Multiplexing and Demultiplexing of Aperture-Modulated OAM Beams
Abstract
Highlights
- The aperture size carried by the orbital angular momentum could be modulated by the external variable aperture as a new information carrier.
- The field of the beams propagating through turbulence was derived and discretized with Gauss–Legendre quadrature formulas. Based on this, the demultiplexing method was improved, and the beam OAM states, amplitude, Gaussian spot radius and aperture radius were decoded.
- The aperture size as a new information carrier can be modulated more easily through the external variable aperture.
- Through discretization with Gauss–Legendre quadrature formulas, the information carried by the beams with an integral expression at the receiver plane can be demultiplexed.
Abstract
1. Introduction
2. Materials and Methods
2.1. Gaussian Vortex Beam
2.2. Beam Center Location Correction
2.3. Multi-Parameter Demultiplexing Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 2015, 7, 66–106. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Coerwinkel, R.; Kristensen, M.; Woerdman, J.P. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 1994, 112, 321–327. [Google Scholar] [CrossRef]
- Oemrawsingh, S.S.R.; Houwelingen, J.A.W.; Eliel, E.R.; Woerdman, J.P.; Verstegen, E.J.K.; Kloosterboer, J.G.; Hooft, G.W. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. 2004, 43, 688–694. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Almazov, A.A.; Khonina, S.N.; Soifer, V.A.; Elfstrom, H.; Turunen, J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J. Opt. Soc. Am. A 2005, 22, 849–861. [Google Scholar] [CrossRef]
- Yan, Y.; Xie, G.; Lavery, M.P.J.; Huang, H.; Ahmed, N.; Bao, C.; Ren, Y.; Cao, Y.; Li, L.; Zhao, Z.; et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun. 2014, 5, 4876. [Google Scholar] [CrossRef]
- Huang, H.; Xie, G.; Yan, Y.; Ahmed, N.; Ren, Y.; Yue, Y.; Rogawski, D.; Willner, M.J.; Erkmen, B.I.; Birnbaum, K.M.; et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett. 2014, 39, 197–200. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A.E.; Ramachandran, S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013, 340, 1545–1548. [Google Scholar] [CrossRef]
- Torner, L.; Torres, J.P.; Carrasco, S. Digital spiral imaging. Opt. Express 2005, 13, 873–881. [Google Scholar] [CrossRef]
- Sztul, H.I.; Alfano, R.R. The Poynting vector and angular momentum of Airy beams. Opt. Express 2008, 16, 9411–9416. [Google Scholar] [CrossRef] [PubMed]
- Scaffardi, M.; Malik, M.N.; Zhang, N.; Rydlichowski, P.; Toccafondo, V.; Klitis, C. 10 OAM×16 wavelengths two-layer switch based on an integrated mode multiplexer for 19.2 tb/s data traffic. J. Lightwave Technol. 2021, 39, 3217–3224. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Chen, L.; Pu, M.B.; Jin, J.J.; Hong, M.; Luo, X.G. Orbital angular momentum multiplexing and demultiplexing by a single metasurfaces. Adv. Opt. Mater. 2017, 5, 1600502. [Google Scholar] [CrossRef]
- Li, F.; Nie, S.; Ma, J.; Yuan, C. Orbital angular momentum multiplexing holography based on radial phase encoding. IEEE Photonics Technol. Lett. 2023, 35, 998–1001. [Google Scholar] [CrossRef]
- Zhou, J. OAM states generation/detection based on the multimode interference effect in a ring core fiber. Opt. Express 2015, 23, 10247–10258. [Google Scholar] [CrossRef]
- He, G.; Zheng, Y.; Zhou, C.; Li, S.; Shi, Z.; Deng, Y.; Zhou, Z. Multiplexed manipulation of orbital angular momentum and wavelength in metasurfaces based on arbitrary complex-amplitude control. Light: Sci. Appl. 2024, 13, 98. [Google Scholar] [CrossRef]
- Deng, D.; Li, Y.; Zhao, H.; Han, Y.; Qu, S. High-capacity spatial-division multiplexing with orbital angular momentum based on multi-ring fiber. J. Opt. 2019, 21, 055601. [Google Scholar] [CrossRef]
- Zhang, N.; Xiong, B.; Zhang, X.; Yuan, X. High-capacity and multi-dimensional orbital angular momentum multiplexing holography. Opt. Express 2023, 31, 31884–31897. [Google Scholar] [CrossRef]
- Shi, Z.; Wan, Z.; Zhan, Z.; Liu, K.; Liu, Q.; Fu, X. Super-resolution orbital angular momentum holography. Nat. Commun. 2023, 14, 1869. [Google Scholar] [CrossRef]
- Liu, X.; Deng, D.; Yang, Z.; Li, Y. Dense Space-Division Multiplexing Exploiting Multi-Ring Perfect Vortex. Sensors 2023, 23, 9533. [Google Scholar] [CrossRef]
- Wang, X.; Song, Y.; Pang, F.; Li, Y.; Zhang, Q.; Zhuang, L.; Guo, X.; Yang, S.; He, X.; Yang, Y. High-dimension data coding and decoding by radial mode and orbital angular momentum mode of a vortex beam in free space. Opt. Laser. Eng. 2021, 137, 106352. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, H.; Xie, G.; Ahmed, N.; Yan, Y.; Erkmen, B.I.; Chandrasekaran, N.; Lavery, M.P.J.; Steinhoff, N.K.; Tur, M.; et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. Opt. Lett. 2013, 38, 4062–4065. [Google Scholar] [CrossRef] [PubMed]
- Anguita, J.A.; Neifeld, M.A.; Vasic, B.V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. Appl. Opt. 2008, 47, 2414–2429. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ye, T.; Wu, Z. Probability property of orbital angular momentum distortion in turbulence. Opt. Express 2021, 29, 44157–44173. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, G.; Ye, T.; Wu, Z.; Bai, L. Scintillation of the orbital angular momentum of a Bessel Gaussian beam and its application on multi-parameter multiplexing. Opt. Express 2023, 31, 4507–4520. [Google Scholar] [CrossRef]
- Andrews, L.; Phillips, R. Laser Beam Propagation Through Random Media, 2nd ed.; SPIE: Bellingham, WA, USA, 2005. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products, 7th ed.; Elsevier Academic: Burlington, VT, USA, 2007. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Government Printing Office: Washington, DC, USA, 1968. [Google Scholar]
- Johansson, E.M.; Gavel, D.T. Simulation of stellar speckle imaging. Proc. SPIE 1994, 2200, 372–383. [Google Scholar]
- Eyyuboglu, H.T. Bit error rate analysis of Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams with the help of random phase screens. Appl. Opt. 2014, 53, 3758–3763. [Google Scholar] [CrossRef]
- Churnside, J.H.; Lataitis, R.J. Wander of an optical beam in the turbulent atmosphere. Appl. Opt. 1990, 29, 926–930. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Z.; Shang, Q.; Bai, L.; Bai, L. Propagation of multiple Bessel Gaussian beams through weak turbulence. Opt. Express 2019, 27, 12780–12793. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wang, L.; Gong, L.; Yang, Z.; Yang, L.; Li, Y.; Wu, Z. Multiplexing and Demultiplexing of Aperture-Modulated OAM Beams. Sensors 2025, 25, 4229. https://doi.org/10.3390/s25134229
Wang W, Wang L, Gong L, Yang Z, Yang L, Li Y, Wu Z. Multiplexing and Demultiplexing of Aperture-Modulated OAM Beams. Sensors. 2025; 25(13):4229. https://doi.org/10.3390/s25134229
Chicago/Turabian StyleWang, Wanjun, Liguo Wang, Lei Gong, Zhiqiang Yang, Ligong Yang, Yao Li, and Zhensen Wu. 2025. "Multiplexing and Demultiplexing of Aperture-Modulated OAM Beams" Sensors 25, no. 13: 4229. https://doi.org/10.3390/s25134229
APA StyleWang, W., Wang, L., Gong, L., Yang, Z., Yang, L., Li, Y., & Wu, Z. (2025). Multiplexing and Demultiplexing of Aperture-Modulated OAM Beams. Sensors, 25(13), 4229. https://doi.org/10.3390/s25134229