedings of the International Symposium on Information Theory, ISIT 2004, Chicago, IL, USA, 27 June–3 July 2004; Proceedings. IEEE: New York, NY, USA, 2004; p. 31. [Google Scholar]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Kappenman, E.S.; Farrens, J.L.; Zhang, W.; Stewart, A.X.; Luck, S.J. ERP CORE: An open resource for human event-related potential research. NeuroImage 2021, 225, 117465. [Google Scholar] [CrossRef] [PubMed]
- Gasser, T.; Schuller, J.C.; Gasser, U.S. Correction of muscle artefacts in the EEG power spectrum. Clin. Neurophysiol. 2005, 116, 2044–2050. [Google Scholar] [CrossRef]
- Kilicarslan, A.; Grossman, R.G.; Contreras-Vidal, J.L. A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements. J. Neural Eng. 2016, 13, 026013. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.; Zhao, W.; Grau, A.; Xue, X.; Zhang, F. LTDNet-EEG: A Lightweight Network of Portable/Wearable Devices for Real-Time EEG Signal Denoising. IEEE Trans. Consum. Electron. 2024. [Google Scholar] [CrossRef]
- Miyakoshi, M. Artifact subspace reconstruction: A candidate for a dream solution for EEG studies, sleep or awake. Sleep 2023, 46, zsad241. [Google Scholar] [CrossRef]
- Blum, S.; Jacobsen, N.S.; Bleichner, M.G.; Debener, S. A Riemannian modification of artifact subspace reconstruction for EEG artifact handling. Front. Hum. Neurosci. 2019, 13, 141. [Google Scholar] [CrossRef]
Description | Parameter | Value |
---|---|---|
Real-time EEG window length | 1000 ms | |
Sampling rate | 1024 Hz | |
Mother wavelet | [db4, sym4] | |
IF sub-sampling size | 512 samples | |
Number of IF trees | 100 trees | |
Buffer capacity | 20 windows | |
Anomaly threshold | 0.55 | |
Expansion step | [0, 5] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longo, L.; Reilly, R. Instantiating the onEEGwaveLAD Framework for Real-Time Muscle Artefact Identification and Mitigation in EEG Signals. Sensors 2025, 25, 5018. https://doi.org/10.3390/s25165018
Longo L, Reilly R. Instantiating the onEEGwaveLAD Framework for Real-Time Muscle Artefact Identification and Mitigation in EEG Signals. Sensors. 2025; 25(16):5018. https://doi.org/10.3390/s25165018
Chicago/Turabian StyleLongo, Luca, and Richard Reilly. 2025. "Instantiating the onEEGwaveLAD Framework for Real-Time Muscle Artefact Identification and Mitigation in EEG Signals" Sensors 25, no. 16: 5018. https://doi.org/10.3390/s25165018
APA StyleLongo, L., & Reilly, R. (2025). Instantiating the onEEGwaveLAD Framework for Real-Time Muscle Artefact Identification and Mitigation in EEG Signals. Sensors, 25(16), 5018. https://doi.org/10.3390/s25165018