The Effectiveness of Virtual Reality in Improving Balance and Gait in People with Parkinson’s Disease: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Research Question and Study Selection
2.3. Types of Outcome Measures
2.4. Study Selection and Data Extraction
2.5. Eligibility Criteria
2.6. Methodological Quality Assessment and Risk of Bias
2.7. Data Synthesis and Analysis
2.8. Certainty of Evidence Assessment
3. Results
3.1. Study Selection Process
3.2. Methodological Quality of Included Studies
3.3. Characteristics of Studies Using VR-Only Interventions
3.4. Characteristics of Studies Combining VR and Conventional Physiotherapy
3.5. Types of Virtual Reality and Devices Used
3.6. Primary Outcomes: VR-Only Interventions
3.7. Primary Outcomes: Combined VR and Physiotherapy Interventions
3.8. Secondary Outcomes: VR-Only Interventions
3.9. Secondary Outcomes: Combined Interventions
3.10. Certainty of the Evidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
- (1)
- “Parkinson’s Disease [MeSH Terms]”;
- (2)
- “((Parkinson Disease [Title/Abstract]) OR (PD[Title/Abstract])) OR (Parkinsonian [Title/Abstract])”;
- (3)
- “#1 OR #2”;
- (4)
- “(Physical Therapy Modalities [MeSH Terms]) OR (Exercise Therapy [MeSH Terms])”;
- (5)
- “((((((((((((Physical therapy[Title/Abstract]) OR (Physical therapy modalit*[Title/Abstract])) OR (Physical therapy technique*[Title/Abstract])) OR (Physiotherapy[Title/Abstract])) OR (physiotherapy modalit*[Title/Abstract])) OR (physiotherapy technique*[Title/Abstract])) OR (rehabilitation[Title/Abstract])) OR (rehabilitation modalit*[Title/Abstract])) OR (rehabilitation technique*[Title/Abstract])) OR (rehabilitation exercise*[Title/Abstract]))) OR (exercise therap*[Title/Abstract])) OR (remedial exercise*[Title/Abstract])”;
- (6)
- “#4 OR #5”;
- (7)
- “Virtual Reality [MeSH Terms]”;
- (8)
- “(((((((((VR[Title/Abstract]) OR (Immersive virtual reality[Title/Abstract])) OR (Non-immersive virtual reality[Title/Abstract])) OR (Virtual environments[Title/Abstract])) OR (Virtual simulation[Title/Abstract])) OR (3D virtual environment[Title/Abstract])) OR (Immersive technology[Title/Abstract]))) OR (exergam*[Title/Abstract])) OR (serious games[Title/Abstract])”;
- (9)
- “#7 OR #8”;
- (10)
- “#6 AND #10”;
- (11)
- “(Postural Balance [MeSH Terms]) OR (Postural Control [MeSH Terms])”;
- (12)
- “(((((((Postural stability [Title/Abstract]) OR (Dynamic balance [Title/Abstract])) OR (Static balance [Title/Abstract])) OR (Balance ability [Title/Abstract])) OR (Balance performance [Title/Abstract])) OR (Balance control [Title/Abstract])) OR (Balance function [Title/Abstract])) OR (Motor control [Title/Abstract])”;
- (13)
- “#11 OR #12”;
- (14)
- “(Gait [MeSH Terms]) OR (walking [MeSH Terms])”;
- (15)
- “(((((Ambulation [Title/Abstract]) OR (Gait performance [Title/Abstract])) OR (Gait pattern [Title/Abstract])) OR (Gait function [Title/Abstract])) OR (Gait speed [Title/Abstract])) OR (Walking pattern [Title/Abstract])”;
- (16)
- “#14 OR #15”;
- (17)
- “#13 OR #16”;
- (18)
- “#3 AND #10 AND #17”.
- (1)
- “((TS=(Parkinson Disease)) OR TS=(PD)) OR TS=(Parkinsonian)”;
- (2)
- “(((((((((((TS=(Physical therapy)) OR TS=(Physical therapy modalit*)) OR TS=(Physical therapy technique*)) OR TS=(Physiotherapy)) OR TS=(physiotherapy modalit*)) OR TS=(physiotherapy technique*)) OR TS=(rehabilitation)) OR TS=(rehabilitation mo-dalit*)) OR TS=(rehabilitation technique*)) OR TS=(rehabilitation exercise*)) OR TS=(exercise therap*)) OR TS=(remedial exercise*)”;
- (3)
- “(((((((((((TS=(VR)) OR TS=(Immersive virtual reality)) OR TS=(Non-immersive virtual reality)) OR TS=(Virtual environments)) OR TS=(Virtual simulation)) OR TS=(3D virtual environment)) OR TS=(Immersive technology)) OR TS=(exergam*)) OR TS=(serious games)) OR TS=(kinect)) OR TS=(Wii)) OR TS=(X-box)”;
- (4)
- “#2 AND #3”;
- (5)
- “(((((((TS=(Postural stability)) OR TS=(Dynamic balance)) OR TS=(Static balance)) OR TS=(Balance ability)) OR TS=(Balance performance)) OR TS=(Balance control)) OR TS=(Balance function)) OR TS=(Motor control)”;
- (6)
- “((((TS=(Ambulation)) OR TS=(Gait performance)) OR TS=(Gait pattern)) OR TS=(Gait function)) OR TS=(Gait speed)”;
- (7)
- “#5 OR #6”;
- (8)
- “#1 AND #4 AND #7”.
References
- Santos, G.F.; Silva, G.Q.N.; Moreira, D.R.; Vergutz, B.G.; Carvalho, J.P.M.; Pessoa, J.P.A.; Paz do Nascimento, V.; Filardi Tafuri, N. Doença de Parkinson: Padrão epidemiológico de internações no Brasil. Res. Soc. Dev. 2022, 11, e13511124535. [Google Scholar] [CrossRef]
- Silva, J.; Pedro, T.; Fernandes, N.; Poças, I.M. Impacto da doença de Parkinson na visão: Uma revisão de âmbito. Saúde Tecnol. 2023, 28, 28–35. [Google Scholar] [CrossRef]
- Hussain, F.; Farooqui, S.; Khan, A.A.; Khan, M.U.; Khan, M.A.; Hasan, A. Effects of nonimmersive virtual reality using Wii-Fit exercises on balance and cognition in Parkinson disease: A meta-analysis. Medicine 2024, 103, e38940. [Google Scholar] [CrossRef]
- Park, C.; Lee, B.-C. A systematic review of the effects of interactive telerehabilitation with remote monitoring and guidance on balance and gait performance in older adults and individuals with neurological conditions. Bioengineering 2024, 11, 460. [Google Scholar] [CrossRef]
- Ezequiel, D.J.S.; Viana, J.V.A.; Ribeiro, N.M.D.S. Efeitos da utilização da realidade virtual na marcha e no equilíbrio de indivíduos com doença de Parkinson: Uma revisão sistemática. Rev. Ciênc. Méd. Biol. 2019, 18, 402. [Google Scholar] [CrossRef]
- Wu, Q.; Qiu, M.; Liu, X.; He, W.; Yang, T.; Jia, C. The role of virtual reality on Parkinson’s disease management: A bibliometric and content analysis. Sensors 2025, 25, 1432. [Google Scholar] [CrossRef]
- Luz, G.T.; Lima, I.P.S.; Santos, R.F.; Santos, W.R.; Santos, W.R. Efeitos da realidade virtual no equilíbrio e marcha de indivíduos com doença de Parkinson: Uma revisão sistemática. Arq. Mov. 2021, 17, 372–390. [Google Scholar]
- Navarro-Lozano, F.; Kiper, P.; Carmona-Pérez, C.; Rutkowski, S.; Pinero-Pinto, E.; Luque-Moreno, C. Effects of non-immersive virtual reality and video games on walking speed in Parkinson disease: A systematic review and meta-analysis. J. Clin. Med. 2022, 11, 6610. [Google Scholar] [CrossRef]
- Mylius, V.; Zenev, E.; Brook, C.S.; Brugger, F.; Maetzler, W.; Gonzenbach, R.; Paraschiv-Ionescu, A. Imbalance and falls in patients with Parkinson’s disease: Causes and recent developments in training and sensor-based assessment. Brain Sci. 2024, 14, 625. [Google Scholar] [CrossRef]
- Lei, C.; Sunzi, K.; Dai, F.; Liu, X.; Wang, Y.; Zhang, B.; He, L.; Ju, M.; Cikajlo, I. Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson’s disease: A systematic review. PLoS ONE 2019, 14, e0224819. [Google Scholar] [CrossRef]
- Oliveira, B.; Fernandes, S.; Sacadura, S.; Rakasi, C.; Furtado, I.; Figueiredo, J.; Gonçalves, R.; Martins, A. The Effectiveness of Virtual Reality in Improving Balance and Gait in Persons with Parkinson’s Disease: A Systematic Review. PROSPERO 2025 CRD420251106766. Available online: https://www.crd.york.ac.uk/PROSPERO/view/CRD420251106766 (accessed on 24 July 2025).
- Feng, H.; Li, C.; Liu, J.; Wang, L.; Ma, J.; Li, G.; Gan, L.; Shang, X.; Wu, Z. Virtual reality rehabilitation versus conventional physical therapy for improving balance and gait in Parkinson’s disease patients: A randomized controlled trial. Med Sci. Monit. 2019, 25, 4186–4192. [Google Scholar] [CrossRef]
- Pazzaglia, C.; Imbimbo, I.; Tranchita, E.; Minganti, C.; Ricciardi, D.; Lo Monaco, R.; Parisi, A.; Padua, L. Comparison of virtual reality rehabilitation and conventional rehabilitation in Parkinson’s disease: A randomised controlled trial. Physiotherapy 2020, 106, 36–42. [Google Scholar] [CrossRef]
- Pullia, M.; Ciatto, L.; Andronaco, G.; Donato, C.; Aliotta, R.E.; Quartarone, A.; De Cola, M.C.; Bonanno, M.; Calabrò, R.S.; Cellini, R. Treadmill training plus semi-immersive virtual reality in Parkinson’s disease: Results from a pilot study. Brain Sci. 2023, 13, 1312. [Google Scholar] [CrossRef]
- Kashif, M.; Albalwi, A.A.; Zulfiqar, A.; Bashir, K.; Alharbi, A.A.; Zaidi, S. Effects of virtual reality versus motor imagery versus routine physical therapy in patients with Parkinson’s disease: A randomized controlled trial. BMC Geriatr. 2024, 24, 229. [Google Scholar] [CrossRef]
- Da Silva, K.G.; Nuvolini, R.A.; Bacha, J.M.R.; De Freitas, T.B.; Doná, F.; Torriani-Pasin, C.; Pompeu, J.E. Comparison of the effects of an exergame-based program with conventional physiotherapy protocol based on core areas of the European guideline on postural control, functional mobility, and quality of life in patients with Parkinson’s disease: Randomized clinical trial. Games Health J. 2023, 12, 228–241. [Google Scholar] [CrossRef]
- Maranesi, E.; Casoni, E.; Baldoni, R.; Barboni, I.; Rinaldi, N.; Tramontana, B.; Amabili, G.; Benadduci, M.; Barbarossa, F.; Luzi, R.; et al. The effect of non-immersive virtual reality exergames versus traditional physiotherapy in Parkinson’s disease older patients: Preliminary results from a randomized-controlled trial. Int. J. Environ. Res. Public Health 2022, 19, 14818. [Google Scholar] [CrossRef]
- Schuch, C.P.; Balbinot, G.; Bonilla, M.N.; Machado, A.G.; de Oliveira, A.A. Feasibility of a short-term virtual reality balance intervention to improve mobility smoothness in Parkinson’s disease. Front. Virtual Real. 2020, 1, 613523. [Google Scholar] [CrossRef]
- Nuvolini, R.A.; Guedes, K.; Silva, D.; De Freitas, T.B.; Doná, F.; Torriani-Pasin, C.; Pompeu, J.E. Exergame-based program and conventional physiotherapy based on core areas of the European guideline similarly improve gait and cognition in people with Parkinson’s disease: Randomized clinical trial. Games Health J. 2025. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Shiwa, S.R.; Costa, L.O.P.; Costa, L.d.C.M.; Moseley, A.; Junior, L.C.H.; Venâncio, R.; Ruggero, C.; Sato, T.d.O.; Lopes, A.D. Reproducibility of the Portuguese version of the PEDro Scale. Cad. Saude Publica 2011, 27, 2063–2068. [Google Scholar] [CrossRef] [PubMed]
- Steffen, T.; Seney, M. Test–retest reliability and minimal detectable change on balance and ambulation tests, the 36-item Short Form Health Survey, and the Unified Parkinson Disease Rating Scale in people with parkinsonism. Phys. Ther. 2008, 88, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Jonasson, S.B.; Nilsson, M.H.; Lexell, J. Psychometric properties of four fear of falling rating scales in people with Parkinson’s disease. BMC Neurol. 2014, 14, 190. [Google Scholar] [CrossRef]
- Petersen, C.; Steffen, T.; Paly, E.; Dvorak, L.; Nelson, R. Reliability and minimal detectable change for sit-to-stand tests and the functional gait assessment for individuals with Parkinson disease. J. Geriatr. Phys. Ther. 2017, 40, 223–226. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Fereshtehnejad, S.-M.; Landers, M.R.; Sharabiani, P.T.A.; Shati, M.; Mortazavi, S.S.; Habibi, S.A.H.; Mansoori, K.; Meimandi, M.; Nodehi, Z.; et al. Responsiveness of the mini-balance evaluation systems test, dynamic gait index, Berg balance scale, and performance-oriented mobility assessment in Parkinson’s disease. Sci. Rep. 2025, 15, 21126. [Google Scholar] [CrossRef] [PubMed]
- Dal Bello-Haas, V.; Klassen, L.; Sheppard, M.S.; Metcalfe, A. Psychometric properties of activity, self-efficacy, and quality-of-life measures in individuals with Parkinson disease. Physiother. Can. 2011, 63, 47–57. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
Individual Item Ratings and Total PEDro Score | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | #1 Eligibility Criteria Specified | #2 Random Allocation | #3 Concealed Allocation | #4 Groups Similar at Baseline | #5 Blinding of Subjects | #6 Blinding of Therapists | #7 Blinding of Assessors | #8 Outcome Data from >85% of Subjects | #9 Intention-to-Treat Analysis | #10 Reported Between-Group Comparisons | #11 Point Estimates and Variability Measures | Total |
Group I: Virtual Reality Training Only | ||||||||||||
Feng et al., 2019 [12] | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 7/10 |
Pazzaglia et al., 2020 [13] | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 5/10 |
Schuch et al., 2020 [18] | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 6/10 |
Da Silva et al., 2023 [16] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 7/10 |
Pullia et al., 2023 [14] | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 5/10 |
Nuvolini et al., 2025 [19] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 7/10 |
Group II: Virtual Reality Training Combined with Physical Therapy | ||||||||||||
Maranesi et al., 2022 [17] | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 7/10 |
Kashif et al., 2024 [15] | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 6/10 |
Group I: Virtual Reality Training Only | ||||||||
---|---|---|---|---|---|---|---|---|
Study | Age (Mean ± SD) Gender (M/F) | Sample Size | EG | CG | Hoehn-Yahr (Mean ± SD or Frequency) | Dosage | Outcomes | Adverse Events |
Feng et al., 2019 [12] | EG: 67.47 ± 4.79 (8/7) CG: 66.93 ± 4.64 (9/6) | 28 | VR training | Conventional physical therapy | EG: 3.03 ± 0.55 CG: 2.97 ± 0.58 | 45 min/day 5 days/week 12 weeks | BBS, FGA, TUGT, UPDRS III | m.d |
Pazzaglia et al., 2020 [13] | EG: 72.0 ± 7.0 (18/7) CG: 70.0 ± 10.0 (17/9) | 51 | VR training | Conventional physical therapy | m.d | 40 min/day 3 days/week 6 weeks | BBS, DGI, DASH, SF-36 | m.d |
Schuch et al., 2020 [18] | EG: 63.0 ± 2.8 (6/5) CG: 69.1 ± 2.3 (10/2) | 23 | VR training | Physical activities (walking, stretching exercises) + Psycho Education | EG: Stage 1-1 Stage 1.5-2 Stage 2-4 Stage 2.5-4 Stage 3-0 CG: Stage 1-0 Stage 1.5-4 Stage 2-3 Stage 2.5-1 Stage 3-4 | 20 min/day 2 days/week 5 weeks | 10MWT, TUGT | Cybersickness, dizziness, nausea, and falls were monitored during each session. |
Da Silva et al., 2023 [16] | EG: 63.3 ± 6.46 (14/4) CG: 68.0 ± 10.2 (19/1) | 38 | Kinect exergame-based training | Conventional physiotherapy training | EG: Stage 1-3 Stage 1.5-4 Stage 2-3 Stage 2.5-3 Stage 3-5 CG: Stage 1-2 Stage 1.5-7 Stage 2-4 Stage 2.5-4 Stage 3-3 | 60 min/day 2 days/week 7 weeks | Mini-BESTest, LOS, ABCS, TUGT, UPDRS III, 5xSTS, PDQ-39 | m.d |
Pullia et al., 2023 [14] | EG: 64.5 ± 10.84 (9/1) CG: 65.5 ± 10.36 (4/6) | 20 | The C-Mill Gait Training | Conventional rehabilitation treatments | EG: 2.5 ± 0.78 CG: 3.5 ± 0.36 | 45 min/day 4 days/week 5 weeks | BBS, FES-I, 10MWT, 6MWT, TUGT, POMA, UPDRS III, FIM | All patients completed the training without reporting any adverse effects, including cybersickness. |
Nuvolini et al., 2025 [19] | EG: 62.7 ± 6.8 (15/4) CG: 69.2 ± 7.8 (18/1) | 38 | Kinect exergame-based training | Conventional physiotherapy | EG: Stage 1-3 Stage 1.5-4 Stage 2-4 Stage 2.5-3 Stage 3-5 CG: Stage 1-1 Stage 1.5-6 Stage 2-4 Stage 2.5-5 Stage 3-3 | 60 min/day 2 days/week 7 weeks | 10MWT, FGA, TUGT, MoCA | m.d |
Group II: Virtual Reality Training Combined with Physical Therapy | ||||||||
---|---|---|---|---|---|---|---|---|
Study | Age (Mean ± SD) Gender (M/F) | Sample Size | EG | CG | Hoehn-Yahr (Mean ± SD) | Dosage | Outcomes | Adverse Events |
Maranesi et al., 2022 [17] | EG: 72.7 ± 6.3 (6/10) CG: 75.5 ± 5.4 (9/5) | 30 | Tymo system + Traditional therapy | Traditional therapy sessions | EG: 2.0 ± 0.8 CG: 2.3 ± 0.9 | 50 min/day 2 days/week 5 weeks | FES-I, Gait Speed *, POMA, BI, SF-12 | m.d |
Kashif et al., 2024 [15] | EG I: 63.20 ± 4.85 (12/8) EG II: 64.85 5.10 (10/10) CG: 61.95 + 4.62 (11/9 | 60 | EG I: VR training + Physical therapy EG II: Motor Imagery + Physical therapy | Physical therapy | EG I: 2.07 ± 0.75 EG II: 2.10 ± 0.61 CG: 2.32 ± 0.63 | 60 min/day 3 days/week 12 weeks | BBS, ABCS, UPDRS III, UPDRS II | Common side effects of virtual reality, such as nausea, dizziness, and vertigo, often referred to as cybersickness or simulator sickness, were monitored. |
Group I: Virtual Reality Training Only | |||||
---|---|---|---|---|---|
Study | Outcome | Group | Mean (SD) Post-Intervention | n | Mean Difference (95% CI) * |
Feng et al., 2019 [12] | BBS (points) | EG | 36.71 (4.60) | 14 | +4.71 [1.05; 8.37] |
CG | 32.00 (4.82) | 14 | |||
FGA (points) | EG | 21.21 (3.95) | 14 | +2.78 [0.02; 5.54] | |
CG | 18.43 (3.09) | 14 | |||
TUGT (s) | EG | 30.93 (5.55) | 14 | −4.22 [−8.34; −0.08] | |
CG | 35.14 (5.07) | 14 | |||
UPDRS III (points) | EG | 21.50 (6.81) | 14 | +0.14 ‡ [−5.69, 5.97] | |
CG | 21.36 (8.15) | 14 | |||
Pazzaglia et al., 2020 [13] | BBS (points) | EG | 49.2 (8.1) | 25 | +1.1 [−3.21, 5.41] |
CG | 48.1 (7.2) | 26 | |||
DGI (points) | EG | 20.2 (4.2) | 25 | +1.2 [−1.08, 3.48] | |
CG | 19.0 (3.9) | 26 | |||
Schuch et al., 2020 [18] | 10MWT (m/s) | EG | 1.10 (0.07) | 11 | +0.1 [0.05; 0.15] |
CG | 1.00 (0.05) | 12 | |||
TUGT (s) | EG | 9.80 (0.60) | 11 | −1.0 [−1.48; −0.52] | |
CG | 10.80 (0.50) | 12 | |||
Da Silva et al., 2023 [16] | Mini-BESTest (points) | EG | 22.56 (4.09) | 18 | +0.56 [−2.22; 3.34] |
CG | 22.00 (4.34) | 20 | |||
LOS (cm2) | EG | 146.41 (59.96) | 18 | +8.81 [−27.17, 44.79] | |
CG | 137.60 (49.31) | 20 | |||
ABCS (%) | EG | 70.97 (15.78) | 18 | +5.29 [−6.49, 17.07] | |
CG | 65.68 (19.57) | 20 | |||
TUGT (s) | EG | 11.32 (4.84) | 18 | −0.25 [−3.06; 2.56] | |
CG | 11.57 (3.68) | 20 | |||
UPDRS III (points) | EG | 16.17 (7.70) | 18 | −1.13 [−5.89, 3.63] | |
CG | 17.30 (6.76) | 20 | |||
Pullia et al., 2023 [14] | BBS (points) | EG | 52.68 (4.30) ** | 10 | +19.89 [0.25; 39.53] |
CG | 32.79 (29.24) ** | 10 | |||
FES-I (points) | EG | 26.14 (9.89) ** | 10 | −16.33 [−31.93, −0.73] | |
CG | 42.47 (21.29) ** | 10 | |||
10MWT (m/s) | EG | 1.98 (0.61) ** | 10 | +0.27 [−0.85; 1.39] | |
CG | 1.71 (1.57) ** | 10 | |||
6MWT (m) | EG | 362.22 (30.96) ** | 10 | +213.13 [43.90; 382.36] | |
CG | 149.09 (252.84) ** | 10 | |||
TUGT right (s) | EG | 9.44 (4.39) ** | 10 | −4.56 [−15.77; 6.65] | |
CG | 14.00 (16.29) ** | 10 | |||
TUGT left (s) | EG | 9.54 (3.63) ** | 10 | −4.02 [−14.20; 6.16] | |
CG | 13.56 (14.88) ** | 10 | |||
POMA (points) | EG | 26.08 (3.87) ** | 10 | +8.17 [−1.60; 17.94] | |
CG | 17.91 (14.19) ** | 10 | |||
UPDRS III (points) | EG | 28.46 (25.37) ** | 10 | −3. 04 [−23.17, 17.09] | |
CG | 31.50 (16.56) ** | 10 | |||
Nuvolini et al., 2025 [19] | 10MWT/ST (m/s) | EG | 1.33 (0.37) | 19 | 0 [−0.24; 0.24] |
CG | 1.33 (0.37) | 19 | |||
10MWT/DT (m/s) | EG | 1.69 (0.24) | 19 | +0.08 [−0.07; 0.23] | |
CG | 1.61 (0.22) | 19 | |||
FGA (points) | EG | 25.3 (4.6) | 19 | +1.30 [−1.63; 4.23] | |
CG | 24.0 (4.3) | 19 | |||
TUGT (s) | EG | 11.3 (4.7) | 19 | −0.5 [−3.37; 2.37] | |
CG | 11.8 (4.0) | 19 |
Group II: Virtual Reality Training Combined with Physical Therapy | |||||
---|---|---|---|---|---|
Study | Outcome | Group | Mean (SD) Post-Intervention | n | Mean Difference (95% CI) * |
Maranesi et al., 2022 [17] | FES-I (points) | EG | 13.3 (1.4) | 16 | −0.8 [−2.00, 0.40] |
CG | 14.1 (1.8) | 14 | |||
Gait Speed (m/s) ** | EG | 1.8 (0.1) | 16 | +0.1 [−0.36; 0.56] | |
CG | 1.7 (0.9) | 14 | |||
POMA (points) | EG | 25.9 (0.7) | 16 | +2.6 [1.70; 3.50] | |
CG | 23.3 (1.6) | 14 | |||
Kashif et al., 2024 [15] | BBS (points) | EG | 50.10 (4.90) | 20 | +4.60 [1.57; 7.63] |
CG | 45.50 (4.56) | 20 | |||
ABCS (%) | EG | 78.59 (6.39) | 20 | +7.03 | |
CG | 71.56 (8.09) | 20 | [2.36, 11.70] | ||
UPDRS III (points) | EG | 17.20 (9.45) | 20 | −7.25 [−12.15, −2.35] | |
CG | 24.45 (5.27) | 20 |
Group I: Virtual Reality Training Only | |||||
---|---|---|---|---|---|
Study | Outcome | Group | Mean (SD) Post-Intervention | n | Mean Difference (95% CI) * |
Pazzaglia et al., 2020 [13] | DASH (points) | EG | 21.6 (15.1) | 25 | −3.5 [−12.2, 5.2] |
CG | 25.1 (15.8) | 26 | |||
Physical composite-SF-36 (points) | EG | 36.8 (9.4) | 25 | −9.9 ‡ [−16.57, −3.23] | |
CG | 46.7 (13.8) | 26 | |||
Mental composite SF-36 (points) | EG | 43.5 (9.2) | 25 | +4.3 [−1.93, 10.53] | |
CG | 39.2 (12.6) | 26 | |||
Da Silva et al., 2023 [16] | 5xSTS (s) | EG | 15.70 (4.86) | 18 | −1.62 [−5.03, 1.79] |
CG | 17.32 (5.44) | 20 | |||
PDQ-39 (points) | EG | 33.62 (14.63) | 18 | +2.77 ‡ [−7.05, 12.59] | |
CG | 30.85 (15.14) | 20 | |||
Pullia et al., 2023 [14] | FIM (points) | EG | 120.57 (5.33) | 10 | +21.24 [3.18, 39.3] |
CG | 99.33 (26.66) | 10 | |||
Nuvolini et al., 2025 [19] | MoCA (points) | EG | 23.3 (4.2) | 19 | −0.6 ‡ [−3.36, 2.16] |
CG | 23.9 (4.2) | 19 |
Group II: Virtual Reality Training Combined with Physical Therapy | |||||
---|---|---|---|---|---|
Study | Outcome | Group | Mean (SD) Post-Intervention | n | Mean Difference (95% CI) * |
Maranesi et al., 2022 [17] | BI (points) | EG | 94.3 (3.7) | 16 | +6.7 [3.63, 9.77] |
CG | 87.6 (4.5) | 14 | |||
SF-12 (points) | EG | 30.1 (0.6) | 16 | −0.2 ‡ [−0.69, 0.29] | |
CG | 30.3 (0.7) | 14 | |||
Kashif et al., 2024 [15] | UPDRS II (points) | EG | 15.30 (2.36) | 20 | −4.2 [−6.19, −2.21] |
CG | 19.50 (2.96) | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, S.; Oliveira, B.; Sacadura, S.; Rakasi, C.; Furtado, I.; Figueiredo, J.P.; Gonçalves, R.S.; Martins, A.C. The Effectiveness of Virtual Reality in Improving Balance and Gait in People with Parkinson’s Disease: A Systematic Review. Sensors 2025, 25, 4795. https://doi.org/10.3390/s25154795
Fernandes S, Oliveira B, Sacadura S, Rakasi C, Furtado I, Figueiredo JP, Gonçalves RS, Martins AC. The Effectiveness of Virtual Reality in Improving Balance and Gait in People with Parkinson’s Disease: A Systematic Review. Sensors. 2025; 25(15):4795. https://doi.org/10.3390/s25154795
Chicago/Turabian StyleFernandes, Sofia, Bruna Oliveira, Sofia Sacadura, Cristina Rakasi, Isabel Furtado, João Paulo Figueiredo, Rui Soles Gonçalves, and Anabela Correia Martins. 2025. "The Effectiveness of Virtual Reality in Improving Balance and Gait in People with Parkinson’s Disease: A Systematic Review" Sensors 25, no. 15: 4795. https://doi.org/10.3390/s25154795
APA StyleFernandes, S., Oliveira, B., Sacadura, S., Rakasi, C., Furtado, I., Figueiredo, J. P., Gonçalves, R. S., & Martins, A. C. (2025). The Effectiveness of Virtual Reality in Improving Balance and Gait in People with Parkinson’s Disease: A Systematic Review. Sensors, 25(15), 4795. https://doi.org/10.3390/s25154795