Vision-Ray-Calibration-Based Monocular Deflectometry by Poses Estimation from Reflections
Abstract
1. Introduction
2. Proposed Methodology
2.1. Vision Ray Calibration
2.2. Vision Ray Calibration of the Camera in Monocular Deflectometry
2.3. Vision Ray Calibration of the SUT in Monocular Deflectometry
2.4. Integrated Vision Ray Calibration of Monocular Deflectometry
3. Experiments
3.1. Simulation
3.2. Actual Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mansour, G. A Developed Algorithm for Simulation of Blades to Reduce the Measurement Points and Time on Coordinate Measuring Machine (Cmm). Measurement 2014, 54, 51–57. [Google Scholar] [CrossRef]
- Zhang, S. High-Speed 3d Shape Measurement with Structured Light Methods: A Review. Opt. Lasers Eng. 2018, 106, 119–131. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, C.; Liu, X.; Li, Z.; Shi, Y.; Gao, N.; Meng, Z. Phase Measuring Deflectometry for Obtaining 3d Shape of Specular Surface: A Review of the State-of-the-Art. Opt. Opt. Eng. 2021, 60, 020903. [Google Scholar] [CrossRef]
- Burke, J.; Pak, A.; Höfer, S.; Ziebarth, M.; Roschani, M.; Beyerer, J. Deflectometry for Specular Surfaces: An Overview. Adv. Opt. Technol. 2023, 12, 1237687. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, F.; Jiang, X. A Brief Review of the Technological Advancements of Phase Measuring Deflectometry. PhotoniX 2020, 1, 14. [Google Scholar] [CrossRef]
- Huang, L.; Idir, M.; Zuo, C.; Asundi, A. Review of Phase Measuring Deflectometry. Opt. Lasers Eng. 2018, 107, 247–257. [Google Scholar] [CrossRef]
- Wang, R.; Ge, R.; Kim, D.; Zhang, Z.; Chen, M.; Li, D.; Zhou, S. In Situ Online Deflectometry with Synchronized Calibration and Measurement. Opt. Lett. 2025, 50, 3935–3938. [Google Scholar] [CrossRef]
- Guan, J.; Li, J.; Yang, X.; Chen, X.; Xi, J. An Improved Geometrical Calibration Method for Stereo Deflectometry by Using Speckle Pattern. Opt. Commun. 2022, 505, 127507. [Google Scholar] [CrossRef]
- Ren, H.; Gao, F.; Jiang, X. Iterative Optimization Calibration Method for Stereo Deflectometry. Opt. Express 2015, 23, 22060–22068. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ren, M.; Gao, F.; Zhu, L. On-Machine Calibration Method for in Situ Stereo Deflectometry System. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Santana-Cedrés, D.; Gomez, L.; Alemán-Flores, M.; Salgado, A.; Esclarín, J.; Mazorra, L.; Alvarez, L. Estimation of the Lens Distortion Model by Minimizing a Line Reprojection Error. IEEE Sens. J. 2017, 17, 2848–2855. [Google Scholar] [CrossRef]
- Alvarez, L.; Gómez, L.; Henríquez, P. Zoom Dependent Lens Distortion Mathematical Models. J. Math. Imaging Vis. 2012, 44, 480–490. [Google Scholar] [CrossRef]
- Bothe, T.; Li, W.; Schulte, M.; von Kopylow, C.; Bergmann, R.B.; Jüptner, W.P.O. Vision Ray Calibration for the Quantitative Geometric Description of General Imaging and Projection Optics in Metrology. Appl. Opt. 2010, 49, 5851–5860. [Google Scholar] [CrossRef]
- Bartsch, J.; Sperling, Y.; Bergmann, R.B. Efficient Vision Ray Calibration of Multi-Camera Systems. Opt. Express 2021, 29, 17125–17139. [Google Scholar] [CrossRef]
- Ramirez-Andrade, A.H.; Falaggis, K. Height Reconstructions from Geometric Wavefronts Using Vision Ray Metrology. Appl. Opt. 2024, 63, 8630–8640. [Google Scholar] [CrossRef]
- Ramirez-Andrade, A.H.; Shadalou, S.; Gurganus, D.; Davies, M.A.; Suleski, T.J.; Falaggis, K. Vision Ray Metrology for Freeform Optics. Opt. Express 2021, 29, 43480–43501. [Google Scholar] [CrossRef]
- Wang, R.; Li, D.; Zheng, W.; Yu, L.; Ge, R.; Zhang, X. Vision Ray Model Based Stereo Deflectometry for the Measurement of the Specular Surface. Opt. Lasers Eng. 2024, 172, 107831. [Google Scholar] [CrossRef]
- Ge, R.; Wang, R.; Li, D.; Zhang, Z.; Chen, M. In-Situ High-Accuracy Figure Measurement Based on Stereo Deflectometry for the Off-Axis Aspheric Mirror. Opt. Express 2025, 33, 3290–3301. [Google Scholar] [CrossRef]
- Markus, C.K.; Jurgen, K.; Gerd, H. Phase Measuring Deflectometry: A New Approach to Measure Specular Free-Form Surfaces. Proc. SPIE 2004, 5457, 366–376. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Z.; Gao, N.; Meng, Z. Large-Curvature Specular Surface Phase Measuring Deflectometry with a Curved Screen. Opt. Express 2021, 29, 43327–43341. [Google Scholar] [CrossRef]
- Liu, C.; Gao, N.; Meng, Z.; Zhang, Z.; Gao, F. Iteration of B-Spline Surface Based Deflectometric Method for Discontinuous Specular Surface. Opt. Lasers Eng. 2023, 165, 107533. [Google Scholar] [CrossRef]
- Guo, H.; Feng, P.; Tao, T. Specular Surface Measurement by Using Least Squares Light Tracking Technique. Opt. Lasers Eng. 2010, 48, 166–171. [Google Scholar] [CrossRef]
- Liu, M.; Hartley, R.; Salzmann, M. Mirror Surface Reconstruction from a Single Image. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, S.; Zhang, Z.; Gao, N.; Gao, F.; Jiang, X. Full-Field 3d Shape Measurement of Discontinuous Specular Objects by Direct Phase Measuring Deflectometry. Sci. Rep. 2017, 7, 10293. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Gao, N.; Meng, Z. 3d Shape Measurement of Diffused/Specular Surface by Combining Fringe Projection and Direct Phase Measuring Deflectometry. Opt. Express 2020, 28, 27561–27574. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, Z.; Gao, N.; Meng, Z. Improved Infrared Phase Measuring Deflectometry Method for the Measurement of Discontinuous Specular Objects. Opt. Lasers Eng. 2020, 134, 106194. [Google Scholar] [CrossRef]
- Liu, M.; Wong, K.Y.K.; Dai, Z.; Chen, Z. Pose Estimation from Reflections for Specular Surface Recovery. In Proceedings of the International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 579–586. [Google Scholar] [CrossRef]
- Huang, L.; Xue, J.; Gao, B.; McPherson, C.; Beverage, J.; Idir, M. Modal Phase Measuring Deflectometry. Opt. Express 2016, 24, 24649–24664. [Google Scholar] [CrossRef]
- Zuo, C.; Feng, S.; Huang, L.; Tao, T.; Yin, W.; Chen, Q. Phase Shifting Algorithms for Fringe Projection Profilometry: A Review. Opt. Lasers Eng. 2018, 109, 23–59. [Google Scholar] [CrossRef]
- Zhang, S. Absolute Phase Retrieval Methods for Digital Fringe Projection Profilometry: A Review. Opt. Lasers Eng. 2018, 107, 28–37. [Google Scholar] [CrossRef]
- Madsen, K.; Nielsen, H.; Tingleff, O. Methods for Non-Linear Least Squares Problems, 2nd ed.; Technical university of Denmark: Copenhagen, Denmark, 2004; pp. 24–29. [Google Scholar]
- Huang, L.; Xue, J.; Gao, B.; Zuo, C.; Idir, M. Zonal Wavefront Reconstruction in Quadrilateral Geometry for Phase Measuring Deflectometry. Appl. Opt. 2017, 56, 5139–5144. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Su, X.; Chen, W. Flexible Geometrical Calibration for Fringe-Reflection 3d Measurement. Opt. Lett. 2012, 37, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, J.; Xing, Y.; Ao, X.; Shen, H.; Yang, C. An Iterative Deflectometry Method of Reconstruction of Separate Specular Surfaces. Sensors 2025, 25, 1549. [Google Scholar] [CrossRef] [PubMed]
d | 10 cm | 12.5 cm | 15 cm | 17.5 cm | 20 cm | |||||
---|---|---|---|---|---|---|---|---|---|---|
SC | IC | SC | IC | SC | IC | SC | IC | SC | IC | |
rmse | 0.9914 | 0.3748 | 1.4031 | 0.3647 | 1.2524 | 0.4657 | 1.2524 | 0.4657 | 2.7807 | 0.4894 |
pv | 6.3432 | 2.8618 | 8.2452 | 2.0960 | 7.1371 | 3.0719 | 7.1371 | 3.0719 | 15.5349 | 4.3552 |
SC | IC | MPMD | |
---|---|---|---|
fitted radius | 945.3867 | 997.9301 | 994.0202 |
rmse | 0.0020 | 7.0839 × 10−4 | 2.3756 × 10−4 |
pv | 0.0112 | 0.0050 | 0.0013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Liu, J.; Xing, Y.; Ao, X.; Zhang, W.; Yang, C. Vision-Ray-Calibration-Based Monocular Deflectometry by Poses Estimation from Reflections. Sensors 2025, 25, 4778. https://doi.org/10.3390/s25154778
Liu C, Liu J, Xing Y, Ao X, Zhang W, Yang C. Vision-Ray-Calibration-Based Monocular Deflectometry by Poses Estimation from Reflections. Sensors. 2025; 25(15):4778. https://doi.org/10.3390/s25154778
Chicago/Turabian StyleLiu, Cheng, Jianhua Liu, Yanming Xing, Xiaohui Ao, Wang Zhang, and Chunguang Yang. 2025. "Vision-Ray-Calibration-Based Monocular Deflectometry by Poses Estimation from Reflections" Sensors 25, no. 15: 4778. https://doi.org/10.3390/s25154778
APA StyleLiu, C., Liu, J., Xing, Y., Ao, X., Zhang, W., & Yang, C. (2025). Vision-Ray-Calibration-Based Monocular Deflectometry by Poses Estimation from Reflections. Sensors, 25(15), 4778. https://doi.org/10.3390/s25154778