Implementation of SLAM-Based Online Mapping and Autonomous Trajectory Execution in Software and Hardware on the Research Platform Nimbulus-e
Abstract
1. Introduction
2. Materials and Methods
2.1. Systems Engineering-Based Target Setting
- Development of a suitable vehicle underbody architecture including actuators supporting the agility objective,
- Development of a method for a real time mapping of the environment during operation including selection of suitable sensors,
- Development of a method for generating and optimizing the trajectory based on the environmental map,
- Open-loop autonomous control of the vehicle within a known static environment.
2.2. Vehicle Architecture
2.2.1. Suspension Design
2.2.2. Body Structure
2.2.3. Electrical Architecture
3. Kinematical Model
4. Mapping and Path Planning
4.1. Map Generation Using SLAM
4.2. Path Planning and Optimization
5. Results
5.1. Simulation with ADAMS CAR
5.2. Autonomous Vehicle Control
6. Discussion and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruckelshausen, A.; Linz, A. Verbundprojekt: Entwicklung Eines Autonomen Plantagen-Pflege-Roboters Mit Elektrischen Antrieben Unter Besonderer Berücksichtigung der Zeitgemäßen Pflanzenschutzmittel-Applikation im Obst- und Weinbau-elWObot-Teilprojekt 3: Sensorsysteme und Fahrzeugmanagement:Abschlussbericht:Berichtszeitraum: 01.05.2012–30.11.2016; Hochschule Osnabrück: Osnabrück, Germany, 2017. [Google Scholar] [CrossRef]
- Fehrmann, J. Autonomer Plantagen-Pflegeroboter für den Obst- und Weinbau. ATZ Offhighw. 2015, 8, 32–43. [Google Scholar] [CrossRef]
- Raikwar, S. Development of Autonomous Robotic Platform for Orchard and Vineyard Operations, 1st ed.; 2024 ed.; Fortschritte Naturstofftechnik; Springer Nature: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Dittmar, T.; Woopen, T.; van Kempen, R.; Lampe, B.; Leuffen, M.; Böddeker, T.; Westerkamp, P.; Kampmann, A.; Mokhtarian, A.; Alrifaee, B.; et al. UNICARagil—Disruptive Modulare Architektur für Automatisierte Agile Fahrzeugkonzepte: Sachbericht zum Teilvorhaben: Förderprogramm: Rahmenprogramm der Bundesregierung für Forschung und Innovation 2016–2020 “Mikroelektronik aus Deutschland—Innovationstreiber der Digitalisierung”: Teilvorhaben: Konzeptionierung und Umsetzung des Automatisierten autoSHUTTLEs:Laufzeit: 01.02.2018 bis 31.05.2023 (64 Monate), v. 1.0 ed.; RWTH Aachen Institut für Kraftfahrzeuge Lehrstuhl Informatik 11—Embedded Software: Aachen, Germany, 2023. [Google Scholar] [CrossRef]
- van Kempen, R.; Woopen, T.; Eckstein, L. UNICARagil: Agile Development of Self-Driving Vehicles; Universitätsbibliothek der RWTH Aachen: Aachen, Germany, 2021. [Google Scholar] [CrossRef]
- Homolla, T.; Winner, H. Encapsulated trajectory tracking control for autonomous vehicles. Automot. Engine Technol. 2022, 7, 295–306. [Google Scholar] [CrossRef]
- Kraus, M. Verschmelzung von Antrieb und Fahrwerk für einen People Mover. Automob. Z. 2018, 120, 48–53. [Google Scholar] [CrossRef]
- Kraus, M.; Harkort, C.; Wuebbolt-Gorbatenko, B. A solution for future urban mobility: The Schaeffler mover—The fusion of chassis and drive. In 10th International Munich Chassis Symposium 2019; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Zoox, Inc. It’s Not a Car. It’s a Robotaxi Designed Around You. 2025. Available online: https://zoox.com/ (accessed on 27 July 2025).
- Naïo Technologies. TED Robot—Autonomous Vineyard Straddler. 2025. Available online: https://www.naio-technologies.com/en/ted-robot/ (accessed on 27 July 2025).
- Rinspeed AG. Snap—Concept Car. 2018. Available online: https://www.rinspeed.com/en/Snap_48_concept-car.html (accessed on 27 July 2025).
- Vitibot. Bakus—Electric Vineyard Straddle Robot. 2025. Available online: https://vitibot.fr/vineyards-robots-bakus/?lang=en (accessed on 27 July 2025).
- Yanmar Europe B.V. Agrarroboter ”Smash“ Läuft Schon im Testbetrieb: Autonom und Vollelektrisch in Sonderkulturen. 2020. Available online: https://www.eilbote-online.com/artikel/yanmar-agrarroboter-smash-laeuft-schon-im-testbetrieb-37261 (accessed on 27 July 2025).
- Maurer, M.; Winner, H. (Eds.) Automotive Systems Engineering, aufl. 2013 ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Graessler, I.; Hentze, J.; Bruckmann, T. V-Models for Interdisciplinary Systems Engineering; The Design Society: Copenhagen, Denmark, 2018; pp. 747–756. [Google Scholar] [CrossRef]
- Schmitz, T. Chassis concept of the individually steerable five-link suspension: A novel approach to maximize the road wheel angle to improve vehicle agility. Automot. Engine Technol. 2024, 9, 5. [Google Scholar] [CrossRef]
- Flipsky. FSESC 4.12 50A Based on VESC® 4.12 With/Without Aluminum Case: Technical Documentation. Available online: https://cdn.shopify.com/s/files/1/0011/4039/1996/files/FSESC_4.12_50A_MANUAL_20181106.pdf.pdf?14152829648107869006 (accessed on 27 July 2025).
- Hiller, M.; Schmitz, T. Kinematics and dynamics of the combined legged and wheeled vehicle ‘RoboTRAC’. In Proceedings of the CSME Mechanical Engineering Forum, Toronto, ON, Canada, 3–9 June 1990; pp. 387–392. [Google Scholar]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2017, 32, 1309–1332. [Google Scholar] [CrossRef]
- Stachniss, C. Robotic Mapping and Exploration; Springer Science & Business Media: New York, NY, USA, 2009; Volume 55. [Google Scholar] [CrossRef]
- Peng, G.; Lam, T.L.; Hu, C.; Yao, Y.; Liu, J.; Yang, F. (Eds.) Introduction to Intelligent Robot System Design; Springer Nature: Singapore, 2023. [Google Scholar] [CrossRef]
- Qiao, J.; Guo, J.; Li, Y. Simultaneous localization and mapping (SLAM)-based robot localization and navigation algorithm. Appl. Water Sci. 2024, 14, 151. [Google Scholar] [CrossRef]
- Hertzberg, J.; Lingemann, K.; Nüchter, A. Mobile Roboter: Eine Einführung aus Sicht der Informatik; eXamen.press; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Malik, S. Lidar SLAM: The Ultimate Guide to Simultaneous Localization and Mapping. 2023. Available online: https://www.wevolver.com/article/lidar-slam (accessed on 27 July 2025).
- Smith, R.C.; Cheeseman, P. On the representation and estimation of spatial uncertainty. Int. J. Robot. Res. 1986, 5, 56–68. [Google Scholar] [CrossRef]
- Macario Barros, A.; Michel, M.; Moline, Y.; Corre, G.; Carrel, F. A comprehensive survey of visual slam algorithms. Robotics 2022, 11, 24. [Google Scholar] [CrossRef]
- Wang, H.; Lou, S.; Jing, J.; Wang, Y.; Liu, W.; Liu, T. The EBS-A* algorithm: An improved A* algorithm for path planning. PLoS ONE 2022, 17, e0263841. [Google Scholar] [CrossRef] [PubMed]
- Bill Triggs. Motion Planning for Nonholonomic Vehicles: An Introduction; Inria: Grenoble, France, 1993. [Google Scholar]
- Petereit, J.; Emter, T.; Frey, C.W.; Kopfstedt, T.; Beutel, A. Application of Hybrid A* to an Autonomous Mobile Robot for Path Planning in Unstructured Outdoor Environments. In Proceedings of the ROBOTIK 2012; 7th German Conference on Robotics, Munich, Germany, 21–22 May 2012; pp. 1–6. [Google Scholar]
- Premakumar, P. A* (A Star) Search for Path Planning Tutorial. MATLAB Central. 2025. Available online: https://www.mathworks.com/matlabcentral/fileexchange/26248-a-a-star-search-for-path-planning-tutorial (accessed on 27 July 2025).
- Moreira, L.G.; Brandão, A.S. SLAM-Based 2D Mapping and Route Planning for Autonomous Mobile Robot Navigation. In Proceedings of the 2025 Brazilian Conference on Robotics (CROS), Belo Horizonte, Brazil, 28–30 April 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Kuiper, E.; van Oosten, J.J.M. The PAC2002 advanced handling tire model. Veh. Syst. Dyn. 2007, 45, 153–167. [Google Scholar] [CrossRef]
Navigation Toolbox | LiDAR Toolbox | Poses from Odometry | |||
---|---|---|---|---|---|
With Poses | Without Poses | With Poses | Without Poses | ||
RMSE | 0.0453 | 0.0856 | 0.3692 | 0.2400 | 0.3648 |
CPU usage [%] | 12.03 | 11.94 | 10.58 | 12.70 | |
Duration [s] | 40.77 | 52.18 | 40.11 | 41.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitz, T.; Mayer, M.; Nonnenmacher, T.; Schmitz, M. Implementation of SLAM-Based Online Mapping and Autonomous Trajectory Execution in Software and Hardware on the Research Platform Nimbulus-e. Sensors 2025, 25, 4830. https://doi.org/10.3390/s25154830
Schmitz T, Mayer M, Nonnenmacher T, Schmitz M. Implementation of SLAM-Based Online Mapping and Autonomous Trajectory Execution in Software and Hardware on the Research Platform Nimbulus-e. Sensors. 2025; 25(15):4830. https://doi.org/10.3390/s25154830
Chicago/Turabian StyleSchmitz, Thomas, Marcel Mayer, Theo Nonnenmacher, and Matthias Schmitz. 2025. "Implementation of SLAM-Based Online Mapping and Autonomous Trajectory Execution in Software and Hardware on the Research Platform Nimbulus-e" Sensors 25, no. 15: 4830. https://doi.org/10.3390/s25154830
APA StyleSchmitz, T., Mayer, M., Nonnenmacher, T., & Schmitz, M. (2025). Implementation of SLAM-Based Online Mapping and Autonomous Trajectory Execution in Software and Hardware on the Research Platform Nimbulus-e. Sensors, 25(15), 4830. https://doi.org/10.3390/s25154830