Associations Between Daily Step Counts and Sleep Parameters in Parkinson’s Disease: A Scoping Review
Abstract
1. Introduction
2. Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Data Sources and Search Strategy
2.4. Study Selection
2.5. Data Extraction
2.6. Methodological Quality
3. Results
3.1. Selection of Studies
3.2. Methodological Quality
3.3. Study Characteristics
3.4. Sample Characteristics
3.5. Data Collection
3.5.1. Wearable Devices Used
3.5.2. Data Collection Period
3.5.3. Wearable-Based Step and Sleep Outcomes
3.5.4. Questionnaire-Based Sleep Outcomes
3.6. Sleep and Daily Step Count Main Outcomes
3.6.1. Wearable-Based Step Count Measurements and Self-Reported Sleep Assessments
3.6.2. Wearable Device-Based Measurements of Step Count and Sleep Parameters
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloemd, B.R. The Emerging Evidence of the Parkinson Pandemic. J. Park. Dis. 2018, 8, S3–S8. [Google Scholar] [CrossRef] [PubMed]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson Disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef] [PubMed]
- Pongmala, C.; Fabbri, M.; Zibetti, M.; Pitakpatapee, Y.; Wangthumrong, T.; Sangpeamsook, T.; Srikajon, J.; Srivanitchapoom, P.; Youn, J.; Cho, J.W.; et al. Gait and Axial Postural Abnormalities Correlations in Parkinson’s Disease: A Multicenter Quantitative Study. Park. Relat. Disord. 2022, 105, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Wallén, M.B.; Franzén, E.; Nero, H.; Hagströmer, M. Levels and Patterns of Physical Activity and Sedentary Behavior in Elderly People with Mild to Moderate Parkinson Disease. Phys. Ther. 2015, 95, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Schapira, A.H.; Chaudhuri, K.R.; Jenner, P. Non-Motor Features of Parkinson Disease. Nat. Rev. Neurosci. 2017, 18, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Politis, M.; Wu, K.; Molloy, S.; Bain, P.G.; Chaudhuri, K.R.; Piccini, P. Parkinson’s Disease Symptoms: The Patient’s Perspective. Mov. Disord. 2010, 25, 1646–1651. [Google Scholar] [CrossRef] [PubMed]
- Prakash, K.M.; Nadkarni, N.V.; Lye, W.K.; Yong, M.H.; Tan, E.K. The Impact of Non-Motor Symptoms on the Quality of Life of Parkinson’s Disease Patients: A Longitudinal Study. Eur. J. Neurol. 2016, 23, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Dodet, P.; Houot, M.; Leu-Semenescu, S.; Corvol, J.C.; Lehéricy, S.; Mangone, G.; Vidailhet, M.; Roze, E.; Arnulf, I. Sleep Disorders in Parkinson’s Disease, an Early and Multiple Problem. NPJ Park. Dis. 2024, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Liguori, C.; De Franco, V.; Cerroni, R.; Spanetta, M.; Mercuri, N.B.; Stefani, A.; Pierantozzi, M.; Di Pucchio, A. Sleep Problems Affect Quality of Life in Parkinson’s Disease along Disease Progression. Sleep Med. 2021, 81, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.A.; Catiul, C.; Irwin, Z.; Pilkington, J.; Memon, R.A.; Joop, A.; Wood, K.H.; Cutter, G.; Miocinovic, S.; Amara, A.W. Quantitative Sleep Electroencephalogram in Parkinson’s Disease: A Case-Control Study. J. Park. Dis. 2023, 13, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Kurtis, M.M.; Balestrino, R.; Rodriguez-Blazquez, C.; Forjaz, M.J.; Martinez-Martin, P. A Review of Scales to Evaluate Sleep Disturbances in Movement Disorders. Front. Neurol. 2018, 9, 369. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, J.F.; Van Rooij, F.J.A.; Vos, H.; Tulen, J.H.M.; Hofman, A.; Miedema, H.M.E.; Neven, A.K.; Tiemeier, H. Disagreement between Subjective and Actigraphic Measures of Sleep Duration in a Population-Based Study of Elderly Persons. J. Sleep Res. 2008, 17, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Stavitsky, K.; Saurman, J.L.; McNamara, P.; Cronin-Golomb, A. Sleep in Parkinson’s Disease: A Comparison of Actigraphy and Subjective Measures. Park. Relat. Disord. 2010, 16, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ren, R.; Sanford, L.D.; Yang, L.; Zhou, J.; Tan, L.; Li, T.; Zhang, J.; Wing, Y.K.; Shi, J.; et al. Sleep in Parkinson’s Disease: A Systematic Review and Meta-Analysis of Polysomnographic Findings. Sleep Med. Rev. 2020, 51, 101281. [Google Scholar] [CrossRef] [PubMed]
- de Zambotti, M.; Goldstein, C.; Cook, J.; Menghini, L.; Altini, M.; Cheng, P.; Robillard, R. State of the Science and Recommendations for Using Wearable Technology in Sleep and Circadian Research. Sleep 2024, 47, zsad325. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Lee, Y.S.; Wang, Y.; John, H.; Fang, L.; Tang, Y. Advancements in Flexible Sensors for Monitoring Body Movements during Sleep: A Review. Sensors 2024, 24, 5091. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; Ramos, B.; Fernandes, J.; Hansen, C.; Maetzler, W.; Vila-Chã, N.; Maia, L.F. Wearable Sensors for Sleep Monitoring in Free-Living Environments: A Scoping Review on Parkinson ’ s Disease. Biosensors 2025, 15, 212. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, H.M.; Yao, Z.; Krafty, R.T.; Evans, M.A.; Buysse, D.J.; Kravitz, H.M.; Matthews, K.A.; Gold, E.B.; Harlow, S.D.; Samuelsson, L.B.; et al. Comparing Polysomnography, Actigraphy, and Sleep Diary in the Home Environment: The Study of Women’s Health Across the Nation (SWAN) Sleep Study. Sleep Adv. J. Sleep Res. Soc. 2022, 3, zpac001. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Hill, E.A.; Kyle, S.D.; Doherty, A. A Systematic Review of the Performance of Actigraphy in Measuring Sleep Stages. J. Sleep Res. 2024, 33, e14143. [Google Scholar] [CrossRef] [PubMed]
- Conley, S.; Knies, A.; Batten, J.; Ash, G.; Miner, B.; Hwang, Y.; Jeon, S.; Redeker, N.S. Agreement between Actigraphic and Polysomnographic Measures of Sleep in Adults with and without Chronic Conditions: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2019, 46, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Taibi, D.M.; Landis, C.A.; Vitiello, M.V. Concordance of Polysomnographic and Actigraphic Measurement of Sleep and Wake in Older Women with Insomnia. J. Clin. Sleep Med. 2013, 9, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Alakuijala, A.; Sarkanen, T.; Jokela, T.; Partinen, M. Accuracy of Actigraphy Compared to Concomitant Ambulatory Polysomnography in Narcolepsy and Other Sleep Disorders. Front. Neurol. 2021, 12, 629709. [Google Scholar] [CrossRef] [PubMed]
- Maglione, J.E.; Liu, L.; Neikrug, A.B.; Poon, T.; Natarajan, L.; Calderon, J.; Avanzino, J.A.; Corey-Bloom, J.; Palmer, B.W.; Loredo, J.S.; et al. Actigraphy for the Assessment of Sleep Measures in Parkinson’s Disease. Sleep 2013, 36, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M.; Folkerts, A.K.; Gollan, R.; Lieker, E.; Caro-Valenzuela, J.; Adams, A.; Cryns, N.; Monsef, I.; Dresen, A.; Roheger, M.; et al. Physical Exercise for People with Parkinson’s Disease: A Systematic Review and Network Meta-Analysis. Cochrane Database Syst. Rev. 2023, 1, CD013856. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.C.; Kusters, C.D.J.; Paul, K.C.; Folle, A.D.; Zhang, K.; Shih, I.-F.; Keener, A.M.; Bronstein, J.M.; Ritz, B.R. Lifetime Physical Activity Influences Parkinson’s Disease Progression. Park. Relat. Disord. 2024, 128, 107122. [Google Scholar] [CrossRef] [PubMed]
- Tsukita, K.; Sakamaki-Tsukita, H.; Takahashi, R. Long-Term Effect of Regular Physical Activity and Exercise Habits in Patients with Early Parkinson Disease. Neurology 2022, 98, E859–E871. [Google Scholar] [CrossRef] [PubMed]
- Amara, A.W.; Memon, A.A. Effects of Exercise on Non-Motor Symptoms in Parkinson’s Disease. Clin. Ther. 2018, 40, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Still, A.; Hale, L.; Alam, S.; Morris, M.E.; Jayakaran, P. Relationships between Physical Activities Performed under Free-Living Conditions and Non-Motor Symptoms in People with Parkinson’s: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2024, 38, 1534–1551. [Google Scholar] [CrossRef] [PubMed]
- Cusso, M.E.; Donald, K.J.; Khoo, T.K. The Impact of Physical Activity on Non-Motor Symptoms in Parkinson’s Disease: A Systematic Review. Front. Med. 2016, 3, 35. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Ezeugwa, J.; Ezeugwu, V.E. A Systematic Review of the Associations between Sedentary Behavior, Physical Inactivity, and Non-Motor Symptoms of Parkinson’s Disease. PLoS ONE 2024, 19, e0293382. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R.; Toth, L.P.; LaMunion, S.R.; Crouter, S.E. Step Counting: A Review of Measurement Considerations and Health-Related Applications. Sport Med. 2017, 47, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Paluch, A.E.; Bajpai, S.; Bassett, D.R.; Carnethon, M.R.; Ekelund, U.; Evenson, K.R.; Galuska, D.A.; Jefferis, B.J.; Kraus, W.E.; Lee, I.M.; et al. Daily Steps and All-Cause Mortality: A Meta-Analysis of 15 International Cohorts. Lancet Public Health 2022, 7, e219–e228. [Google Scholar] [CrossRef] [PubMed]
- Saint-Maurice, P.F.; Troiano, R.P.; Bassett, D.R.J.; Graubard, B.I.; Carlson, S.A.; Shiroma, E.J.; Fulton, J.E.; Matthews, C.E. Association of Daily Step Count and Step Intensity With Mortality Among US Adults. JAMA 2020, 323, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo Cruz, B.; Ahmadi, M.N.; Lee, I.-M.; Stamatakis, E. Prospective Associations of Daily Step Counts and Intensity With Cancer and Cardiovascular Disease Incidence and Mortality and All-Cause Mortality. JAMA Intern. Med. 2022, 182, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo Cruz, B.; Ahmadi, M.; Naismith, S.L.; Stamatakis, E. Association of Daily Step Count and Intensity With Incident Dementia in 78 430 Adults Living in the UK. JAMA Neurol. 2022, 79, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Kelly, V.E. Quantifying Physical Activity in Early Parkinson Disease Using a Commercial Activity Monitor. Park. Relat. Disord. 2019, 66, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Handlery, R.; Stewart, J.C.; Pellegrini, C.; Monroe, C.; Hainline, G.; Flach, A.; Handlery, K.; Fritz, S. Physical Activity in De Novo Parkinson Disease: Daily Step Recommendation and Effects of Treadmill Exercise on Physical Activity. Phys. Ther. 2021, 101, pzab174. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, F.M.; Mackman, C.A.; Pav, B.; Shulman, L.M.; Garvan, C.; Macko, R.F.; Heilman, K.M. Daily Ambulatory Activity Levels in Idiopathic Parkinson Disease. J. Rehabil. Res. Dev. 2008, 45, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, E.; Maetzler, W. Wearable Systems in Movement Disorders. In International Review of Movement Disorders; Sánchez Ferro, A., Monje, M.H.G., Eds.; International Review of Movement Disorders; Academic Press: Cambridge, MA, USA, 2023; Volume 5, pp. 93–113. [Google Scholar]
- Laranjo, L.; Ding, D.; Heleno, B.; Kocaballi, B.; Quiroz, J.C.; Tong, H.L.; Chahwan, B.; Neves, A.L.; Gabarron, E.; Dao, K.P.; et al. Do Smartphone Applications and Activity Trackers Increase Physical Activity in Adults? Systematic Review, Meta-Analysis and Metaregression. Br. J. Sports Med. 2021, 55, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Kimura, N.; Aso, Y.; Yabuuchi, K.; Matsubara, E. Association between Objectively Measured Walking Steps and Sleep in Community-Dwelling Older Adults: A Prospective Cohort Study. PLoS ONE 2020, 15, e0243910. [Google Scholar] [CrossRef] [PubMed]
- Hirata, R.P.; Dala Pola, D.C.; Schneider, L.P.; Bertoche, M.P.; Furlanetto, K.C.; Hernandes, N.A.; Mesas, A.E.; Pitta, F. Tossing and Turning: Association of Sleep Quantity–Quality with Physical Activity in Copd. ERJ Open Res. 2020, 6, 00370–2020. [Google Scholar] [CrossRef] [PubMed]
- Vinod, V.; Saegner, K.; Maetzler, W.; Warmerdam, E.; Romijnders, R.; Beyer, T.; Göder, R.; Hansen, C.; Stürner, K. Objectively Assessed Sleep Quality Parameters in Multiple Sclerosis at Home: Association to Disease, Disease Severity and Physical Activity. Sleep Med. 2024, 118, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ophey, A.; Vinod, V.; Röttgen, S.; Scharfenberg, D.; Fink, G.R.; Sommerauer, M.; Kalbe, E.; Maetzler, W.; Hansen, C. Accelerometry-Derived Features of Physical Activity, Sleep and Circadian Rhythm Relate to Non-Motor Symptoms in Individuals with Isolated REM Sleep Behavior Disorder. J. Neurol. 2025, 272, 201. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Suau, Q.; Bianchini, E.; Bellier, A.; Chardon, M.; Milane, T.; Hansen, C.; Vuillerme, N. Current Knowledge about ActiGraph GT9X Link Activity Monitor Accuracy and Validity in Measuring Steps and Energy Expenditure: A Systematic Review. Sensors 2024, 24, 825. [Google Scholar] [CrossRef] [PubMed]
- Zanardi, A.P.J.; da Silva, E.S.; Costa, R.R.; Passos-Monteiro, E.; dos Santos, I.O.; Kruel, L.F.M.; Peyré-Tartaruga, L.A. Gait Parameters of Parkinson’s Disease Compared with Healthy Controls: A Systematic Review and Meta-Analysis. Sci. Rep. 2021, 11, 752. [Google Scholar] [CrossRef] [PubMed]
- Downs, S.H.; Black, N. The Feasibility of Creating a Checklist for the Assessment of the Methodological Quality Both of Randomised and Non-Randomised Studies of Health Care Interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Schalkamp, A.K.; Harrison, N.A.; Peall, K.J.; Sandor, C. Digital Outcome Measures from Smartwatch Data Relate to Non-Motor Features of Parkinson’s Disease. NPJ Park. Dis. 2024, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.L.; Kangarloo, T.; Gong, Y.; Khachadourian, V.; Tracey, B.; Volfson, D.; Latzman, R.D.; Cosman, J.; Edgerton, J.; Anderson, D.; et al. Using a Smartwatch and Smartphone to Assess Early Parkinson’s Disease in the WATCH-PD Study over 12 Months. NPJ Park. Dis. 2024, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Prusynski, R.A.; Kelly, V.E.; Fogelberg, D.J.; Pradhan, S. The Association between Sleep Deficits and Sedentary Behavior in People with Mild Parkinson Disease. Disabil. Rehabil. 2022, 44, 5585–5591. [Google Scholar] [CrossRef] [PubMed]
- Aktar, B.; Balci, B.; Colakoglu, D. Physical Activity in Patients with Parkinson’s Disease: A Holistic Approach Based on the ICF Model. Clin. Neurol. Neurosurg. 2020, 198, 106132. [Google Scholar] [CrossRef] [PubMed]
- Aktar, B.; Colakoglu, B.D.; Balci, B. Does the Postural Stability of Patients with Parkinson’s Disease Affect the Physical Activity? Int. J. Rehabil. Res. 2020, 43, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Andrianasolo, R.M.; Menai, M.; Galan, P.; Hercberg, S.; Oppert, J.M.; Kesse-Guyot, E.; Andreeva, V.A. Leisure-Time Physical Activity and Sedentary Behavior and Their Cross-Sectional Associations with Excessive Daytime Sleepiness in the French SU.VI.MAX-2 Study. Int. J. Behav. Med. 2016, 23, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Brandão, G.S.; Gomes, G.S.B.F.; Brandão, G.S.; Callou Sampaio, A.A.; Donner, C.F.; Oliveira, L.V.F.; Camelier, A.A. Home Exercise Improves the Quality of Sleep and Daytime Sleepiness of Elderlies: A Randomized Controlled Trial. Multidiscip. Respir. Med. 2018, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, J.; Wang, X.; Huang, J.; Wang, T.; Lin, Z.; Xiong, N. Excessive Daytime Sleepiness in Parkinson ’ s Disease. Nat. Sci. Sleep 2022, 14, 1589–1609. [Google Scholar] [CrossRef] [PubMed]
- Cilia, R.; Cereda, E.; Akpalu, A.; Sarfo, F.S.; Cham, M.; Laryea, R.; Obese, V.; Oppon, K.; Del Sorbo, F.; Bonvegna, S.; et al. Natural History of Motor Symptoms in Parkinson’s Disease and the Long-Duration Response to Levodopa. Brain 2020, 143, 2490–2501. [Google Scholar] [CrossRef] [PubMed]
- Takács, J.; Török, L. The Relationship between Daily Physical Activity, Subjective Sleep Quality, and Mood in Sedentary Hungarian Adults: A Longitudinal within-Subjects Study. Dev. Health Sci. 2019, 2, 79–85. [Google Scholar] [CrossRef]
- Alnawwar, M.A.; Alraddadi, M.I.; Algethmi, R.A.; Salem, G.A.; Salem, M.A.; Alharbi, A.A. The Effect of Physical Activity on Sleep Quality and Sleep Disorder: A Systematic Review. Cureus 2023, 15, e43595. [Google Scholar] [CrossRef] [PubMed]
- Cristini, J.; Weiss, M.; De Las Heras, B.; Medina-Rincón, A.; Dagher, A.; Postuma, R.B.; Huber, R.; Doyon, J.; Rosa-Neto, P.; Carrier, J.; et al. The Effects of Exercise on Sleep Quality in Persons with Parkinson’s Disease: A Systematic Review with Meta-Analysis. Sleep Med. Rev. 2021, 55, 101384. [Google Scholar] [CrossRef] [PubMed]
- Yong, M.H.; Fook-Chong, S.; Pavanni, R.; Lim, L.L.; Tan, E.K. Case Control Polysomnographic Studies of Sleep Disorders in Parkinson’s Disease. PLoS ONE 2011, 6, e22511. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.E.; Luo, S.; Chen, L.N.; Lu, J.P.; Huang, Y.J.; Ye, Q.Y. Sleep Fragmentation as an Important Clinical Characteristic of Sleep Disorders in Parkinson’s Disease: A Preliminary Study. Chin. Med. J. 2019, 132, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Sohail, S.; Yu, L.; Schneider, J.A.; Bennett, D.A.; Buchman, A.S.; Lim, A.S.P. Sleep Fragmentation and Parkinson’s Disease Pathology in Older Adults without Parkinson’s Disease. Mov. Disord. 2017, 32, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Norlinah, M.I.; Afidah, K.N.; Noradina, A.T.; Shamsul, A.S.; Hamidon, B.B.; Sahathevan, R.; Raymond, A.A. Sleep Disturbances in Malaysian Patients with Parkinson’s Disease Using Polysomnography and PDSS. Park. Relat. Disord. 2009, 15, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wang, Y.; Zhu, X.; Hou, X.; Luo, G.; Li, W.; Liu, J.; Wang, W.; Wang, J.; Sun, J.; et al. Short Sleep Duration Is Associated with Worse Quality of Life in Parkinson’s Disease: A Multicenter Cross-Sectional Study. Sleep Med. 2024, 114, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Shokouhi, N.; Khodakarami, H.; Fernando, C.; Osborn, S.; Horne, M. Accuracy of Step Count Estimations in Parkinson’s Disease Can Be Predicted Using Ambulatory Monitoring. Front. Aging Neurosci. 2022, 14, 904895. [Google Scholar] [CrossRef] [PubMed]
- Van Nimwegen, M.; Speelman, A.D.; Hofman-Van Rossum, E.J.M.; Overeem, S.; Deeg, D.J.H.; Borm, G.F.; Van Der Horst, M.H.L.; Bloem, B.R.; Munneke, M. Physical Inactivity in Parkinson’s Disease. J. Neurol. 2011, 258, 2214–2221. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, E.; Galli, S.; Alborghetti, M.; De Carolis, L.; Zampogna, A.; Hansen, C.; Vuillerme, N.; Suppa, A.; Pontieri, F.E. Four Days Are Enough to Provide a Reliable Daily Step Count in Mild to Moderate Parkinson’s Disease through a Commercial Smartwatch. Sensors 2023, 23, 8971. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.J.; Thom, J.M.; Wewege, M.A.; Ward, R.E.; Parmenter, B.J. Accuracy of Step Count Measured by Physical Activity Monitors: The Effect of Gait Speed and Anatomical Placement Site. Gait Posture 2017, 57, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Nakagata, T.; Murakami, H.; Kawakami, R.; Tripette, J.; Nakae, S.; Yamada, Y.; Ishikawa-Takata, K.; Tanaka, S.; Miyachi, M. Step-Count Outcomes of 13 Different Activity Trackers: Results from Laboratory and Free-Living Experiments. Gait Posture 2022, 98, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.K.; Hasanaj, K.; Connolly, G.; Millen, L.; Muench, J.; Bidolli, N.S.C.; Preston, M.A.; Montoye, A.H.K. Comparison of Wristand Hip-Worn Activity Monitors When Meeting Step Guidelines. Prev. Chronic Dis. 2022, 19, E18. [Google Scholar] [CrossRef] [PubMed]
- Birrer, V.; Elgendi, M.; Lambercy, O.; Menon, C. Evaluating Reliability in Wearable Devices for Sleep Staging. NPJ Digit. Med. 2024, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Gruwez, A.; Libert, W.; Ameye, L.; Bruyneel, M. Reliability of Commercially Available Sleep and Activity Trackers with Manual Switch-to-Sleep Mode Activation in Free-Living Healthy Individuals. Int. J. Med. Inform. 2017, 102, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Fazio, P.; Granieri, G.; Casetta, I.; Cesnik, E.; Mazzacane, S.; Caliandro, P.; Pedrielli, F.; Granieri, E. Gait Measures with a Triaxial Accelerometer among Patients with Neurological Impairment. Neurol. Sci. 2013, 34, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Bursais, A.K.; Gentles, J.A.; Albujulaya, N.M.; Stone, M.H. Field Based Assessment of a Tri-Axial Accelerometers Validity to Identify Steps and Reliability to Quantify External Load. Front. Physiol. 2022, 13, 942954. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Mendoza, J.; He, F.; Calhoun, S.L.; Vgontzas, A.N.; Liao, D.; Bixler, E.O. Objective Short Sleep Duration Increases the Risk of All-Cause Mortality Associated with Possible Vascular Cognitive Impairment. Sleep Health 2020, 6, 71–78. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Population | People with Parkinson’s disease | Children, adolescents, patients diagnosed with other types of parkinsonism, or animal models |
Intervention | Measurements of daily step counts and sleep parameters | None |
Comparator | Not applicable | Not applicable |
Outcomes | Any measure quantifying daily step counts and sleep parameters (e.g., correlation coefficients) | None |
Study design | Original articles published in English, French, German, Italian, or Portuguese in a peer-reviewed journal. | Case reports, abstracts, editorials, letters to the editor, case studies, books, chapters, reviews, meta-analyses, and other grey literature materials (government reports, policy statements and issues papers, conference proceedings, preprints articles, theses, and dissertations). |
Study | Quality Index Item Number | Total | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 5 | 6 | 7 | 10 | 11 | 12 | 18 | 20 | 21 | 22 | ||
Aktar et al., 2020 [53] | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 10 |
Aktar et al., 2020 [52] | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 12 |
Prusynski et al., 2022 [51] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 9 |
Adams et al., 2024 [50] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 10 |
Schalkamp et al., 2024 [49] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 7 |
% | 100 | 80% | 80% | 60% | 100% | 100% | 100% | 0 | 0 | 100% | 100% | 20% | 60% |
First Author, Year | Country | Title | Journal | Objective | Funding Source | Design |
---|---|---|---|---|---|---|
Aktar et al., 2020 [53] | Turkey | Does the postural stability of patients with Parkinson’s disease affect the physical activity? | International Journal of Rehabilitation Research | To examine the physical activity levels in patients with Parkinson’s disease, compared with healthy subjects, and their association with postural stability. | Not reported. | Cross-sectional study |
Aktar et al., 2020 [52] | Turkey | Physical activity in patients with Parkinson’s disease: A holistic approach based on the ICF model | Clinical Neurology and Neurosurgery | (1) To compare the effect of biopsychosocial factors based on ICF (international classification of functioning, disability, and health) domains in sedentary and non-sedentary PD patients. (2) To investigate the association between physical activity level and biopsychosocial factors within sedentary and non-sedentary PD patients. | This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. | Retrospective subgroup analysis of a previously published cross-sectional design |
Prusynski et al., 2022 [51] | USA | The association between sleep deficits and sedentary behavior in people with mild Parkinson disease | Disability and Rehabilitation | To use a commercially available activity monitor to examine the association between sleep and physical activity in participants with mild PD and in healthy older adults. | The Institute of Translational Health Sciences at the University of Washington under Grant UL1TR002319. The National Institutes of Health under Grant NICHD/NCMRR K01HD076183. | Secondary analysis of a prospective observational study |
Adams et al., 2024 [50] | USA | Using a smartwatch and smartphone to assess early Parkinson’s disease in the WATCH-PD study over 12 months | npj Parkinson’s Disease | “We evaluated the longitudinal change in these assessments over 12 months in a multicenter observational study using a generalized additive model, which permitted flexible modeling of at-home data”. | Biogen, Takeda, and the members of the Critical Path for Parkinson’s Consortium 3DT Initiative, Stage 2. Innovation in Regulatory Science Award from the Burroughs Wellcome Fund. | Multicenter longitudinal observational study |
Schalkamp et al., 2024 [49] | United Kingdom | Digital outcome measures from smartwatch data relate to non-motor features of Parkinson’s disease | npj Parkinson’s Disease | We used rich multi-modal data from the Parkinson’s disease Progression Marker Initiative (PPMI) cohort to investigate how standard digital outcome measures of physical activity, sleep, and vital signs obtained from passively collected free-living smartwatch data relate to clinically assessed non-motor signs and symptoms and evaluated their potential utility in the context of clinical care. | PPMI—a public-private partnership—is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including 4D Pharma, Abbvie, AcureX, Allergan, Amathus Therapeutics, Aligning Science Across Parkinson’s, AskBio, Avid Radiopharmaceuticals, BIAL, Biogen, Biohaven, BioLegend, BlueRock Therapeutics, Bristol-Myers Squibb, Calico Labs, Celgene, Cerevel Therapeutics, Coave Therapeutics, DaCapo Brainscience, Denali, Edmond J. Safra Foundation, Eli Lilly, Gain Therapeutics, GE HealthCare, Genentech, GSK, Golub Capital, Handl Therapeutics, Insitro, Janssen Neuroscience, Lundbeck, Merck, Meso Scale Discovery, Mission Therapeutics, Neurocrine Biosciences, Pfizer, Piramal, Prevail Therapeutics, Roche, Sanofi, Servier, Sun Pharma Advanced Research Company, Takeda, Teva, UCB, Vanqua Bio, Verily, Voyager Therapeutics, the Weston Family Foundation, and Yumanity Therapeutics. | Longitudinal study |
First Author, Year | Sample Size and Sex [M (n, %)] | Age (Years) | Anthropometric Measures (Height, m; Weight, kg; and BMI, kg/m2) | Disease Duration (Years) | H&Y Scale | MDS-UPDRS | Medication (LEDD, mg) | Medication State |
---|---|---|---|---|---|---|---|---|
Aktar et al., 2020 [53] | PD: n = 56, M: 34 (60.7%) Control: n = 58, M: 33 (56.9%) | PD: 66.00 (59.50–71.75) Control: 63.50 (57.75–69.25) | PD: Height: 1.66 (1.59–1.74) Weight: 78.50 (71.00–88.50) BMI: 28.54 (25.93–30.84) Control: Height: 1.67 (1.59–1.73) Weight: 78.00 (64.75–85.00) BMI: 27.59 (24.89–29.47) | 5.00 (2.00–8.00) | 2.00 (2.00–2.50) | MDS-UPDRS II: 8.50 (4.12–11.00) MDS-UPDRS III: 24.00 (17.00–29.75) Rigidity: 3.00 (2.00–5.00) Rest tremor: 1.00 (0.00–2.00) | 478.50 (343.75–737.50) | On |
Aktar et al., 2020 [52] | Sedentary PD: n = 25, M: 15 (60.0%) Non-sedentary PD: n = 35, M: 24 (68.6%) | Sedentary PD: 67.52 ± 7.24 Non-sedentary PD: 64.77 ± 6.85 | Sedentary PD: Height: 1.67 ± 0.10 Weight: 79.28 ± 12.11 BMI: 28.34 ± 2.71 Non-sedentary PD: Height: 1.67 ± 0.09 Weight: 80.06 ± 11.66 BMI: 28.51 ± 3.70 | Sedentary PD: 5.72 ± 4.25 Non-sedentary PD: 5.22 ± 4.02 | Sedentary PD: 2.18 ± 0.65 Non-sedentary PD: 2.00 ± 0.64 | Sedentary PD: MDS-UPDRS II: 8.90 ± 4.98 MDS-UPDRS III: 4.84 ± 9.33 Non-sedentary PD: MDS-UPDRS II: 7.20 ± 4.26 MDS-UPDRS III: 23.74 ± 10.09 | Sedentary PD: 620.50 ± 364.45 Non-sedentary PD: 541.85 ± 301.01 | On |
Prusynski et al., 2022 [51] | PD: n = 25, M: NR HOA: n = 27, M: NR | PD: 69 ± 6 HOA: 67 ± 5 | NR | NR | Median: 1 | Total: 28 ± 16 MDS-UPDRS III: 12 ± 9 | NR | NR |
Adams et al., 2024 [50] | Baseline: PD: n = 82, M: 46 (56%) Control: n = 50, M: 18 (36%) Completed month 12 visit: PD: n = 57, M: 32 (56%) Control: n = 49, 18 (37%) | Baseline: PD: 63.3 ± 9.4 Control: 60.2 ± 9.9 Completed month 12 visit: PD: 64.1 ± 9.4 Control: 61.5 ± 9.7 | NR | Baseline: 0.83 ± 0.61 Completed month 12 visit: 1.84 ± 0.61 | n (%): Baseline: stage 0: 0 (0) stage 1: 19 (23) stage 2: 62 (76) stage 3–5: 1 (1) Completed month 12 visit: Stage 0: 0 (0) Stage 1: 7 (12) Stage 2: 49 (86) Stage 3–5: 1 (2) | Baseline: PD: Total: 35.2 ± 12.4 MDS-UPDRS I: 5.5 ± 3.6 MDS-UPDRS II: 5.6 ± 3.8 MDS-UPDRS III: 24.1 ± 10.2 Control: Total: 5.9 ± 5.3 MDS-UPDRS I: 2.8 ± 2.6 MDS-UPDRS II: 0.4 ± 1.0 MDS-UPDRS III: 2.7 ± 3.5 Completed month 12 visit: PD: Total: 40.5 ± 14.2 MDS-UPDRS I: 5.9 ± 4.0 MDS-UPDRS II: 7.1 ± 4.7 MDS-UPDRS III: 27.4 ± 11.1 Control: Total: 6.4 ± 5.0 MDS-UPDRS I: 3.0 ± 3.5 MDS-UPDRS II: 0.4 ± 1.1 MDS-UPDRS III: 2.9 ± 3.3 | NR | Off at baseline |
Schalkamp et al., 2024 [49] | n = 149, M: NR | 67.69 ± 7.54 | NR | NR | <3 at baseline | NR | NR | Off at baseline |
Study | Sensor Name | Manufacturer | Sensor Type | N of Sensor | Wearing Location | Side | Duration | Setting | Wear Time |
---|---|---|---|---|---|---|---|---|---|
Aktar et al., 2020 [53] | SenseWear Arm Band activity monitor | BodyMedia, Inc., Pittsburg, PA, USA | Biaxial accelerometer | 1 | Triceps (upper extremity) | Dominant | 7 consecutive days | Home | Continuously except during showering or swimming. |
Aktar et al., 2020 [52] | SenseWear Arm Band activity monitor | BodyMedia, Inc., Pittsburg, PA, USA | Biaxial accelerometer | 1 | Triceps (upper extremity) | Dominant | 7 consecutive days | Home | Continuously except during showering or swimming. |
Prusynski et al., 2022 [51] | Fitbit Charge HR | FitbitInc., San Francisco, CA, USA | Triaxial accelerometer | 1 | Wrist | Non-dominant | 14 days and 14 nights | Home | Continuously except for the time needed to charge the device and during water-related activities. The average percentage of time during the 14-day period that the device was not worn was 6% in the HOA group and 5% in the PD group. |
Adams et al., 2024 [50] | Apple Watch 4 or 5 | Apple, Inc., Cupertino, CA, USA | Triaxial accelerometer | 1 | Wrist | More affected side | 12 months (for at least 1 week after each in-person visit (6 in-person visits)) | Home | PD: an average of 14.4 h/day. Control: an average of 13.5 h/day. |
Schalkamp et al., 2024 [49] | Verily Study Watch | Verily Life Sciences LLC, South San Francisco, CA, USA | Triaxial accelerometer | 1 | Wrist | Not reported | A mean of 485 days | Home | Not reported. |
Author, Year | Outcome Measure | Statistical Analysis | Significance | Results (Mean ± SD or Median (IQR)) or Direction of Difference (↑↓) with Absolute Value |
---|---|---|---|---|
Aktar et al., 2020 [53] | Number of steps (steps/week) Sleep duration (minutes/week) | Mann–Whitney U Test | p < 0.05 p < 0.05 | Number of steps: ↓ (16,248; 31%) PD group: 35,606.50 (24,766.50–51,020.25) vs. healthy control group: 51,854.50 (36,724.50–62,772.00) Sleep duration: ↓ (162; 6%) PD group: 2598.50 (1950.75–2947.00) vs. healthy control group: 2760.50 (2515.75–3196.75) |
Aktar et al., 2020 [52] | Number of steps (steps/day) Sleep duration (hours/day) | Mann–Whitney U test | NS: p > 0.05 | Sleep duration: ↑ Sedentary PD group: median (IQR): 6.58 (5.67–7.40), mean ± SD: 6.55 ± 1.90 vs. non-sedentary PD group: median (IQR): 5.69 (4.55–7.37), mean ± SD: 5.99 ± 1.71 |
Prusynski et al., 2022 [51] | Number of steps (steps/day) Nighttime sleep: Total nighttime sleep (minutes) Number of Awakenings Wake time after sleep onset (minutes) Daytime sleep: Total daytime sleep (minutes) Number of naps | Wilcoxon rank-sum tests | p < 0.001 p < 0.01 NS: p = 0.50 NS: p = 0.56 NS: p = 0.12 NS: p = 0.07 | Number of steps: ↓ (5792; 49%) PD group: 5953 ± 2365 vs. HOA group: 11 745 ± 3891 Total nighttime sleep: ↓ (75; 18%) PD group: 347 ± 108 vs. HOA group: 422 ± 41 Number of Awakenings: PD group: 1.9 ± 1.3 vs. HOA group: 2.2 ± 1.32 Wake time after sleep onset: PD group: 5.2 ± 3.4 vs. HOA group: 6.0 ± 4.0 Total daytime sleep: PD group: 112 ± 129 vs. HOA group: 71 ± 135 ↑ Number of naps: PD group: 1.3 ± 1.6 vs. HOA group: 0.6 ± 1.2 |
Adams et al., 2024 [50] | Number of steps (steps/day; steps/hour) RBDSQ ESS | Pairwise comparisons | NS: p = 0.13 p < 0.001 NS: p = 0.16 NS: p = 0.29 p < 0.001 p < 0.001 NS: p = 0.66 NS: p = 0.50 | Number of steps: Steps/day: Baseline: ↓ PD: 3494 ± 1930 vs. Control: 4930 ± 3270 Steps/hour: Baseline: ↓ (124; 34%) PD: 238 ± 129 vs. control: 362 ± 214 Steps/day: PD (n = 10): ↓ Baseline: 3052 ± 1306 vs. at month 12: 2331 ± 2010 Steps/hour: PD (n = 10): ↓ Baseline: 198 ± 82 vs. at month 12: 159 ± 142 RBDSQ: Baseline: ↑ (1.7; 63%) PD: 4.4 ± 3.1 vs. control: 2.7 ± 2.0 Completed month 12 visit: ↑ (2; 80%) PD: 4.5 ± 3.2 vs. control: 2.5 ± 2.1 ESS: Baseline: PD: 4.9 ± 3.2 vs. control: 4.6 ± 3.7 Completed month 12 visit: PD: 4.8 ± 2.5 vs. control: 4.4 ± 3.4 |
Sleep Parameters | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sleep Scales | Wearable Device | |||||||||||
ESS | RBDSQ | Total Sleep Time (Hours) | Sleep Efficiency | Number of Awakenings | Wake After Sleep Onset Hour | Total NREM Time (Hours) | Total REM Time (Hours) | Total Deep NREM Time (Hours) | Total Light NREM Time (Hours) | 30 min Additional Nighttime Sleep | ||
Step Count: Wearable Device | Step Count Total (Hours) | r = 0.313678 (p value = 0.006 FDR corrected p = 0.046) | r= 0.030652 (p value = 0.794 FDR corrected p = 0.891) | r = 0.339985 (p value = 0.042 FDR corrected p = 0.154) | r = 0.320028 (p value = 0.057 FDR corrected p = 0.190) | r = −0.12816 (p value = 0.456 FDR corrected p = 0.722) | r = −0.30702 (p value = 0.068 FDR corrected p = 0.220) | r = 0.345606 (p value = 0.0389 FDR corrected p = 0.147) | r = 0.193733 (p value = 0.257 FDR corrected p = 0.538) | r = 0.047982 (p value = 0.781 FDR corrected p = 0.890844) | r = 0.339916 (p value = 0.042 FDR corrected p = 0.155) | - |
Steps/day | - | - | - | - | - | - | - | - | - | - | Estimate (95% CI): 0.3 (−370, 371) p value = 1.00 Standardized β\betaβ (95% CI): <0.01 (−10.0, 10.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milane, T.; Bianchini, E.; Chardon, M.; Barbieri, F.A.; Hansen, C.; Vuillerme, N. Associations Between Daily Step Counts and Sleep Parameters in Parkinson’s Disease: A Scoping Review. Sensors 2025, 25, 4447. https://doi.org/10.3390/s25144447
Milane T, Bianchini E, Chardon M, Barbieri FA, Hansen C, Vuillerme N. Associations Between Daily Step Counts and Sleep Parameters in Parkinson’s Disease: A Scoping Review. Sensors. 2025; 25(14):4447. https://doi.org/10.3390/s25144447
Chicago/Turabian StyleMilane, Tracy, Edoardo Bianchini, Matthias Chardon, Fabio Augusto Barbieri, Clint Hansen, and Nicolas Vuillerme. 2025. "Associations Between Daily Step Counts and Sleep Parameters in Parkinson’s Disease: A Scoping Review" Sensors 25, no. 14: 4447. https://doi.org/10.3390/s25144447
APA StyleMilane, T., Bianchini, E., Chardon, M., Barbieri, F. A., Hansen, C., & Vuillerme, N. (2025). Associations Between Daily Step Counts and Sleep Parameters in Parkinson’s Disease: A Scoping Review. Sensors, 25(14), 4447. https://doi.org/10.3390/s25144447