Emerging Role of Nb2CTx MXene in Sensors: The Roadmap from Synthesis to Health and Environmental Monitoring
Abstract
:1. Introduction
2. Synthesis, Crystal Structure, and Morphology
3. Properties
3.1. Optical
3.2. Optoelectronic
4. Gas Sensing Properties
4.1. 4-Nitrophenol, Propofol, Serotonin, and NO2 Sensing
4.2. Tea, Tyramine, and Humidity Sensing
4.3. Pressure, H2, Methanol, and NH3 Sensor
4.4. Hemoglobin, Sulfamethoxazole, Nonenzymatic Glucose, and Acetone Sensor
4.5. Gas Sensing Mechanisms
5. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anwer, A.H.; Saadaoui, M.; Mohamed, A.T.; Ahmad, N.; Benamor, A. State-of-the-Art advances and challenges in wearable gas sensors for emerging applications: Innovations and future prospects. Chem. Eng. J. 2024, 502, 157899. [Google Scholar] [CrossRef]
- Aakko-Saksa, P.T.; Lehtoranta, K.; Kuittinen, N.; Järvinen, A.; Jalkanen, J.; Johnson, K.; Jung, H.; Ntziachristos, L.; Gagné, S.; Takahashi, C.; et al. Reduction in greenhouse gas and other emissions from ship engines: Current trends and future options. Prog. Energy Combust. Sci. 2022, 94, 101055. [Google Scholar] [CrossRef]
- Shetty, S.S.; Deepthi, D.; Harshitha, S.; Sonkusare, S.; Naik, P.B.; Kumari, N.S.; Madhyastha, H. Environmental pollutants and their effects on human health. Heliyon 2023, 9, e19496. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gu, S.; Chen, T. Experimental investigation of the impact of CO, C2H6, and H2 on the explosion characteristics of CH4. ACS Omega 2020, 5, 24684–24692. [Google Scholar] [CrossRef]
- Khazaei, M.; Hosseini, M.S.; Haghighi, A.M.; Misaghi, M. Nanosensors and their applications in early diagnosis of cancer. Sens. Bio-Sens. Res. 2023, 41, 100569. [Google Scholar] [CrossRef]
- Naik, A.; Lee, H.S.; Herrington, J.; Barandun, G.; Flock, G.; Güder, F.; Gonzalez-Macia, L. Smart packaging with disposable NFC-enabled wireless gas sensors for monitoring food spoilage. ACS Sens. 2024, 9, 6789–6799. [Google Scholar] [CrossRef]
- Wang, L.; Song, J.; Yu, C. Recent progress on mass-sensitive gas sensors for environmental and industrial applications. Measurement 2025, 249, 117039. [Google Scholar] [CrossRef]
- Xu, X.; Wang, K.; Xue, S. Advances in semiconductor-based sensors for hazardous gas detection in coal mines. Alex. Eng. J. 2025, 121, 452–464. [Google Scholar] [CrossRef]
- Barandun, G.; Gonzalez-Macia, L.; Lee, H.S.; Dincer, C.; Güder, F. Challenges and opportunities for printed electrical gas sensors. ACS Sens. 2022, 7, 2804–2822. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, Y.; Xu, J.; Debliquy, M. Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection. Sens. Actuators A 2019, 289, 118–133. [Google Scholar] [CrossRef]
- Szary, M.J. Toward high selectivity of sensor arrays: Enhanced adsorption interaction and selectivity of gas detection (N2, O2, NO, CO, CO2, NO2, SO2, AlH3, NH3, and PH3) on transition metal dichalcogenides (MoS2, MoSe2, and MoTe2). Acta Mater. 2024, 274, 120016. [Google Scholar] [CrossRef]
- Gupta, S.; Ravikant, C.; Kaur, A. One-pot wet chemical synthesis of reduced graphene oxide-zinc oxide nanocomposites for fast and selective ammonia sensing at room temperature. Sens. Actuators A 2021, 331, 112965. [Google Scholar] [CrossRef]
- Armstrong, M.; Mehrabi, H.; Naveed, N. An overview of modern metal additive manufacturing technology. J. Manuf. Process. 2022, 84, 1001–1029. [Google Scholar] [CrossRef]
- Kumbhakar, P.; Jayan, J.S.; Madhavikutty, A.S.; Sreeram, P.; Saritha, A.; Ito, T.; Tiwary, C.S. Prospective applications of two-dimensional materials beyond laboratory frontiers: A review. iScience 2023, 26, 106671. [Google Scholar] [CrossRef]
- Jana, R.; Hajra, S.; Rajaitha, P.M.; Mistewicz, K.; Kim, H.J. Recent advances in multifunctional materials for gas sensing applications. J. Environ. Chem. Eng. 2022, 10, 108543. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor gas sensors: Materials, technology, design, and application. Sensors 2019, 20, 6694. [Google Scholar] [CrossRef]
- Mirzaei, A.; Ansari, H.R.; Shahbaz, M.; Kim, J.; Kim, H.W.; Kim, S.S. Metal oxide semiconductor nanostructure gas sensors with different morphologies. Chemosensors 2022, 10, 289. [Google Scholar] [CrossRef]
- Kumar, P.P.; Singh, V. Enhanced dual gas sensing performance of MoS2/MoO3 nanostructures for NH3 and NO2 detection. Ceram. Int. 2024, 50, 21978–21988. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar]
- Pavelko, R.; Vasiliev, A.; Llobet, E.; Vilanova, X.; Barrabés, N.; Medina, F.; Sevastyanov, V. Comparative study of nanocrystalline SnO2 materials for gas sensor application: Thermal stability and catalytic activity. Sens. Actuators B 2009, 137, 637–643. [Google Scholar] [CrossRef]
- Jayaprakash, N.; Elumalai, K.; Manickam, S.; Bakthavatchalam, G.; Tamilselvan, P. Carbon nanomaterials: Revolutionizing biomedical applications with promising potential. Nano Mater. Sci. 2024. [Google Scholar] [CrossRef]
- Song, J.; Luo, Y.; Hao, Z.; Qu, M.; Huang, C.; Wang, Z.; Yang, J.; Liang, Q.; Jia, Y.; Song, Q.; et al. Graphene-based wearable biosensors for point-of-care diagnostics: From surface functionalization to biomarker detection. Mater. Today Bio 2025, 32, 101667. [Google Scholar] [CrossRef]
- Pang, S.; Io, W.F.; Guo, F.; Zhao, Y.; Hao, J. Two-dimensional MXene-based devices for information technology. Mater. Sci. Eng. R Rep. 2025, 163, 100894. [Google Scholar] [CrossRef]
- Wang, R.; Jang, W.Y.; Zhang, W.; Reddy, C.V.; Kakarla, R.R.; Li, C.; Gupta, V.K.; Shim, J.; Aminabhavi, T.M. Emerging two-dimensional (2D) MXene-based nanostructured materials: Synthesis strategies, properties, and applications as efficient pseudo-supercapacitors. Chem. Eng. J. 2023, 472, 144913. [Google Scholar] [CrossRef]
- Hussain, I.; Sajjad, U.; Kewate, O.J.; Amara, U.; Bibi, F.; Hanan, A.; Potphode, D.; Ahmad, M.; Javed, M.S.; Rosaiah, P.; et al. Double transition-metal MXenes: Classification, properties, machine learning, artificial intelligence, and energy storage applications. Mater. Today Phys. 2024, 42, 101382. [Google Scholar] [CrossRef]
- Ullah, K.; Alam, N.; Uddin, S.; Oh, W. Advanced concept and perspectives toward MXenes based energy storage device: Comprehensive review. Materialia 2024, 34, 102089. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, K.; Zhang, Z.; He, S.; Shen, Z.; Jiang, W.; Huang, Y.; Xu, Y.; Jiang, Q.; Pan, L.; et al. Additive-Free Anode with High Stability: Nb2CTx MXene Prepared by HCl-LiF Hydrothermal Etching for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2024, 16, 28709–28718. [Google Scholar] [CrossRef]
- Guan, G.; Guo, F. A Review of Nb2CTx MXene: Synthesis, Properties and Applications. Batteries 2023, 9, 235. [Google Scholar] [CrossRef]
- Ramachandran, T.; Mourad, A.; ElSayed, M.S. Nb2CTx-Based MXenes most recent developments: From principles to new applications. Energies 2022, 16, 3520. [Google Scholar] [CrossRef]
- Ashebo, M.M.; Liu, N.; Yu, F.; Ma, J. Surface functional modification of Nb2CTx MXene for high performance capacitive deionization. Sep. Purif. Technol. 2024, 343, 127125. [Google Scholar] [CrossRef]
- Ko, J.; Park, I.; Hong, K.; Kwon, K.C. Recent advances in chemoresistive gas sensors using two-dimensional materials. Nanomaterials 2023, 14, 1397. [Google Scholar] [CrossRef] [PubMed]
- Aghaei, S.M.; Aasi, A.; Panchapakesan, B. Experimental and theoretical advances in MXene-based gas sensors. ACS Omega 2021, 6, 2450–2461. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Zhang, S.; Wang, J.; Wang, M.; Shan, J.; Zhou, S. Charge controlled capture/release of CH4 on Nb2CTx MXene: A first-principles calculation. J. Mol. Graph. Modell. 2021, 110, 108056. [Google Scholar] [CrossRef]
- Protyai, M.I.H.; Rashid, A.B. A comprehensive overview of recent progress in MXene-based polymer composites: Their fabrication processes, advanced applications, and prospects. Heliyon 2024, 10, e37030. [Google Scholar] [CrossRef]
- Dong, H.; Xiao, P.; Jin, N.; Wang, B.; Liu, Y.; Lin, Z. Molten salt derived Nb2CTx MXene anode for Li-ion batteries. ChemElectroChem 2021, 8, 957–962. [Google Scholar] [CrossRef]
- Tang, Y.; Cheng, Z.; Yue, H.; Wang, X.; Wang, H.; Du, Z.; Cheng, X.; Dai, R.; Du, X.; Wu, D. Nb2CTx MXene/delignified wood-supported phase-change composites with desirable photothermal conversion efficiency and enhanced flame retardancy for solar-thermal energy storage. ACS Appl. Energy Mater. 2024, 7, 2178–2188. [Google Scholar] [CrossRef]
- Eswaran, S.G.; Rashad, M.; Krishna Kumar, A.S.; EL-Mahdy, A.F. A comprehensive review of MXene-based emerging materials for energy storage applications and future perspectives. Chem. Asian J. 2025, 20, e202401181. [Google Scholar] [CrossRef]
- Shuck, C.E.; Ventura-Martinez, K.; Goad, A.; Uzun, S.; Shekhirev, M.; Gogotsi, Y. Safe synthesis of MAX and MXene: Guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 2021, 28, 326–338. [Google Scholar] [CrossRef]
- Mullani, S.; Kim, C.; Lokhande, V.; Ji, T. MXene structural and surface modifications for enhanced Li-ion diffusion in lithium-ion capacitors: A critical mini review of recent advances. Chem. Eng. J. 2025, 510, 161565. [Google Scholar] [CrossRef]
- Hosseini-Shokouh, S.H.; Zhou, J.; Berger, E.; Lv, Z.-P.; Hong, X.; Virtanen, V.; Kordas, K.; Komsa, H.-P. Highly Selective H2S Gas Sensor Based on Ti3C2Tx MXene-organic composites. ACS Appl. Mater. Interfaces 2023, 15, 7063–7073. [Google Scholar] [CrossRef]
- Jin, Z.; Fang, Y.; Wang, X.; Xu, G.; Liu, M.; Wei, S.; Zhou, C.; Zhang, Y.; Xu, Y. Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb2CTx nanosheets. J. Colloid Interface Sci. 2019, 537, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Luo, M.; He, Q.; Huang, X.; Cai, S.; Li, S.; Jia, Z.; Gao, Z. Nb2CTx/MoSe2 composites for a highly sensitive NH3 gas sensor at room temperature. Talanta 2025, 286, 127446. [Google Scholar] [CrossRef] [PubMed]
- Redutskiy, Y.; Camitz-Leidland, C.M.; Vysochyna, A.; Anderson, K.T.; Balycheva, M. Safety systems for the oil and gas industrial facilities: Design, maintenance policy choice, and crew scheduling. Reliab. Eng. Syst. Saf. 2021, 210, 107545. [Google Scholar] [CrossRef]
- Arjun, A.; Ankitha, M.; Shabana, N.; Vaishag, P.; Shamsheera, F.; Mufeeda, M.; Abdul Rasheed, P. An overview on surface modification of niobium MXenes for diagnostic and prognostic applications. FlatChem 2023, 41, 100538. [Google Scholar] [CrossRef]
- Yuan, R.; Yang, Y.; Zou, B.; Zhang, Y. MXene-enabled gas sensors for wearable breath monitoring. Chem. Eng. J. 2025, 510, 161414. [Google Scholar] [CrossRef]
- Chaudhary, V.; Khanna, V.; Ahmed Awan, H.T.; Singh, K.; Khalid, M.; Mishra, Y.K.; Bhansali, S.; Li, Z.; Kaushik, A. Towards hospital-on-chip supported by 2D MXenes-based 5th generation intelligent biosensors. Biosens. Bioelectron. 2022, 220, 114847. [Google Scholar] [CrossRef]
- Báez, L.R.D.J.; Rosas, A.S.; Mahale, P.; Mallouk, T.E. Chelation-based route to aluminum-free layered transition metal carbides (MXenes). ACS Omega 2023, 8, 41969–41976. [Google Scholar] [CrossRef]
- Babar, Z.U.D.; Iannotti, V.; Rosati, G.; Zaheer, A.; Velotta, R.; Della Ventura, B.; Álvarez-Diduk, R.; Merkoçi, A. MXenes in healthcare: Synthesis, fundamentals and applications. Chem. Soc. Rev. 2025, 54, 3387–3440. [Google Scholar] [CrossRef]
- Mishra, R.K.; Sarkar, J.; Verma, K.; Chianella, I.; Goel, S.; Nezhad, H.Y. Exploring transformative and multifunctional potential of MXenes in 2D materials for next-generation technology. Open Ceram. 2024, 18, 100596. [Google Scholar] [CrossRef]
- Dutta, T.; Alam, P.; Mishra, S.K. MXenes and MXene-based composites for biomedical applications. J. Mater. Chem. B 2025, 13, 4279–4312. [Google Scholar] [CrossRef]
- Ostermann, M.; Piljević, M.; Akbari, E.; Patil, P.; Zahorodna, V.; Baginskiy, I.; Gogotsi, O.; Gachot, C.; Ripoll, M.R.; Valtiner, M.; et al. Pulsed Electrochemical Exfoliation for an HF-Free Sustainable MXene Synthesis. Small 2025, 21, 2500807. [Google Scholar] [CrossRef] [PubMed]
- Solaimany, F.; Dashan, A.; Pezeshk-Fallah, H.; Khoorgami, G.; Ramezanzadeh, B. 2D MXene nanosheets latest advances in electrochemical applications including energy storage and supercapacitors. J. Energy Storage 2025, 111, 115341. [Google Scholar] [CrossRef]
- Li, J.; Zeng, F.; EI-Demellawi, J.K.; Lin, Q.; Xi, S.; Wu, J.; Tang, J.; Zhang, X.; Liu, X.; Tu, S. Nb2CTx MXene cathode for high-capacity rechargeable aluminum batteries with prolonged cycle lifetime. ACS Appl. Mater. Interfaces 2022, 14, 45254–45262. [Google Scholar] [CrossRef]
- Xiao, J.; Zhao, J.; Ma, X.; Li, L.; Su, H.; Zhang, X.; Gao, H. One-step synthesis Nb2CTx MXene with excellent lithium-ion storage capacity. J. Alloys Compd. 2021, 889, 161542. [Google Scholar] [CrossRef]
- Mashtalir, O.; Lukatskaya, M.R.; Zhao, M.-Q.; Barsoum, M.W.; Gogotsi, Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 2015, 27, 3501–3506. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Hou, Y.; Zhang, Z.; Lu, Y.; Huang, Z.; Liang, G.; Li, M.; Yang, Q.; Ma, J.; et al. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule 2021, 5, 2993–3005. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, J.; Wang, J.; Yue, H.; Du, Z.; Cheng, X.; Wang, H.; Du, X. Nb2CTx MXene/starch hybrid aerogels supported flame-retardant phase change composites with superior solar-thermal conversion efficiency and outstanding electromagnetic interference shielding. Compos. Part A 2025, 193, 108854. [Google Scholar] [CrossRef]
- Makola, L.C.; Moeno, S.; Ouma, C.N.; Sharma, A.; Vo, D.N.; Dlamini, L.N. Facile fabrication of a metal-free 2D-2D Nb2CTx@g-C3N4 MXene-based Schottky-heterojunction with the potential application in photocatalytic processes. J. Alloys Compd. 2022, 916, 165459. [Google Scholar] [CrossRef]
- Huang, J.; Tao, J.; Liu, G.; Lu, L.; Tang, H.; Qiao, G. In situ construction of 1D CdS/2D Nb2CTx MXene Schottky heterojunction for enhanced photocatalytic hydrogen production activity. Appl. Surf. Sci. 2022, 573, 151491. [Google Scholar] [CrossRef]
- Nasir, A.; Sajid, I.H.; Syed, A.; Adnan, F.; Rizwan, S. Promising antibacterial performance of Ag-nanoparticles intercalated Nb2CTx MXene towards E. Coli and S. Aureus. Nano-Struct. Nano-Objects 2024, 40, 101415. [Google Scholar] [CrossRef]
- Hegde, S.; Hakkeem, H.; Alagar, S.; Baasanjav, E.; Rout, C.S.; Jeong, S.M. Laser-driven engineering of modulated structural defects in Nb2CTx MXene-rGO based flexible microsupercapacitors for energy storage application. J. Energy Storage 2025, 111, 115330. [Google Scholar] [CrossRef]
- Syed, A.; Zahra, S.A.; Nasir, A.; Yousaf, M.; Rizwan, S. Improved electrocatalytic efficiency of nitrogen-doped Nb2CTx MXene in basic electrolyte for overall water splitting. Int. J. Hydrogen Energy 2024, 83, 39–50. [Google Scholar] [CrossRef]
- Shen, B.; Hu, X.; Ren, H.; Peng, H.; Shiu, B.; Lin, J.; Lou, C.; Li, T. Rosette-like (Ni,Co)Se2@Nb2CTx MXene heterostructure with abundant Se vacancies for high-performance flexible supercapacitor electrodes. Chem. Eng. J. 2024, 484, 149440. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, H.; Zhong, J.; Jiang, S.; Zhang, G.; Bi, J.; Yan, S.; Hou, H. Photothermocatalytic sterilization performance and mechanism of pure Nb2CTx MXenes nanosheets under infrared light irradiation. Appl. Surf. Sci. 2023, 613, 155990. [Google Scholar] [CrossRef]
- Rajavel, K.; Yu, X.; Zhu, P.; Hu, Y.; Sun, R.; Wong, C. Investigation on the structural quality dependent electromagnetic interference shielding performance of few-layer and lamellar Nb2CTx MXene nanostructures. J. Alloys Compd. 2021, 877, 160235. [Google Scholar] [CrossRef]
- Shi, H.; Li, Q.; Su, T.; Luo, X.; Qin, Z.; Ji, H. CoZnyB/Nb2CTx(MXene) for cinnamaldehyde hydrogenation to cinnamyl alcohol: Effects of Zn. Appl. Catal. A 2025, 689, 120024. [Google Scholar] [CrossRef]
- Lian, M.; Zhao, K.; Chen, L.; Shao, S.; Xu, X.; Chen, D.; Qiao, X.; Zhang, Z. Spontaneous immobilization of single atom in Nb2CTx MXene as excellent nanozyme for detecting and preventing gastric mucosal injury. Biosens. Bioelectron. 2025, 273, 117155. [Google Scholar] [CrossRef]
- Peng, C.; Chen, Y.; Gao, X.; Wei, P.; Lin, Y.; Fu, L.; Zhou, B.; Zhang, M.; Jia, J.; Luan, T. Construction of 2D/2D ZnIn2S4/Nb2CTx (MXene) hybrid with hole transport highway and active facet exposure boost photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2024, 673, 958–970. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Yuan, Z.; Li, J.; Butenko, D.; Ji, Y.; Shanenkov, I.; Li, G.; Han, W. A novel MXene-bridged Z-scheme ZnO@Nb2CTx MXene@carbon nitride nanosheets photocatalyst for efficient enrofloxacin degradation. Chem. Eng. J. 2024, 489, 151505. [Google Scholar] [CrossRef]
- Yan, Y.; Han, H.; Dai, Y.; Zhu, H.; Liu, W.; Tang, X.; Gan, W.; Li, H. Nb2CTx MXene nanosheets for dye adsorption. ACS Appl. Nano Mater. 2021, 4, 11763–11769. [Google Scholar] [CrossRef]
- He, Y.; Sun, H.; Wang, Y.; Yu, Y.; Mu, C.; Chen, L. Nb2CTx MXene coating with inhibition of oxidative stress prepared by Marangoni effect for hemodialysis therapy. Chem. Eng. J. 2024, 485, 150047. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, W.; Ren, R.; Lan, H.; Zhou, T.; Hu, J.; Jiang, Q. Unveiling the bifunctional roles of Cetyltrimethylammonium bromide in construction of Nb2CTx@MoSe2 heterojunction for fast potassium storage. J. Colloid Interface Sci. 2024, 674, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Guan, G.; Lu, L.; Meng, W.; Ye, T.; Zhang, Y.; Guo, F. Nb2CTx MXene anchored with carbon quantum dots for lithium-ion batteries. ACS Appl. Nano Mater. 2023, 6, 23620–23629. [Google Scholar] [CrossRef]
- Shen, B.; Liao, X.; Hu, X.; Ren, H.; Lin, J.; Lou, C.; Li, T. OH-WCNT/Nb2CTx MXene sponge for flexible free-standing high-performance supercapacitors. Electrochim. Acta 2023, 464, 142921. [Google Scholar] [CrossRef]
- Zheng, T.; Yang, L.; Xu, H.; Li, A.; Sasaki, S.-I.; Wang, X.-F. Synergistic bio-inspired photocatalytic hydrogen production by chlorophyll derivative sensitized Nb2CTx MXene nanosheets. J. Mater. Chem. C 2025, 13, 802–807. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Z.; Zheng, T.; Li, P.; Ma, J.; Zhang, X.; Wang, X.-F.; Liu, Y. Facilitating charge transfer and band alignment in perovskite solar cells via interfacial regulation with a Nb2CTx MXene oxidized derivative. J. Mater. Chem. A 2024, 12, 21268–21278. [Google Scholar] [CrossRef]
- Qin, L.; Liu, Y.; Zhu, S.; Wu, D.; Wang, G.; Zhang, J.; Wang, Y.; Hou, L.; Yuan, C. Formation and operating mechanisms of singlecrystalline perovskite NaNbO3 nanocubes/fewlayered Nb2CTx MXene hybrids towards Li-ion capacitors. J. Mater. Chem. A 2021, 9, 20405–20416. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.; Li, D.D.; Cao, J.; Han, W. Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries. ACS Nano 2021, 15, 7439–7450. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Zhang, Y.; Wei, P.; Xu, W.; Wang, H.; Yu, H.; Jia, J.; Zhang, K.; Peng, C. S-scheme and Schottky junction synchronous regulation boost hierarchical CdS@Nb2O5/Nb2CTx (MXene) heterojunction for photocatalytic H2 production. ACS Appl. Mater. Interfaces 2023, 15, 20027–20039. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, H.; Zhang, J. Nb2CTx MXene as high-performance energy storage material with Na, K, and liquid K-Na alloy anodes. Langmuir 2021, 37, 1102–1109. [Google Scholar] [CrossRef]
- Song, S.; Liu, J.; Zhou, C.; Jia, Q.; Luo, H.; Deng, L.; Wang, X. Nb2O5/Nb2CTx composites with different morphologies through oxidation of Nb2CTx MXene for high-performance microwave absorption. J. Alloys Compd. 2020, 843, 155713. [Google Scholar] [CrossRef]
- Malyala, L.; Karingula, S.; Bhookya, T.; Vengatajalabathy, G.K. Development of flexible high-efficient aluminum ion supercapacitors with 2D niobium MXene electrode. Energy Storage 2024, 6, e70012. [Google Scholar] [CrossRef]
- Shafique, S.; Qadir, A.; Iqbal, T.; Sulaman, M.; Yang, L.; Hou, Y.; Miao, Y.; Wu, J.; Wang, Y.; Zheng, F.; et al. High-performance self-powered perovskite photodetectors enabled by Nb2CTx-passivated buried interface. J. Alloys Compd. 2024, 1004, 175903. [Google Scholar] [CrossRef]
- Vu, T.H.; Bui, V.D.; Khoa, N.L.M.; Tran, T.P.A.; Aminabhavi, T.M.; Vasseghian, Y.; Joo, S. AuTOH-3D-printed Nb2CTx/UiO-66@rGQDs nanocatalyst for enhanced light harvesting and photocatalytic degradation of simazine. Appl. Catal. B 2025, 371, 125232. [Google Scholar] [CrossRef]
- Xiao, J.; Yu, P.; Gao, H.; Yao, J. Endogenous Nb2CTx/Nb2O5 Schottky heterostructures for superior lithium-ion storage. J. Colloid Interface Sci. 2023, 652, 113–121. [Google Scholar] [CrossRef]
- Makola, L.C.; Ouma, C.N.; Moeno, S.; Mmutlane, E.M.; Dlamini, L.N. An insight into a novel calixarene-sensitized Calix@Nb2CTx/g-C3N4 MXene-based photocatalytic heterostructure: Fabrication, physicochemical, optoelectronic, and photoelectrochemical properties. J. Sci. Adv. Mater. Devices 2023, 8, 100593. [Google Scholar] [CrossRef]
- Peng, C.; Xie, X.; Xu, W.; Zhou, T.; Wei, P.; Jia, J.; Zhang, K.; Cao, Y.; Wang, H.; Peng, F.; et al. Engineering highly active Ag/Nb2O5@Nb2CTx (MXene) photocatalysts via steering charge kinetics strategy. Chem. Eng. J. 2021, 421, 128766. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Ahmad, W.; Hussain, I.; Chaudhry, M.U.; Mahmood, A.; Khan, M.F.; Zhang, H.; Xie, Z. Recent advances in non-Ti MXenes: Synthesis, properties, and novel applications. Adv. Sci. 2024, 11, 2303998. [Google Scholar] [CrossRef]
- Gao, L.; Ma, C.; Wei, S.; Kuklin, A.V.; Zhang, H.; Ågren, H. Applications of few-layer Nb2C MXene: Narrow-band photodetectors and femtosecond mode-locked fiber lasers. ACS Nano 2021, 15, 954–965. [Google Scholar] [CrossRef]
- Liu, Z.; EI-Demellawi, J.K.; Bakr, O.M.; Ooi, B.S.; Alshareef, H.N. Plasmonic Nb2CTx MXene-MAPbI3 heterostructure for self-powered visible-nir photodiodes. ACS Nano 2022, 16, 7904–7914. [Google Scholar] [CrossRef]
- Li, N.; Sun, T.; Zhang, C.; Fang, G.; Wang, Y. Photothermal driven biomimetic actuator based on asymmetric microstructure Nb2CTx MXene film. Adv. Electron. Mater. 2024, 11, 2400564. [Google Scholar] [CrossRef]
- Indhumathi, R.; Priya, A.S.; Aepuru, R.; Shanmugaraj, K. Advancements, prospects, and challenges in the synthesis and stability of MXenes for energy applications: A comprehensive review. J. Mater. Sci. 2025, 60, 5649–5685. [Google Scholar] [CrossRef]
- Ponnalagar, D.; Hang, D.; Islam, S.E.; Liang, C.; Chou, M.M. Recent progress in two-dimensional Nb2C MXene for applications in energy storage and conversion. Mater. Des. 2023, 231, 112046. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, D.; Zhuang, X.; Sun, R.; Zhang, H.; Liang, J.; Jia, Y.; Liu, D.; Song, H. Interfacial engineering of Au@Nb2CTx-MXene modulates the growth strain, suppresses the Auger recombination, and enables an open-circuit voltage of over 1.2 V in perovskite solar cells. ACS Appl. Mater. Interfaces 2023, 15, 3961–3973. [Google Scholar] [CrossRef]
- Alhamada, T.F.; Hanim, M.A.A.; Jung, D.W.; Nuraini, A.A.; Hasan, W.Z. A brief review of the role of 2D Mxene nanosheets toward solar cells efficiency improvement. Nanomaterials 2021, 11, 2732. [Google Scholar] [CrossRef]
- Huang, R.; Liao, D.; Liu, Z.; Yu, J.; Jiang, X. Electrostatically assembling 2D hierarchical Nb2CTx and zifs-derivatives into Zn-Co-NC nanocage for the electrochemical detection of 4-nitrophenol. Sens. Actuators B 2021, 338, 129828. [Google Scholar] [CrossRef]
- Ankitha, M.; Vaishag, P.V.; Muhsin, P.; Rasheed, P.A. Flexible and disposable electrodes based on SnO2 nanoparticle/Nb2CTx nanosheet composites for selective and ultrasensitive detection of propofol. J. Ind. Eng. Chem. 2024, 131, 449–458. [Google Scholar] [CrossRef]
- Mufeeda, M.; Ankitha, M.; Rasheed, P.A. Nb2CTx/protonated carbon nitride nanocomposite for electrochemical detection of serotonin. ACS Appl. Nano Mater. 2023, 6, 21152–21161. [Google Scholar] [CrossRef]
- Kumar, A.N.; Pal, K. Amine-functionalized stable Nb2CTx MXene toward room temperature ultrasensitive NO2 gas sensor. Mater. Adv. 2022, 3, 5151–5162. [Google Scholar] [CrossRef]
- Wang, W.; Yao, Y.; Xin, J.; Xie, L.; Han, Y.; Zhu, Z. Chemiresistive SnS2/Nb4C3Tx gas sensor for detection triethylamine at room temperature. Sens. Actuators B 2024, 407, 135437. [Google Scholar] [CrossRef]
- Li, G.; Singh, R.; Guo, J.; Zhang, B.; Kumar, S. Nb2CTx MXene-assisted double S-tapered fiber-based LSPR sensor with improved features for tyramine detection. Appl. Phys. Lett. 2023, 122, 083701. [Google Scholar] [CrossRef]
- Yu, X.; Li, H.; Li, M.; Wen, X.; Deng, S.; Liu, S.; Li, M.-Y.; Lu, H. In situ self-oxidation of few-layered Nb2CTx nanosheets in aqueous solution for achieving improved humidity sensitivity and selectivity. ACS Appl. Nano Mater. 2023, 6, 17718–17727. [Google Scholar] [CrossRef]
- Cao, C.; Zhou, P.; Wang, J.; Liu, M.; Wang, P.; Qi, Y.; Zhang, T. Ultrahigh sensitive and rapid-response self-powered flexible pressure sensor based on sandwiched piezoelectric composites. J. Colloid Interface Sci. 2024, 664, 902–915. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Jiang, Y.; Yuan, L.; Yuan, Z.; Zhang, B.; Liu, B.; Zhang, M.; Huang, Q.; Duan, Z.; Tai, H. Hydrophilic hyaluronic acid-induced crumpling of Nb2CTx nanosheets: Enabling fast humidity sensing based on primary battery. Sens. Actuators B 2023, 392, 134082. [Google Scholar] [CrossRef]
- Zhao, Q.; Jiang, Y.; Duan, Z.; Yuan, Z.; Zha, J.; Wu, Z.; Huang, Q.; Zhou, Z.; Li, H.; He, F.; et al. A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chem. Eng. J. 2022, 438, 135588. [Google Scholar] [CrossRef]
- Yu, L.; Wu, F.; Zhang, J.; Zhao, Y.; Yang, Y.; Zhao, T.; Yu, C.; Zhao, C.; Xing, G. Self-healing, adhesive, and anti-freezing PAA/PEDOT:PSS/Nb2CTX hydrogel for flexible pressure sensors and photothermal therapy. ACS Appl. Polym. Mater. 2024, 6, 14916–14927. [Google Scholar] [CrossRef]
- Okawa, A.; Yang, M.; Hasegawa, T.; Ueda, T.; Cho, S.; Sekino, T.; Yin, S. Gas sensing performance of Nb2CTx synthesized by hydrothermal assisted in-situ HF generation etching method. Discov. Mater. 2023, 3, 12. [Google Scholar] [CrossRef]
- Sadaf, S.; Zhou, R.; Akhtar, A.; Chu, X.; Chen, D. Enhanced methanol sensing properties based on nano-composite of Ti3C2Tx-BaSnO3-Nb2CTx. Ceram. Int. 2025, 51, 9987–9999. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, Y.; Liu, B.; Duan, Z.; Pan, H.; Yuan, Z.; Xie, G.; Wang, J.; Fang, Z.; Tai, H. Ultrathin Nb2CTx nanosheets-supported polyaniline nanocomposite: Enabling ultrasensitive NH3 detection. Sens. Actuators B 2021, 343, 130069. [Google Scholar] [CrossRef]
- Wang, S.; Liu, B.; Duan, Z.; Zhao, Q.; Zhang, Y.; Xie, G.; Jiang, Y.; Li, S.; Tai, H. PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature. Sens. Actuators B 2021, 327, 128923. [Google Scholar] [CrossRef]
- Li, W.; Miao, Y.; Zheng, Y.; Zhang, K.; Yao, J. Nb2CTx MXene integrated tapered microfiber based on light-controlled light for ultra-sensitive and wide-range hemoglobin detection. IEEE Sens. J. 2022, 22, 11456–11462. [Google Scholar] [CrossRef]
- Yang, H.; Hu, M.; Yan, H.; Zhang, J.; Yang, Y.; Hu, W.; Wang, H.; Li, L.; Guo, L.; Zeng, Y. A novel composite of few-layer Nb2CTx and molecularly imprinted polymer with alkenyl ferrocene as cross-linker for ratiometric electrochemical detection of sulfamethoxazole. Microchem. J. 2024, 208, 112540. [Google Scholar] [CrossRef]
- Prabisha, K.E.; Neena, P.K.; Ankitha, M.; Rasheed, P.A.; Suneesh, P.V.; Babu, T.G.S. Selenium nanoparticles modified niobium MXene for non-enzymatic detection of glucose. Sci. Rep. 2025, 15, 1749. [Google Scholar]
- Wang, P.; Guo, S.; Zhao, Y.; Hu, Z.; Tang, Y.; Zhou, L.; Li, T.; Li, H.; Liu, H. WO3 nanoparticles supported by Nb2CTx MXene for superior acetone detection under high humidity. Sens. Actuators B 2023, 398, 134710. [Google Scholar] [CrossRef]
- Ding, J.; Xin, B.; Li, J.; Deng, H.; Yuan, Q.; Liu, S.; Chen, Q. High specific surface area 2D/1D hybrid materials of Nb2CTx/CNT for efficient VOCs detection at room temperature. ACS Appl. Nano Mater. 2024, 7, 24123–24131. [Google Scholar] [CrossRef]
- Ding, W.; Yu, J.; Tsow, F.; Jaishi, L.R.; Lamsal, B.S.; Kittelson, R.; Ahmed, S.; Kharel, P.; Zhou, Y.; Xian, X. Highly sensitive and reversible MXene-based micro quartz tuning fork gas sensors with tunable selectivity. NPJ 2D Mater. Appl. 2024, 8, 18. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Hazra, A. MXene-based gas sensors. J. Mater. Chem. C 2021, 9, 15735–15754. [Google Scholar] [CrossRef]
- Loes, M.J.; Bagheri, S.; Sinitskii, A. Layer-dependent gas sensing mechanism of 2D titanium carbide (Ti3C2Tx) MXene. ACS Nano 2024, 18, 26251–26260. [Google Scholar] [CrossRef]
- John, R.A.; Vijayan, K.; Septiani, N.L.; Hardiansyah, A.; Kumar, A.R.; Yuliarto, B.; Hermawan, A. Gas-sensing mechanisms and performances of MXenes and MXene-based heterostructures. Sensors 2022, 23, 8674. [Google Scholar] [CrossRef]
- Xia, Q.; Fan, Y.; Li, S.; Zhou, A.; Shinde, N.; Mane, R.S. MXene-based chemical gas sensors: Recent developments and challenges. Diam. Relat. Mater. 2022, 131, 109557. [Google Scholar] [CrossRef]
- Rana, I.; Malakar, V.K.; Ranjan, K.R.; Verma, C.; AlFantazi, A.; Singh, P.; Kumari, K. MXenes and their composites for high-performance detection of pharmaceuticals and pesticides: A comprehensive review. Compos. Part B 2025, 302, 112521. [Google Scholar] [CrossRef]
- Rathi, K.; Arkoti, N.K.; Pal, K. Fabrication of delaminated 2D metal carbide MXenes (Nb2CTx) by CTAB-based NO2 gas sensor with enhanced stability. Adv. Mater. Interfaces 2022, 9, 2200415. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, G.J.; Ryu, J.W.; Jeon, H.J.; Mishra, R.K.; Choi, Y.; Gwag, J.S. Emerging Role of Nb2CTx MXene in Sensors: The Roadmap from Synthesis to Health and Environmental Monitoring. Sensors 2025, 25, 3691. https://doi.org/10.3390/s25123691
Choi GJ, Ryu JW, Jeon HJ, Mishra RK, Choi Y, Gwag JS. Emerging Role of Nb2CTx MXene in Sensors: The Roadmap from Synthesis to Health and Environmental Monitoring. Sensors. 2025; 25(12):3691. https://doi.org/10.3390/s25123691
Chicago/Turabian StyleChoi, Gyu Jin, Jeong Won Ryu, Hwa Jun Jeon, Rajneesh Kumar Mishra, Yoonseuk Choi, and Jin Seog Gwag. 2025. "Emerging Role of Nb2CTx MXene in Sensors: The Roadmap from Synthesis to Health and Environmental Monitoring" Sensors 25, no. 12: 3691. https://doi.org/10.3390/s25123691
APA StyleChoi, G. J., Ryu, J. W., Jeon, H. J., Mishra, R. K., Choi, Y., & Gwag, J. S. (2025). Emerging Role of Nb2CTx MXene in Sensors: The Roadmap from Synthesis to Health and Environmental Monitoring. Sensors, 25(12), 3691. https://doi.org/10.3390/s25123691