Improved U-Shaped Convolutional Neural Network with Convolutional Block Attention Module and Feature Fusion for Automated Segmentation of Fine Roots in Field Rhizotron Imagery
Abstract
1. Introduction
2. Materials and Methods
2.1. Image Acquisition and Annotation
2.2. Image Preprocessing and Data Augmentation
2.3. Proposed Larch Root Image Segmentation Model
2.3.1. Structure of Improved U-Net Architecture
2.3.2. Convolutional Block Attention Module (CBAM)
2.4. Model Training
2.4.1. Experimental Environment
2.4.2. Loss Function
2.5. Experimental Strategy
2.5.1. Ablation Study
2.5.2. Comparative Experiment
2.5.3. Transfer Learning Experiment
2.6. Model Performance Evaluation
2.7. Statistical Analysis
3. Results
3.1. Segmentation Performance of Improved U-Net in Ablation Study
3.2. Segmentation Performance on Different Methods in Comparative Experiment
3.3. Transfer Learning Validation
3.4. Fine Root Length
4. Discussion
4.1. Enhanced Segmentation Performance Through Architectural Optimization
4.2. Model Generalization Boost via Transfer Learning
4.3. Limitations and Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joslin, J.; Wolfe, M.; Hanson, P. Effects of Altered Water Regimes on Forest Root Systems. New Phytol. 2000, 147, 117–129. [Google Scholar] [CrossRef]
- Huo, C.; Gu, J.; Yu, L.; Wang, P.; Cheng, W. Temporal Dynamics of Fine Root Production, Mortality and Turnover Deviate across Branch Orders in a Larch Stand. Oecologia 2022, 199, 699–709. [Google Scholar] [CrossRef]
- Krasowski, M.J.; Lavigne, M.B.; Olesinski, J.; Bernier, P.Y. Advantages of Long-Term Measurement of Fine Root Demographics with a Minirhizotron Two Balsam Fir Sites. Can. J. For. Res. 2010, 40, 1128–1135. [Google Scholar] [CrossRef]
- Johnson, M.G.; Tingey, D.T.; Phillips, D.L.; Storm, M.J. Advancing Fine Root Research with Minirhizotrons. Environ. Exp. Bot. 2001, 45, 263–289. [Google Scholar] [CrossRef]
- Lei, L.; Yang, Q.; Yang, L.; Shen, T.; Wang, R.; Fu, C. Deep Learning Implementation of Image Segmentation in Agricultural Applications: A Comprehensive Review. Artif. Intell. Rev. 2024, 57, 149. [Google Scholar] [CrossRef]
- Lu, W.; Wang, X.; Jia, W. Root Hair Image Processing Based on Deep Learning and Prior Knowledge. Comput. Electron. Agric. 2022, 202, 107397. [Google Scholar] [CrossRef]
- Zeng, G.; Birchfield, S.T.; Wells, C.E. Automatic Discrimination of Fine Roots in Minirhizotron Images. New Phytol. 2008, 177, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Gaggion, N.; Ariel, F.; Daric, V.; Lambert, É.; Legendre, S.; Roulé, T.; Camoirano, A.; Milone, D.H.; Crespi, M.; Blein, T.; et al. ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture. Gigascience 2021, 10, giab052. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.G.; Petersen, J.; Selvan, R.; Rasmussen, C.R. Segmentation of Roots in Soil with U-Net. Plant Methods 2020, 16, 13. [Google Scholar] [CrossRef]
- Xu, X.; Qiu, J.; Zhang, W.; Zhou, Z.; Kang, Y. Soybean Seedling Root Segmentation Using Improved U-Net Network. Sensors 2022, 22, 8904. [Google Scholar] [CrossRef]
- Wang, T.; Rostamza, M.; Song, Z.; Wang, L.; McNickle, G.; Iyer-Pascuzzi, A.S.; Qiu, Z.; Jin, J. SegRoot: A High Throughput Segmentation Method for Root Image Analysis. Comput. Electron. Agric. 2019, 162, 845–854. [Google Scholar] [CrossRef]
- Tang, H.; Cheng, X.; Yu, Q.; Zhang, J.; Wang, N.; Liu, L. Improved Transformer for Time Series Senescence Root Recognition. Plant Phenomics 2024, 6, 0159. [Google Scholar] [CrossRef]
- Weihs, B.J.; Heuschele, D.-J.; Tang, Z.; York, L.M.; Zhang, Z.; Xu, Z. The State of the Art in Root System Architecture Image Analysis Using Artificial Intelligence: A Review. Plant Phenomics 2024, 6, 0178. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, J.; Tang, H.; Zhang, J.; Zhang, W.; Liu, L.; Wang, N. Application of Improved UNet and EnglightenGAN for Segmentation and Reconstruction of In Situ Roots. Plant Phenomics 2023, 5, 0066. [Google Scholar] [CrossRef]
- Smith, A.G.; Han, E.; Petersen, J.; Olsen, N.A.F.; Giese, C.; Athmann, M.; Dresboll, D.B.; Thorup-Kristensen, K. RootPainter: Deep learning segmentation of biological images with corrective annotation. New Phytol. 2022, 236, 774–791. [Google Scholar] [CrossRef]
- Dadi, M.; Lumini, A.; Franco, A. RootEx: An Automated Method for Barley Root System Extraction and Evaluation. Comput. Electron. Agric. 2025, 230, 110030. [Google Scholar] [CrossRef]
- Woo, D.; Ghimire, A.; Jeong, S.; Kim, Y. Soybean Root Image Dataset and Its Deep Learning Application for Nodule Segmentation. Comput. Electron. Agric. 2023, 215, 108465. [Google Scholar] [CrossRef]
- Xu, W.; Yu, G.; Cui, Y.; Gloaguen, R.; Zare, A.; Bonnette, J.; Reyes-Cabrera, J.; Rajurkar, A.; Rowland, D.; Matamala, R.; et al. PRMI: A Dataset of Minirhizotron Images for Diverse Plant Root Study. arXiv 2022, arXiv:2201.08002. [Google Scholar]
- Huo, C.; Cheng, W. Improved Root Turnover Assessment Using Field Scanning Rhizotrons with Branch Order Analysis. Ecosphere 2019, 10, e02793. [Google Scholar] [CrossRef]
- Zhao, J.L.; Wang, J.; Qian, H.M.; Zhan, Y.Y.; Lei, Y. Extraction of Winter-Wheat Planting Areas Using a Combination of U-Net and CBAM. Agronomy 2022, 12, 2965. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Liu, Q.J.; Wang, Y.H. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 3–19. ISBN 978-3-030-01233-5. [Google Scholar]
- Kervadec, H.; Bouchtiba, J.; Desrosiers, C.; Granger, E.; Dolz, J.; Ben Ayed, I. Boundary loss for highly unbalanced segmentation. In Proceedings of the 2nd International Conference on Medical Imaging with Deep Learning (MIDL), Imperial Coll, S Kensington Campus, London, UK, 8–10 July 2019; pp. 285–296. [Google Scholar]
- Abraham, N.; Khan, N.M.; IEEE. A Novel Focal Tversky Loss Function with Improved Attention U-Net For Lesion Segmentation. In Proceedings of the 16th IEEE International Symposium on Biomedical Imaging (ISBI), Venice, Italy, 8–11 April 2019; pp. 683–687. [Google Scholar]
- Yu, C.; Li, D.; Song, M.; Yu, H.; Chang Chein, I. Edge-perception Enhanced Segmentation Method for High-Resolution Remote Sensing Image. Natl. Remote Sens. Bull. 2024, 28, 3249–3260. [Google Scholar] [CrossRef]
- Thesma, V.; Mohammadpour Velni, J. Plant Root Phenotyping Using Deep Conditional GANs and Binary Semantic Segmentation. Sensors 2023, 23, 309. [Google Scholar] [CrossRef]
- Bodner, G.; Alsalem, M.; Nakhforoosh, A.; Arnold, T.; Leitner, D. RGB and Spectral Root Imaging for Plant Phenotyping and Physiological Research: Experimental Setup and Imaging Protocols. J. Vis. Exp. 2017, 126, 56251. [Google Scholar] [CrossRef]
- Mumuni, A.; Mumuni, F. Automated Data Processing and Feature Engineering for Deep Learning and Big Data Applications: A Survey. J. Inf. Intell. 2025, 3, 113–153. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, X.; Guo, G.; Zhu, X.; Shi, J.; Zhang, N.; Ding, S.; Tang, N.; Qu, Y.; Sun, Z.; et al. An Automated Root Phenotype Platform Enables Nondestructive High-Throughput Root System Architecture Dissection in Wheat. Plant Physiol. 2025, 198. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, C.; Xiao, X.; Xia, S. Towards a category-extended object detector with limited data. Pattern Recognit. 2022, 132, 108943. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 833–851. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Zhu, S.L.; Zhang, W.J.; Yang, T.L.; Wu, F.; Jiang, Y.H.; Yang, G.S.; Zain, M.; Zhao, Y.Y.; Yao, Z.S.; Liu, T.; et al. Combining 2D Image and Point Cloud Deep Learning to Predict Wheat above Ground Biomass. Precis. Agric. 2024, 25, 3139–3166. [Google Scholar] [CrossRef]
- Luo, H.; Liu, X.; Wei, X.; Wu, J.; Yu, Y.; Lu, W. Extracting and Predicting Tomato Root Length Phenotype Using Thz Imaging and Ensemble Learning. Trans. Chin. Soc. Agric. Eng. 2024, 40, 176–183. [Google Scholar]
- Yu, Q.S.; Zhang, M.; Wang, L.L.; Liu, X.Y.; Zhu, L.X.; Liu, L.T.; Wang, N. Research on Fine-Grained Phenotypic Analysis of Temporal Root Systems—Improved YoloV8seg Applied for Fine-Grained Analysis of In Situ Root Temporal Phenotypes. Adv. Sci. 2025, 12, e2408144. [Google Scholar] [CrossRef]
Data Category | Single-Species Dataset | Mixed-Species Dataset | ||||
---|---|---|---|---|---|---|
Larch | Cotton | Peanut | Sesame | Papaya | Sunflower | |
Resolution/pixel | 512 × 512 | 736 × 552 | 736 × 552 | 640 × 480 | 640 × 480 | 640 × 480 |
Training set/sample number | 1377 | 1271 | 282 | 10,087 | 1438 | 2211 |
Validation set/sample number | 393 | 564 | 131 | 3413 | 318 | 722 |
Test set/sample number | 198 | 577 | 133 | 3542 | 404 | 967 |
Configuration | Description |
---|---|
Conv2 + Concat | Original U-Net: Dual convolutions followed by encoder–decoder concatenation |
Conv2 + UpAdd | Dual convolutions + element-wise addition of encoder–decoder features |
SE + Conv2 + Concat | SE attention after dual convolutions + concatenation |
SE + Conv2 + UpAdd | SE attention after dual convolutions and concatenation + element-wise addition + concatenation |
CBAM + Conv2 + Concat | CBAM attention after dual convolutions + concatenation |
CBAM + Conv2 + UpAdd | CBAM attention after dual convolutions and concatenation + element-wise addition + concatenation |
Metrics | Conv2 + Concat (Original U-Net) | Conv2 + SE + Concat | Conv2 + CBAM + Concat | Conv2 + UpAdd | Conv2 + SE + UpAdd | Conv2 + CBAM + UpAdd (Improved U-Net) |
---|---|---|---|---|---|---|
R IoU/% | 28.85 | 41.33 | 40.05 | 42.08 | 37.23 | 42.66 |
B IoU/% | 96.43 | 97.59 | 97.62 | 97.65 | 97.92 | 97.70 |
mIoU/% | 62.64 | 69.46 | 68.84 | 69.87 | 67.57 | 70.18 |
R Recall/% | 67.95 | 74.23 | 73.63 | 73.66 | 65.64 | 75.18 |
B Recall/% | 97.20 | 98.11 | 98.18 | 98.26 | 98.43 | 98.24 |
mRecall/% | 82.57 | 86.17 | 85.90 | 85.96 | 82.03 | 86.72 |
R Precision/% | 36.53 | 50.65 | 49.58 | 52.85 | 45.68 | 52.35 |
B Precision/% | 99.18 | 99.46 | 99.42 | 99.36 | 99.47 | 99.43 |
mPrecision/% | 67.85 | 75.05 | 74.50 | 76.11 | 72.58 | 75.89 |
R F1/% | 43.40 | 57.33 | 56.05 | 58.04 | 51.25 | 58.71 |
B F1/% | 98.16 | 98.77 | 98.79 | 98.80 | 98.94 | 98.83 |
Metrics | Conv2 + CBAM + Add | PSPNet | SegNet | DeepLabV3+ |
---|---|---|---|---|
R IoU/% | 42.66 | 15.83 | 14.76 | 16.10 |
B IoU/% | 97.70 | 97.30 | 97.68 | 97.73 |
mIoU/% | 70.18 | 56.57 | 56.22 | 56.91 |
R Recall/% | 75.18 | 19.78 | 17.70 | 18.44 |
B Recall/% | 98.24 | 99.62 | 99.77 | 99.89 |
mRecall/% | 86.72 | 59.70 | 58.73 | 59.16 |
R Precision/% | 52.35 | 60.88 | 57.00 | 71.88 |
B Precision/% | 99.43 | 97.66 | 97.91 | 97.84 |
mPrecision/% | 75.89 | 79.27 | 77.45 | 84.86 |
R F1/% | 58.71 | 25.28 | 23.94 | 25.91 |
B F1/% | 98.83 | 98.62 | 98.82 | 98.84 |
Metrics | U-Net Plain Training | U-Net Transfer Learning | Improved U-NetPlain Training | Improved U-Net Transfer Learning |
---|---|---|---|---|
R IoU/% | 59.92 | 58.50 | 60.01 | 60.29 |
B IoU/% | 97.99 | 97.90 | 98.00 | 98.01 |
mIoU/% | 78.95 | 78.20 | 79.01 | 79.15 |
R Recall/% | 79.29 | 77.76 | 79.23 | 78.91 |
B Recall/% | 98.63 | 98.58 | 98.64 | 98.65 |
mRecall/% | 88.96 | 88.17 | 88.94 | 88.78 |
R Precision/% | 68.76 | 68.28 | 69.12 | 69.53 |
B Precision/% | 99.32 | 99.28 | 99.33 | 99.33 |
mPrecision/% | 84.04 | 83.77 | 84.23 | 84.43 |
R F1/% | 71.97 | 70.74 | 72.02 | 72.27 |
B F1/% | 98.97 | 98.92 | 98.98 | 98.98 |
Image | Manual Line–Intersect (mm) | Improved U-Net Segmentation (px) | ||||||
---|---|---|---|---|---|---|---|---|
Order_1 | Order_2 | Order_3 | Total_Length | Order_1 | Order_2 | Order_3 | Total_Length | |
1 | 603 | 454 | 186 | 1242 | 1780 | 380 | 2345 | 4505 |
2 | 401 | 395 | 186 | 1981 | 618 | 149 | 1390 | 2157 |
3 | 227 | 276 | 198 | 1701 | 1176 | 357 | 2956 | 4489 |
4 | 290 | 271 | 303 | 1864 | 1849 | 677 | 2735 | 5261 |
5 | 266 | 295 | 303 | 2064 | 2454 | 922 | 2825 | 6201 |
6 | 181 | 238 | 303 | 2722 | 1516 | 501 | 2982 | 4999 |
7 | 224 | 198 | 303 | 2825 | 1322 | 406 | 2678 | 4406 |
8 | 781 | 2048 | 873 | 3746 | 2011 | 578 | 4476 | 7171 |
9 | 567 | 2306 | 752 | 3942 | 1631 | 316 | 4723 | 6679 |
10 | 584 | 2308 | 749 | 3954 | 1945 | 476 | 6205 | 8793 |
Correlation between manual line–intersect and improved U-net segmentation using root length | ||||||||
Pearson’s r | r2 | p-value | ||||||
Total root length | 0.715 | 0.512 | 0.020 | |||||
First-order root | 0.270 | 0.073 | 0.450 | |||||
Second-order root | 0.106 | 0.011 | 0.771 | |||||
Third-order root | 0.880 | 0.773 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lu, F.; Huo, C. Improved U-Shaped Convolutional Neural Network with Convolutional Block Attention Module and Feature Fusion for Automated Segmentation of Fine Roots in Field Rhizotron Imagery. Sensors 2025, 25, 4956. https://doi.org/10.3390/s25164956
Wang Y, Lu F, Huo C. Improved U-Shaped Convolutional Neural Network with Convolutional Block Attention Module and Feature Fusion for Automated Segmentation of Fine Roots in Field Rhizotron Imagery. Sensors. 2025; 25(16):4956. https://doi.org/10.3390/s25164956
Chicago/Turabian StyleWang, Yufan, Fuhao Lu, and Changfu Huo. 2025. "Improved U-Shaped Convolutional Neural Network with Convolutional Block Attention Module and Feature Fusion for Automated Segmentation of Fine Roots in Field Rhizotron Imagery" Sensors 25, no. 16: 4956. https://doi.org/10.3390/s25164956
APA StyleWang, Y., Lu, F., & Huo, C. (2025). Improved U-Shaped Convolutional Neural Network with Convolutional Block Attention Module and Feature Fusion for Automated Segmentation of Fine Roots in Field Rhizotron Imagery. Sensors, 25(16), 4956. https://doi.org/10.3390/s25164956