The IoT and AI in Agriculture: The Time Is Now—A Systematic Review of Smart Sensing Technologies
Abstract
1. Introduction
Research Objectives and Scope of the Review
- What are the most widely used smart sensing technologies in arable crops and grassland management?
- How do AI and machine learning models enhance decision-making in precision agriculture?
- What are the technical, economic, and environmental barriers to the large-scale adoption of IoT-based solutions?
- What future research directions and innovations are needed to further improve smart agriculture?
2. Materials and Methods
2.1. Systematic Review Protocol
2.2. Research Questions
2.3. Scope and Eligibility Criteria
2.4. Search Strategy
2.5. Study Selection Process
2.6. Data Extraction and Categorization
2.7. Risk of Bias Assessment
2.8. Limitations and Challenges of the Review Process
3. Results
3.1. Growth Trends in Research Publications
3.2. Geographical Distribution of Research
3.3. Classification of Published Research
3.4. Exclusions and Refinements in Dataset
3.5. Citation Trends over Time
3.6. Overview of Smart Sensing Technologies
3.7. Applications of IoT and AI in Agriculture
Practical Evaluation of Sensing Solutions in Real-World Farming Environments
3.8. Current Trends and Patterns
4. Problems and Challenges in Smart Agriculture
4.1. Technical Barriers
AI Model Interpretability and Transparency in Decision-Making
4.2. Economic and Adoption Barriers
4.3. Environmental and Sustainability Concerns
4.4. Ethical and Policy Challenges
4.5. Cybersecurity Risks in AI- and IoT-Enabled Agriculture
5. Future Perspectives and Recommendations
5.1. Next-Generation IoT and AI Technologies in Agriculture
5.2. Emerging Trends: Edge AI, Blockchain, and Robotics
5.3. Bridging the Gap Between Research and Implementation
5.4. Policy and Ethical Considerations in Smart Farming
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
IoT | Internet of Things |
ML | Machine Learning |
DL | Deep Learning |
WSN | Wireless Sensor Network |
NDVI | Normalized Difference Vegetation Index |
DSS | Decision Support System |
XAI | Explainable Artificial Intelligence |
LPWAN | Low-Power Wide-Area Network |
LoRaWAN | Long Range Wide Area Network |
UAV | Unmanned Aerial Vehicle |
SHAP | SHapley Additive Explanations |
LIME | Local Interpretable Model-Agnostic Explanations |
Edge AI | AI Processing at the Edge (On-Device Computing) |
AIoT | Artificial Intelligence of Things (AI + IoT) |
ICT | Information and Communication Technology |
GPS | Global Positioning System |
RFID | Radio-Frequency Identification |
IoE | Internet of Everything |
GIS | Geographic Information System |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
References
- Ghobadpour, A.; Monsalve, G.; Cardenas, A.; Mousazadeh, H. Off-Road Electric Vehicles and Autonomous Robots in Agricultural Sector: Trends, Challenges, and Opportunities. Vehicles 2022, 4, 843–864. [Google Scholar] [CrossRef]
- Elbasi, E.; Mostafa, N.; AlArnaout, Z.; Zreikat, A.I.; Cina, E.; Varghese, G.; Shdefat, A.; Topcu, A.E.; Abdelbaki, W.; Mathew, S.; et al. Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review. IEEE Access 2023, 11, 171–202. [Google Scholar] [CrossRef]
- Khakimov, A.; Salakhutdinov, I.; Omolikov, A.; Utaganov, S. Traditional and Current-Prospective Methods of Agricultural Plant Diseases Detection: A Review. IOP Conf. Ser. Earth Environ. Sci. 2022, 951, 012002. [Google Scholar] [CrossRef]
- Bai, X.; Ye, W.; Zhou, Y.; Ruan, X.; Wang, J.; Li, W.; Zhang, P. Comparison between Diffusive Gradients in Thin Film Technology (DGT) and Traditional Methods for Prediction of Plant Available Heavy Metals in Agricultural Soil. J. Soils Sediments 2023, 23, 1501–1510. [Google Scholar] [CrossRef]
- Balkrishna, A.; Pathak, R.; Kumar, S.; Arya, V.; Singh, S.K. A Comprehensive Analysis of the Advances in Indian Digital Agricultural Architecture. Smart Agric. Technol. 2023, 5, 100318. [Google Scholar] [CrossRef]
- Ojo, M.O.; Viola, I.; Miretti, S.; Martignani, E.; Giordano, S.; Baratta, M. A Deep Learning Approach for Accurate Path Loss Prediction in LoRaWAN Livestock Monitoring. Sensors 2024, 24, 2991. [Google Scholar] [CrossRef]
- Rudrakar, S.; Rughani, P. IoT Based Agriculture (Ag-IoT): A Detailed Study on Architecture, Security and Forensics. Inf. Process. Agric. 2024, 11, 524–541. [Google Scholar] [CrossRef]
- Shylaja, S.L.; Fairooz, S.; Venkatesh, J.; Sunitha, D.; Prakash Rao, R.; Ramkumar Prabhu, M. IoT Based Crop Monitoring Scheme Using Smart Device with Machine Learning Methodology. J. Phys. Conf. Ser. 2021, 2027, 012019. [Google Scholar] [CrossRef]
- Muhammad Nadeem, R.; Jaffar, A.; Muhammad Saleem, R. IoT and Machine Learning Based Stem Borer Pest Prediction. Intell. Autom. Soft Comput. 2022, 31, 1377–1392. [Google Scholar] [CrossRef]
- Kollu, P.K.; Bangare, M.L.; Hari Prasad, P.V.; Bangare, P.M.; Rane, K.P.; Arias-Gonzáles, J.L.; Lalar, S.; Shabaz, M. Internet of Things Driven Multilinear Regression Technique for Fertilizer Recommendation for Precision Agriculture. SN Appl. Sci. 2023, 5, 264. [Google Scholar] [CrossRef]
- Hnatiuc, M.; Ghita, S.; Alpetri, D.; Ranca, A.; Artem, V.; Dina, I.; Cosma, M.; Abed Mohammed, M. Intelligent Grapevine Disease Detection Using IoT Sensor Network. Bioengineering 2023, 10, 1021. [Google Scholar] [CrossRef] [PubMed]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments. Precis. Agric. 2021, 22, 2053–2091. [Google Scholar] [CrossRef]
- Sajid, J.; Hayawi, K.; Malik, A.W.; Anwar, Z.; Trabelsi, Z. A Fog Computing Framework for Intrusion Detection of Energy-Based Attacks on UAV-Assisted Smart Farming. Appl. Sci. 2023, 13, 3857. [Google Scholar] [CrossRef]
- Chiou, A.; Yu, X. A Large-Scale Agro Decision Support System: Framework for (Physical) Fusion of a Multi-Input and Multi-Output Hybrid System. In Proceedings of the 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, Melbourne, Australia, 3–6 December 2007; IEEE: New York, NY, USA; pp. 527–532. [Google Scholar] [CrossRef]
- Ragazou, K.; Garefalakis, A.; Zafeiriou, E.; Passas, I. Agriculture 5.0: A New Strategic Management Mode for a Cut Cost and an Energy Efficient Agriculture Sector. Energies 2022, 15, 3113. [Google Scholar] [CrossRef]
- Muninarayanappa, V.; Ranjan, R. Agriculture Data Analysis Using Parallel K-Nearest Neighbour Classification Algorithm. Int. J. Reconfigurable Embed. Syst. 2024, 13, 332. [Google Scholar] [CrossRef]
- Akhter, R.; Sofi, S.A. Precision Agriculture Using IoT Data Analytics and Machine Learning. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 5602–5618. [Google Scholar] [CrossRef]
- Rezk, N.G.; Hemdan, E.E.-D.; Attia, A.-F.; El-Sayed, A.; El-Rashidy, M.A. An Efficient IoT Based Smart Farming System Using Machine Learning Algorithms. Multimed. Tools Appl. 2021, 80, 773–797. [Google Scholar] [CrossRef]
- Avasthi, S.; Chauhan, R.; Tripathi, S.L. Artificial Intelligence-Powered Agriculture and Sustainable Practices in Developing Countries. In Hyperautomation in Precision Agriculture; Elsevier: Amsterdam, The Netherlands, 2025; pp. 49–62. [Google Scholar] [CrossRef]
- Velásquez, D.; Sánchez, A.; Sarmiento, S.; Toro, M.; Maiza, M.; Sierra, B. A Method for Detecting Coffee Leaf Rust through Wireless Sensor Networks, Remote Sensing, and Deep Learning: Case Study of the Caturra Variety in Colombia. Appl. Sci. 2020, 10, 697. [Google Scholar] [CrossRef]
- Narayana, T.L.; Venkatesh, C.; Kiran, A.; Babu J, C.; Kumar, A.; Khan, S.B.; Almusharraf, A.; Quasim, M.T. Advances in Real Time Smart Monitoring of Environmental Parameters Using IoT and Sensors. Heliyon 2024, 10, e28195. [Google Scholar] [CrossRef]
- Ullo, S.L.; Sinha, G.R. Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications. Remote Sens. 2021, 13, 2585. [Google Scholar] [CrossRef]
- Moradi, S.; Bokani, A.; Hassan, J. UAV-Based Smart Agriculture: A Review of UAV Sensing and Applications. In Proceedings of the 32nd International Telecommunication Networks and Applications Conference (ITNAC), Wellington, New Zealand, 30 November–2 December 2022; IEEE: New York, NY, USA; pp. 181–184. [Google Scholar] [CrossRef]
- Islam, N.; Rashid, M.M.; Pasandideh, F.; Ray, B.; Moore, S.; Kadel, R. A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming. Sustainability 2021, 13, 1821. [Google Scholar] [CrossRef]
- Prabhu, Y.V.; Parab, J.S.; Naik, G.M. Back-Propagation Neural Network (BP-NN) Model for the Detection of Borer Pest Attack. J. Phys. Conf. Ser. 2021, 1921, 012079. [Google Scholar] [CrossRef]
- Chamara, N.; Bai, G.; Ge, Y. AICropCAM: Deploying Classification, Segmentation, Detection, and Counting Deep-Learning Models for Crop Monitoring on the Edge. Comput. Electron. Agric. 2023, 215, 108420. [Google Scholar] [CrossRef]
- Choubey, S.; Divya, D. Multi-Layer Architecture for Enhancing Crop Quality with AI and IoT: A Structural Modelling Approach. BIO Web Conf. 2024, 82, 05013. [Google Scholar] [CrossRef]
- Devkota, K.P.; Devkota, M.; Rezaei, M.; Oosterbaan, R. Managing Salinity for Sustainable Agricultural Production in Salt-Affected Soils of Irrigated Drylands. Agric. Syst. 2022, 198, 103390. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil Sensors and Plant Wearables for Smart and Precision Agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef]
- Elashmawy, R.; Uysal, I. Precision Agriculture Using Soil Sensor Driven Machine Learning for Smart Strawberry Production. Sensors 2023, 23, 2247. [Google Scholar] [CrossRef]
- Sarkar, M.R.; Masud, S.R.; Hossen, M.I.; Goh, M. A Comprehensive Study on the Emerging Effect of Artificial Intelligence in Agriculture Automation. In Proceedings of the 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA), Selangor, Malaysia, 12 May 2022; IEEE: New York, NY, USA, 2022; pp. 419–424. [Google Scholar] [CrossRef]
- Praveen, R.; Hemavathi, U.; Sathya, R.; Abubakkar Siddiq, A.; Gokul Sanjay, M.; Gowdish, S. AI Powered Plant Identification and Plant Disease Classification System. In Proceedings of the 4th International Conference on Sustainable Expert Systems (ICSES), Kaski, Nepal, 15–17 October 2024; IEEE: New York, NY, USA, 2024; pp. 1610–1616. [Google Scholar] [CrossRef]
- Molina-Rotger, M.; Morán, A.; Miranda, M.A.; Alorda-Ladaria, B. Remote Fruit Fly Detection Using Computer Vision and Machine Learning-Based Electronic Trap. Front. Plant Sci. 2023, 14, 1241576. [Google Scholar] [CrossRef]
- Murphy, D.J.; Murphy, M.D.; O’Brien, B.; O’Donovan, M. A Review of Precision Technologies for Optimising Pasture Measurement on Irish Grassland. Agriculture 2021, 11, 600. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Li, L.; Zhang, Y.; Yang, G. Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System. Sensors 2017, 17, 447. [Google Scholar] [CrossRef] [PubMed]
- Vijayalakshmi, R.; Thangamani, M.; Ganthimathi, M.; Ranjitha, M.; Malarkodi, P. An Automatic Procedure for Crop Mapping Using Agricultural Monitoring. J. Phys. Conf. Ser. 2021, 1950, 012053. [Google Scholar] [CrossRef]
- Bazrafkan, A.; Delavarpour, N.; Oduor, P.G.; Bandillo, N.; Flores, P. An Overview of Using Unmanned Aerial System Mounted Sensors to Measure Plant Above-Ground Biomass. Remote Sens. 2023, 15, 3543. [Google Scholar] [CrossRef]
- Paul, K.; Chatterjee, S.S.; Pai, P.; Varshney, A.; Juikar, S.; Prasad, V.; Bhadra, B.; Dasgupta, S. Viable Smart Sensors and Their Application in Data Driven Agriculture. Comput. Electron. Agric. 2022, 198, 107096. [Google Scholar] [CrossRef]
- Jalilian, F.; Valeo, C.; Chu, A.; Bhiladvala, R. Sensors for Biomass Monitoring in Vegetated Green Infrastructure: A Review. Sensors 2023, 23, 6404. [Google Scholar] [CrossRef]
- Soussi, A.; Zero, E.; Sacile, R.; Trinchero, D.; Fossa, M. Smart Sensors and Smart Data for Precision Agriculture: A Review. Sensors 2024, 24, 2647. [Google Scholar] [CrossRef]
- Koteish, K.; Harb, H.; Dbouk, M.; Zaki, C.; Abou Jaoude, C. AGRO: A Smart Sensing and Decision-Making Mechanism for Real-Time Agriculture Monitoring. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 7059–7069. [Google Scholar] [CrossRef]
- Kavga, A.; Thomopoulos, V.; Barouchas, P.; Stefanakis, N.; Liopa-Tsakalidi, A. Research on Innovative Training on Smart Greenhouse Technologies for Economic and Environmental Sustainability. Sustainability 2021, 13, 10536. [Google Scholar] [CrossRef]
- Tawfeek, M.A.; Yanes, N.; Jamel, L.; Aldehim, G.; Mahmood, M.A. Adaptive Deep Learning Model to Enhance Smart Greenhouse Agriculture. Comput. Mater. Contin. 2023, 77, 2545–2564. [Google Scholar] [CrossRef]
- Shaikh, F.K.; Karim, S.; Zeadally, S.; Nebhen, J. Recent Trends in Internet-of-Things-Enabled Sensor Technologies for Smart Agriculture. IEEE Internet Things J. 2022, 9, 23583–23598. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; Palacios-Pacheco, X.; Luján-Mora, S. Application of a Smart City Model to a Traditional University Campus with a Big Data Architecture: A Sustainable Smart Campus. Sustainability 2019, 11, 2857. [Google Scholar] [CrossRef]
- Gulati, K.; Kumar Boddu, R.S.; Kapila, D.; Bangare, S.L.; Chandnani, N.; Saravanan, G. A Review Paper on Wireless Sensor Network Techniques in Internet of Things (IoT). Mater. Today Proc. 2022, 51, 161–165. [Google Scholar] [CrossRef]
- Cao, J.; Sun, L.; Wu, J.; Zhang, X.; Wu, X. Generating a Personalised Sensor Data Generation System for the Fusion of Adversarial Networks and Behavioural Matter-of-Fact Mapping. In Machine Learning and Intelligent Communication; Springer: Cham, Switzerland, 2024; pp. 81–95. [Google Scholar]
- Singh, T.; Kundroo, M.; Kim, T. WSN-Driven Advances in Soil Moisture Estimation: A Machine Learning Approach. Electronics 2024, 13, 1590. [Google Scholar] [CrossRef]
- Barriga, A.; Barriga, J.A.; Moñino, M.J.; Clemente, P.J. IoT-Based Expert System for Fault Detection in Japanese Plum Leaf-Turgor Pressure WSN. Internet Things 2023, 23, 100829. [Google Scholar] [CrossRef]
- Singh, D.; Biswal, A.K.; Samanta, D.; Singh, V.; Kadry, S.; Khan, A.; Nam, Y. Smart High-Yield Tomato Cultivation: Precision Irrigation System Using the Internet of Things. Front. Plant Sci. 2023, 14, 1239594. [Google Scholar] [CrossRef]
- Chuma, G.B.; Mondo, J.M.; Ndeko, A.B.; Bagula, E.M.; Lucungu, P.B.; Bora, F.S.; Karume, K.; Mushagalusa, G.N.; Schmitz, S.; Bielders, C.L. Farmers’ Knowledge and Practices of Soil Conservation Techniques in Smallholder Farming Systems of Northern Kabare, East of D.R. Congo. Environ. Chall. 2022, 7, 100516. [Google Scholar] [CrossRef]
- Martinez, F.; Romaine, J.B.; Manzano, J.M.; Ierardi, C.; Millán Gata, P. Deployment and Verification of Custom Autonomous Low-Budget IoT Devices for Image Feature Extraction in Wheat. IEEE Access 2024, 12, 124636–124657. [Google Scholar] [CrossRef]
- Dhanaraj, R.K.; Ali, M.A. Deep Learning-Enabled Pest Detection System Using Sound Analytics in the Internet of Agricultural Things. In Proceedings of the 10th International Electronic Conference on Sensors and Applications, Online, 15 November 2023; MDPI: Basel, Switzerland, 2023; p. 123. [Google Scholar] [CrossRef]
- Qian, M.; Qian, C.; Xu, G.; Tian, P.; Yu, W. Smart Irrigation Systems from Cyber–Physical Perspective: State of Art and Future Directions. Future Internet 2024, 16, 234. [Google Scholar] [CrossRef]
- Sah Tyagi, S.K.; Mukherjee, A.; Pokhrel, S.R.; Hiran, K.K. An Intelligent and Optimal Resource Allocation Approach in Sensor Networks for Smart Agri-IoT. IEEE Sens. J. 2021, 21, 17439–17446. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K.; Mittal, H. Technological Revolutions in Smart Farming: Current Trends, Challenges & Future Directions. Comput. Electron. Agric. 2022, 201, 107217. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Diamantopoulos, T.; Symeonidis, A.L.; Theocharis, J.B.; Iossifides, A.; Chatzimisios, P.; Pratos, G.; Kouvas, D. Versatile Internet of Things for Agriculture: An Explainable AI Approach. In Artificial Intelligence Applications and Innovations; Springer: New York, NY, USA, 2020; pp. 180–191. [Google Scholar]
- Zerssa, G.; Feyssa, D.; Kim, D.-G.; Eichler-Löbermann, B. Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture. Agriculture 2021, 11, 192. [Google Scholar] [CrossRef]
- Azadi, H.; Movahhed Moghaddam, S.; Burkart, S.; Mahmoudi, H.; Van Passel, S.; Kurban, A.; Lopez-Carr, D. Rethinking Resilient Agriculture: From Climate-Smart Agriculture to Vulnerable-Smart Agriculture. J. Clean. Prod. 2021, 319, 128602. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Roussaki, I.; Doolin, K.; Skarmeta, A.; Routis, G.; Lopez-Morales, J.A.; Claffey, E.; Mora, M.; Martinez, J.A. Building an Interoperable Space for Smart Agriculture. Digit. Commun. Netw. 2023, 9, 183–193. [Google Scholar] [CrossRef]
- Khatoon, P.S.; Ahmed, M. Importance of Semantic Interoperability in Smart Agriculture Systems. Trans. Emerg. Telecommun. Technol. 2022, 33, e4448. [Google Scholar] [CrossRef]
- San Emeterio de la Parte, M.; Martínez-Ortega, J.-F.; Hernández Díaz, V.; Martínez, N.L. Big Data and Precision Agriculture: A Novel Spatio-Temporal Semantic IoT Data Management Framework for Improved Interoperability. J. Big Data 2023, 10, 52. [Google Scholar] [CrossRef]
- Quy, V.K.; Hau, N.V.; Anh, D.V.; Quy, N.M.; Ban, N.T.; Lanza, S.; Randazzo, G.; Muzirafuti, A. IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Appl. Sci. 2022, 12, 3396. [Google Scholar] [CrossRef]
- Sinha, B.B.; Dhanalakshmi, R. Recent Advancements and Challenges of Internet of Things in Smart Agriculture: A Survey. Future Gener. Comput. Syst. 2022, 126, 169–184. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Shaikh, A.J.; Khan, A.; Awais, H.; Bakar, E.A.; Othman, A.R. Smart Sensing with Edge Computing in Precision Agriculture for Soil Assessment and Heavy Metal Monitoring: A Review. Agriculture 2021, 11, 475. [Google Scholar] [CrossRef]
- Chand, A.A.; Prasad, K.A.; Mar, E.; Dakai, S.; Mamun, K.A.; Islam, F.R.; Mehta, U.; Kumar, N.M. Design and Analysis of Photovoltaic Powered Battery-Operated Computer Vision-Based Multi-Purpose Smart Farming Robot. Agronomy 2021, 11, 530. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed]
- O’Dea, R.E.; Lagisz, M.; Jennions, M.D.; Koricheva, J.; Noble, D.W.A.; Parker, T.H.; Gurevitch, J.; Page, M.J.; Stewart, G.; Moher, D.; et al. Preferred Reporting Items for Systematic Reviews and Meta-analyses in Ecology and Evolutionary Biology: A PRISMAExtension. Biol. Rev. 2021, 96, 1695–1722. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, K.; Yoon, U.; Vogt, P.M. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement and Publication Bias. J. Cranio Maxillofac. Surg. 2011, 39, 91–92. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D. Evaluations of the Uptake and Impact of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement and Extensions: A Scoping Review. Syst. Rev. 2017, 6, 263. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, F. Unveiling Temporal and Spatial Research Trends in Precision Agriculture: A BERTopic Text Mining Approach. Heliyon 2024, 10, e36808. [Google Scholar] [CrossRef]
- Armenta-Medina, D.; Ramirez-delReal, T.A.; Villanueva-Vásquez, D.; Mejia-Aguirre, C. Trends on Advanced Information and Communication Technologies for Improving Agricultural Productivities: A Bibliometric Analysis. Agronomy 2020, 10, 1989. [Google Scholar] [CrossRef]
- Shahab, H.; Naeem, M.; Iqbal, M.; Aqeel, M.; Ullah, S.S. IoT-Driven Smart Agricultural Technology for Real-Time Soil and Crop Optimization. Smart Agric. Technol. 2025, 10, 100847. [Google Scholar] [CrossRef]
- Rajabzadeh, M.; Fatorachian, H. Modelling Factors Influencing IoT Adoption: With a Focus on Agricultural Logistics Operations. Smart Cities 2023, 6, 3266–3296. [Google Scholar] [CrossRef]
- Pero, C.; Bakshi, S.; Nappi, M.; Tortora, G. IoT-Driven Machine Learning for Precision Viticulture Optimization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 2437–2447. [Google Scholar] [CrossRef]
- Chukwuma, U.; Gebremedhin, K.G.; Uyeh, D.D. Imagining AI-Driven Decision Making for Managing Farming in Developing and Emerging Economies. Comput. Electron. Agric. 2024, 221, 108946. [Google Scholar] [CrossRef]
- Shukla, B.K.; Maurya, N.; Sharma, M. Advancements in Sensor-Based Technologies for Precision Agriculture: An Exploration of Interoperability, Analytics and Deployment Strategies. In Proceedings of the ECSA 2023, Istanbul, Turkey, 15 November 2023; MDPI: Basel, Switzerland, 2023; p. 22. [Google Scholar]
- Palta, P.; Kumar, A.; Palta, A. Leveraging Dielectric Properties, Remote Sensing, and Sensor Technology in Agriculture: A Perspective on Industry and Emerging Technologies. In Industry 5.0 and Emerging Technologies; Springer: New York, NY, USA, 2024; pp. 89–109. [Google Scholar]
- Alaieri, F. Precision Agriculture Based on Machine Learning and Remote Sensing Techniques. Eng. Technol. Appl. Sci. Res. 2024, 14, 14206–14211. [Google Scholar] [CrossRef]
- Sarvakar, K.; Thakkar, M. Different Vegetation Indices Measurement Using Computer Vision. In Applications of Computer Vision and Drone Technology in Agriculture 4.0; Springer Nature: Singapore, 2024; pp. 133–163. [Google Scholar] [CrossRef]
- Mishra, H.; Mishra, D. AI for Data-Driven Decision-Making in Smart Agriculture: From Field to Farm Management. In Artificial Intelligence Techniques in Smart Agriculture; Springer Nature: Singapore, 2024; pp. 173–193. [Google Scholar] [CrossRef]
- El Alaoui, M.; Amraoui, K.E.; Masmoudi, L.; Ettouhami, A.; Rouchdi, M. Unleashing the Potential of IoT, Artificial Intelligence, and UAVs in Contemporary Agriculture: A Comprehensive Review. J. Terramechanics 2024, 115, 100986. [Google Scholar] [CrossRef]
- Spanaki, K.; Sivarajah, U.; Fakhimi, M.; Despoudi, S.; Irani, Z. Disruptive Technologies in Agricultural Operations: A Systematic Review of AI-Driven AgriTech Research. Ann. Oper. Res. 2022, 308, 491–524. [Google Scholar] [CrossRef]
- Mahdavian, A.; Yang, C. Acoustic Signal for Poultry Health Monitoring. In Encyclopedia of Digital Agricultural Technologies; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans. Ind. Inform. 2021, 17, 4322–4334. [Google Scholar] [CrossRef]
- Prasanna Lakshmi, G.S.; Asha, P.N.; Sandhya, G.; Vivek Sharma, S.; Shilpashree, S.; Subramanya, S.G. An Intelligent IOT Sensor Coupled Precision Irrigation Model for Agriculture. Meas. Sens. 2023, 25, 100608. [Google Scholar] [CrossRef]
- Jurišić, M.; Plaščak, I.; Barač, Ž.; Radočaj, D.; Zimmer, D. Sensors and Their Application in Precision Agriculture. Teh. Glas. 2021, 15, 529–533. [Google Scholar] [CrossRef]
- Hänel, T.; Jarmer, T.; Aschenbruck, N. Learning a Transform Base for the Multi- to Hyperspectral Sensor Network with K-SVD. Sensors 2021, 21, 7296. [Google Scholar] [CrossRef]
- Pradipta, A.; Soupios, P.; Kourgialas, N.; Doula, M.; Dokou, Z.; Makkawi, M.; Alfarhan, M.; Tawabini, B.; Kirmizakis, P.; Yassin, M. Remote Sensing, Geophysics, and Modeling to Support Precision Agriculture—Part 2: Irrigation Management. Water 2022, 14, 1157. [Google Scholar] [CrossRef]
- Lloret, J.; Sendra, S.; Garcia, L.; Jimenez, J.M. A Wireless Sensor Network Deployment for Soil Moisture Monitoring in Precision Agriculture. Sensors 2021, 21, 7243. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Al-Ammary, J.H.; Ghanem, M.E. Information and Communication Technology in Agriculture: Awareness, Readiness and Adoption in the Kingdom of Bahrain. Arab. Gulf J. Sci. Res. 2024, 42, 182–197. [Google Scholar] [CrossRef]
- Placidi, P.; Morbidelli, R.; Fortunati, D.; Papini, N.; Gobbi, F.; Scorzoni, A. Monitoring Soil and Ambient Parameters in the IoT Precision Agriculture Scenario: An Original Modeling Approach Dedicated to Low-Cost Soil Water Content Sensors. Sensors 2021, 21, 5110. [Google Scholar] [CrossRef] [PubMed]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart Irrigation Monitoring and Control Strategies for Improving Water Use Efficiency in Precision Agriculture: A Review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Kashyap, P.K.; Kumar, S.; Jaiswal, A.; Prasad, M.; Gandomi, A.H. Towards Precision Agriculture: IoT-Enabled Intelligent Irrigation Systems Using Deep Learning Neural Network. IEEE Sens. J. 2021, 21, 17479–17491. [Google Scholar] [CrossRef]
- Yakoi, P.S.; Meng, X.; Cui, S.; Suleman, D.; Yang, X. Analysis of Time Series Data Generated from the Internet of Things Using Deep Learning Models. IEEE Access 2023, 11, 133313–133328. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Y.; Wu, J. Towards Sustainable Production: An Adaptive Intelligent Optimization Genetic Algorithm for Solid Wood Panel Manufacturing. Sustainability 2024, 16, 3785. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; Iqbal, N.; Zaidi, S.M.H.; Zaidi, S.A.R.; Hussain, I.; Mahmood, Z. A Multi-Modal Approach for Crop Health Mapping Using Low Altitude Remote Sensing, Internet of Things (IoT) and Machine Learning. IEEE Access 2020, 8, 112708–112724. [Google Scholar] [CrossRef]
- Spišić, J.; Šimić, D.; Balen, J.; Jambrović, A.; Galić, V. Machine Learning in the Analysis of Multispectral Reads in Maize Canopies Responding to Increased Temperatures and Water Deficit. Remote Sens. 2022, 14, 2596. [Google Scholar] [CrossRef]
- Park, H.; Song, S.; Nguyen, T.-H.; Park, L. Machine Learning for Internet of Things: Applications and Discussions. In Proceedings of the 2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Osaka, Japan, 19–22 February 2024; IEEE: New York, NY, USA, 2024; pp. 459–462. [Google Scholar] [CrossRef]
- Mahmood, M.R.; Matin, M.A.; Goudos, S.K.; Karagiannidis, G. Machine Learning for Smart Agriculture: A Comprehensive Survey. IEEE Trans. Artif. Intell. 2024, 5, 2568–2588. [Google Scholar] [CrossRef]
- Tschand, A. Semi-Supervised Machine Learning Analysis of Crop Color for Autonomous Irrigation. Smart Agric. Technol. 2023, 3, 100116. [Google Scholar] [CrossRef]
- Ige, A.O.; Mohd Noor, M.H. A Survey on Unsupervised Learning for Wearable Sensor-Based Activity Recognition. Appl. Soft Comput. 2022, 127, 109363. [Google Scholar] [CrossRef]
- Obaid, M.K.; Alazzai, W.K.; Abood, B.S.Z.; Al-Farouni, M. Sustainable Agriculture Practices: AI and IoT’s Vital Contribution. E3S Web Conf. 2024, 491, 01025. [Google Scholar] [CrossRef]
- Jácome-Galarza, L.-R.; Realpe-Robalino, M.-A.; Paillacho-Corredores, J.; Benavides-Maldonado, J.-L. Time Series in Sensor Data Using State-of-the-Art Deep Learning Approaches: A Systematic Literature Review. In Communication, Smart Technologies and Innovation for Society; Springer: New York, NY, USA, 2022; pp. 503–514. [Google Scholar] [CrossRef]
- Adewusi, A.O.; Asuzu, O.F.; Olorunsogo, T.; Iwuanyanwu, C.; Adaga, E.; Daraojimba, D.O. AI in Precision Agriculture: A Review of Technologies for Sustainable Farming Practices. World J. Adv. Res. Rev. 2024, 21, 2276–2285. [Google Scholar] [CrossRef]
- Katiyar, S.; Farhana, A. Smart Agriculture: The Future of Agriculture Using AI and IoT. J. Comput. Sci. 2021, 17, 984–999. [Google Scholar] [CrossRef]
- Patil, R.; Sable, N.P.; Mahalle, P.N.; Shinde, G.R.; Dhotre, P.; Chandre, P. Role of Data-Centric Artificial Intelligence in Agriculture. In Data-Centric Artificial Intelligence for Multidisciplinary Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2024; pp. 159–176. ISBN 9781003461500. [Google Scholar]
- Bajaj, K.; Sharma, B.; Singh, R. Implementation Analysis of IoT-Based Offloading Frameworks on Cloud/Edge Computing for Sensor Generated Big Data. Complex Intell. Syst. 2022, 8, 3641–3658. [Google Scholar] [CrossRef]
- Vianny, D.M.M.; John, A.; Mohan, S.K.; Sarlan, A.; Ahmadian, A. Water Optimization Technique for Precision Irrigation System Using IoT and Machine Learning. Sustain. Energy Technol. Assess. 2022, 52, 102307. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, N.; Liu, Y. Study on the Moisture Content Diagnosis Method of Living Trees Based on WASN and CTWGAN-GP-L. Forests 2022, 13, 1879. Forests 2022, 13, 1879. [Google Scholar] [CrossRef]
- Tace, Y.; Elfilali, S.; Tabaa, M.; Leghris, C. Implementation of Smart Irrigation Using IoT and Artificial Intelligence. Math. Model. Comput. 2023, 10, 575–582. [Google Scholar] [CrossRef]
- Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; Ishak, M.H.I.; Rahman, M.K.I.A.; Otuoze, A.O.; Onotu, P.; Ramli, M.S.A. A Review on Monitoring and Advanced Control Strategies for Precision Irrigation. Comput. Electron. Agric. 2020, 173, 105441. [Google Scholar] [CrossRef]
- Jiménez, A.-F.; Cárdenas, P.-F.; Jiménez, F. Intelligent IoT-Multiagent Precision Irrigation Approach for Improving Water Use Efficiency in Irrigation Systems at Farm and District Scales. Comput. Electron. Agric. 2022, 192, 106635. [Google Scholar] [CrossRef]
- Burimsky, A.D.; Nikolenko, V.A.; Gerasidi, V.V. Improving Production Efficiency through the Implementation of Digital Projects in the Agricultural Sector. BIO Web Conf. 2024, 103, 00045. [Google Scholar] [CrossRef]
- Gayathri, R.; Raaj, R.S.; Balaanand, M.; Kumar, J.A.; Sasikala, N.; Rajesh, K. AI-Enhanced Farming: A Real-Time Monitoring App Powered by IoT. In Proceedings of the 5th International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 18–20 September 2024; IEEE: New York, NY, USA, 2024; pp. 575–581. [Google Scholar] [CrossRef]
- Vinayaka; Prasad, P.R.C. AI-Enhanced Remote Sensing Applications in Indian Sugarcane Research: A Comprehensive Review. Sugar Tech. 2024, 26, 609–628. [Google Scholar] [CrossRef]
- Agrahari, R.K.; Kobayashi, Y.; Tanaka, T.S.T.; Panda, S.K.; Koyama, H. Smart Fertilizer Management: The Progress of Imaging Technologies and Possible Implementation of Plant Biomarkers in Agriculture. Soil Sci. Plant Nutr. 2021, 67, 248–258. [Google Scholar] [CrossRef]
- Lavanya, G.; Rani, C.; GaneshKumar, P. An Automated Low Cost IoT Based Fertilizer Intimation System for Smart Agriculture. Sustain. Comput. Inform. Syst. 2020, 28, 100300. [Google Scholar] [CrossRef]
- Garg, N.; Roy, N. Sirius: A Self-Localization System for Resource-Constrained IoT Sensors. In Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Services, Helsinki, Finland, 18–22 June 2023; ACM: New York, NY, USA, 2023; pp. 289–302. [Google Scholar] [CrossRef]
- Annabel, L.S.P.; Muthulakshmi, V. AI-Powered Image-Based Tomato Leaf Disease Detection. In Proceedings of the Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 12–14 December 2019; IEEE: New York, NY, USA, 2019; pp. 506–511. [Google Scholar] [CrossRef]
- Hasan, M.R.; Rahman, M.M.; Shahriar, F.; Khan, M.S.I.; Mohi Uddin, K.M.; Hasan, M.M. Smart Farming: Leveraging IoT and Deep Learning for Sustainable Tomato Cultivation and Pest Management. Crop Des. 2024, 3, 100079. [Google Scholar] [CrossRef]
- Hussain, A.; Srikaanth, P.B. Leveraging Deep Learning and Farmland Fertility Algorithm for Automated Rice Pest Detection and Classification Model. KSII Trans. Internet Inf. Syst. 2024, 18, 959. [Google Scholar] [CrossRef]
- Selvaraj, M.G.; Vergara, A.; Ruiz, H.; Safari, N.; Elayabalan, S.; Ocimati, W.; Blomme, G. AI-Powered Banana Diseases and Pest Detection. Plant Methods 2019, 15, 92. [Google Scholar] [CrossRef]
- Shafi, U.F.; Bajwa, I.S.; Anwar, W.; Sattar, H.; Ramzan, S.; Mahmood, A. Sensing Spontaneous Combustion in Agricultural Storage Using IoT and ML. Inventions 2023, 8, 122. [Google Scholar] [CrossRef]
- Sheng, R.T.-C.; Huang, Y.-H.; Chan, P.-C.; Bhat, S.A.; Wu, Y.-C.; Huang, N.-F. Rice Growth Stage Classification via RF-Based Machine Learning and Image Processing. Agriculture 2022, 12, 2137. [Google Scholar] [CrossRef]
- Hoque, M.J.; Islam, M.S.; Khaliluzzaman, M. AI-Powered Precision in Diagnosing Tomato Leaf Diseases. Complexity 2025, 2025, 7838841. [Google Scholar] [CrossRef]
- Bala Murugan, M.; Rajagopal, M.K.; Roy, D. IoT Based Smart Agriculture and Plant Disease Prediction. J. Phys. Conf. Ser. 2021, 2115, 012017. [Google Scholar] [CrossRef]
- Pathak, A.; AmazUddin, M.; Abedin, M.J.; Andersson, K.; Mustafa, R.; Hossain, M.S. IoT Based Smart System to Support Agricultural Parameters: A Case Study. Procedia Comput. Sci. 2019, 155, 648–653. [Google Scholar] [CrossRef]
- Nagasubramanian, G.; Sakthivel, R.K.; Patan, R.; Sankayya, M.; Daneshmand, M.; Gandomi, A.H. Ensemble Classification and IoT-Based Pattern Recognition for Crop Disease Monitoring System. IEEE Internet Things J. 2021, 8, 12847–12854. [Google Scholar] [CrossRef]
- Devare, J.; Hajare, N. A Survey on IoT Based Agricultural Crop Growth Monitoring and Quality Control. In Proceedings of the 2019 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 17–19 July 2019; IEEE: New York, NY, USA, 2020; pp. 1624–1630. [Google Scholar] [CrossRef]
- Suhas, P. Wani New Paradigm for Transforming Indian Agriculture to Climate-Resilient and Sustainable Agriculture Is a Must. J. Agrometeorol. 2023, 25, 79–91. [Google Scholar] [CrossRef]
- Kargar, A.; Wilk, M.P.; Zorbas, D.; Gaffney, M.T.; Q’Flynn, B. A Novel Resource-Constrained Insect Monitoring System Based on Machine Vision with Edge AI. In Proceedings of the 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS), Genova, Italy, 5–7 December 2022; IEEE: New York, NY, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Serote, B.; Mokgehle, S.; Senyolo, G.; du Plooy, C.; Hlophe-Ginindza, S.; Mpandeli, S.; Nhamo, L.; Araya, H. Exploring the Barriers to the Adoption of Climate-Smart Irrigation Technologies for Sustainable Crop Productivity by Smallholder Farmers: Evidence from South Africa. Agriculture 2023, 13, 246. [Google Scholar] [CrossRef]
- Devaraj, H.; Sohail, S.; Ooi, M.; Li, B.; Hudson, N.; Baughman, M.; Chard, K.; Chard, R.; Casella, E.; Foster, I.; et al. RuralAI in Tomato Farming: Integrated Sensor System, Distributed Computing, and Hierarchical Federated Learning for Crop Health Monitoring. IEEE Sens. Lett. 2024, 8, 5501604. [Google Scholar] [CrossRef]
- Araújo, S.O.; Silva Peres, R.; Bischof Pian, L.; Lidon, F.; Cochicho Ramalho, J.; Barata, J. Smart Agricultural System Using Proximal Sensing, Artificial Intelligence, and LoRa Technology: A Case Study in Vineyard Management. IEEE Access 2024, 12, 181052–181070. [Google Scholar] [CrossRef]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.-H.M. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Kaur, U.; Sehgal, S. An In-Depth Analysis of the Potential of AIoT to Improve Agricultural Productivity and Long-Term Sustainability. In Explainable AI (XAI) for Sustainable Development; Chapman and Hall/CRC: Boca Raton, FL, USA, 2024; pp. 256–270. ISBN 9781003457176. [Google Scholar]
- Qazi, S.; Khawaja, B.A.; Farooq, Q.U. IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review, Current Challenges and Future Trends. IEEE Access 2022, 10, 21219–21235. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, A.; Rajput, V.D.; Yadav, A.K.S.; Kumar, P.; Singh, A.K.; Minkina, T. Role of Artificial Intelligence, Sensor Technology, Big Data in Agriculture: Next-Generation Farming. In Bioinformatics in Agriculture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 625–639. [Google Scholar] [CrossRef]
- Syam, K.K.S.; Manju, G.; Thomas, S.; Binson, V.A. Precision Crop Prediction Using IoT-Enabled Soil Sensors and Machine Learning. ITEGAM J. Eng. Technol. Ind. Appl. 2024, 10, 65–70. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Li, W.; Dong, W.; Zhang, X.; Zhang, J. A New Remote Sensing Service Mode for Agricultural Production and Management Based on Satellite–Air–Ground Spatiotemporal Monitoring. Agriculture 2023, 13, 2063. [Google Scholar] [CrossRef]
- Massaoudi, A.; Berguiga, A.; Harchay, A.; Ben Ayed, M.; Belmabrouk, H. Spectral and Energy Efficiency Trade-Off in UAV-Based Olive Irrigation Systems. Appl. Sci. 2023, 13, 10739. [Google Scholar] [CrossRef]
- Issa, A.A.; Majed, S.; Abdul Ameer, S.; Al-Jawahry, H.M. Farming in the Digital Age: Smart Agriculture with AI and IoT. E3S Web Conf. 2024, 477, 00081. [Google Scholar] [CrossRef]
- Sarkar, N.; Koushik, M.; Das, A.; Mukherjee, A.; Mandal, S.; Ghosh, S.; Bhattacharya, B.; Lewis, R.; Huda, S. Enhancing Livelihoods in Farming Communities through Super-Resolution Agromet Advisories Using Advanced Digital Agriculture Technologies. J. Agrometeorol. 2023, 25, 68–78. [Google Scholar] [CrossRef]
- Pukrongta, N.; Taparugssanagorn, A.; Sangpradit, K. Enhancing Crop Yield Predictions with PEnsemble 4: IoT and ML-Driven for Precision Agriculture. Appl. Sci. 2024, 14, 3313. [Google Scholar] [CrossRef]
- Mummaneni, S.; Sappa, T.S.; Katakam, V.G.D. Enhancing crop health through digital twin fro disease monitoring and nutrient balance. Inform. Autom. Pomiary Gospod. Ochr. Śr. 2024, 14, 57–62. [Google Scholar] [CrossRef]
- Aburasain, R.Y. Enhanced Black Widow Optimization with Hybrid Deep Learning Enabled Intrusion Detection in Internet of Things-Based Smart Farming. IEEE Access 2024, 12, 16621–16631. [Google Scholar] [CrossRef]
- Qamar, T.; Zakaria Bawany, N. Agri-PAD: A Scalable Framework for Smart Agriculture. Indones. J. Electr. Eng. Comput. Sci. 2023, 29, 1597. [Google Scholar] [CrossRef]
- Majumdar, P.; Mitra, S.; Bhattacharya, D.; Bhushan, B. Enhancing Sustainable 5G Powered Agriculture 4.0: Summary of Low Power Connectivity, Internet of UAV Things, AI Solutions and Research Trends. Multimed. Tools Appl. 2024, 84, 17389–17433. [Google Scholar] [CrossRef]
- Johnraja, J.I.; Leelipushpam, P.G.J.; Shirley, C.P.; Princess, P.J.B. Impact of Cloud Computing on the Future of Smart Farming. In Intelligent Robots and Drones for Precision Agriculture; Springer: New York, NY, USA, 2024; pp. 391–420. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in Smart Farming: A Comprehensive Review. Internet Things 2022, 18, 100187. [Google Scholar] [CrossRef]
- Vats, T.; Mehra, S.; Madan, U.; Chhabra, A.; Sharma, A.; Chhabra, K.; Singh, S.; Chauhan, U. NeuroRF FarmSense: IoT-Fueled Precision Agriculture Transformed for Superior Crop Care. Int. J. Cogn. Comput. Eng. 2024, 5, 425–435. [Google Scholar] [CrossRef]
- Pouyanfar, N.; Harofte, S.Z.; Soltani, M.; Siavashy, S.; Asadian, E.; Ghorbani-Bidkorbeh, F.; Keçili, R.; Hussain, C.M. Artificial Intelligence-Based Microfluidic Platforms for the Sensitive Detection of Environmental Pollutants: Recent Advances and Prospects. Trends Environ. Anal. Chem. 2022, 34, e00160. [Google Scholar] [CrossRef]
- Tzerakis, K.; Psarras, G.; Kourgialas, N.N. Developing an Open-Source IoT Platform for Optimal Irrigation Scheduling and Decision-Making: Implementation at Olive Grove Parcels. Water 2023, 15, 1739. [Google Scholar] [CrossRef]
- Routis, G.; Roussaki, I. Low Power IoT Electronics in Precision Irrigation. Smart Agric. Technol. 2023, 5, 100310. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Al-Otaibi, S.; Arya, L.; Almaiah, M.A.; Anithaashri, T.P.; Karthik, S.S.; Shishakly, R. Smart Agricultural–Industrial Crop-Monitoring System Using Unmanned Aerial Vehicle–Internet of Things Classification Techniques. Sustainability 2023, 15, 11242. [Google Scholar] [CrossRef]
- Ahmed, T. IoT and AI in Agriculture; Ahamed, T., Ed.; Springer Nature: Singapore, 2023; ISBN 978-981-19-8112-8. [Google Scholar]
- Rajasekaran, J.; Samad, S.R.A.; Ganesan, P. Cloud Computing for Smart Farming: Applications, Challenges, and Solutions. In Intelligent Robots and Drones for Precision Agriculture; Springer: New York, NY, USA, 2024; pp. 463–476. [Google Scholar] [CrossRef]
- Senoo, E.E.K.; Anggraini, L.; Kumi, J.A.; Karolina, L.B.; Akansah, E.; Sulyman, H.A.; Mendonça, I.; Aritsugi, M. IoT Solutions with Artificial Intelligence Technologies for Precision Agriculture: Definitions, Applications, Challenges, and Opportunities. Electronics 2024, 13, 1894. [Google Scholar] [CrossRef]
- da Silveira, F.; da Silva, S.L.C.; Machado, F.M.; Barbedo, J.G.A.; Amaral, F.G. Farmers’ Perception of the Barriers That Hinder the Implementation of Agriculture 4.0. Agric. Syst. 2023, 208, 103656. [Google Scholar] [CrossRef]
- Ansari, M.N.; Gupta, S.; Kumar, D.; Hussain, B. Adoption Challenges and Incentives for IoT and AI in Agriculture. In Agriculture 4.0; CRC Press: Boca Raton, FL, USA, 2024; pp. 355–372. ISBN 9781003570219. [Google Scholar]
- Thakur, D.; Kumar, Y.; Vijendra, S. Smart Irrigation and Intrusions Detection in Agricultural Fields Using I.o.T. Proced. Comput. Sci. 2020, 167, 154–162. [Google Scholar] [CrossRef]
- Tatapudi, A.; Varma, P.S. Prediction of Crops Based on Environmental Factors Using IoT & Machine Learning Algorithms. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 5395–5401. [Google Scholar] [CrossRef]
- Sharma, K.; Shivandu, S.K. Integrating Artificial Intelligence and Internet of Things (IoT) for Enhanced Crop Monitoring and Management in Precision Agriculture. Sens. Int. 2024, 5, 100292. [Google Scholar] [CrossRef]
- Liu, J.; Xiang, J.; Jin, Y.; Liu, R.; Yan, J.; Wang, L. Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sens. 2021, 13, 4387. [Google Scholar] [CrossRef]
- Bhat, S.A.; Huang, N.-F. Big Data and AI Revolution in Precision Agriculture: Survey and Challenges. IEEE Access 2021, 9, 110209–110222. [Google Scholar] [CrossRef]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet Things J. 2022, 9, 6305–6324. [Google Scholar] [CrossRef]
- Ghazali, M.H.M.; Azmin, A.; Rahiman, W. Drone Implementation in Precision Agriculture—A Survey. Int. J. Emerg. Technol. Adv. Eng. 2022, 12, 67–77. [Google Scholar] [CrossRef]
- AlZubi, A.A.; Galyna, K. Artificial Intelligence and Internet of Things for Sustainable Farming and Smart Agriculture. IEEE Access 2023, 11, 78686–78692. [Google Scholar] [CrossRef]
- Esmail Karar, M.; Abdel-Aty, A.-H.; Algarni, F.; Fadzil Hassan, M.; Abdou, M.A.; Reyad, O. Smart IoT-Based System for Detecting RPW Larvae in Date Palms Using Mixed Depthwise Convolutional Networks. Alex. Eng. J. 2022, 61, 5309–5319. [Google Scholar] [CrossRef]
- Subeesh, A.; Mehta, C.R. Automation and Digitization of Agriculture Using Artificial Intelligence and Internet of Things. Artif. Intell. Agric. 2021, 5, 278–291. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Khademzadeh, A.; Rahmani, A.M. The Role of Low-power Wide-area Network Technologies in Internet of Things: A Systematic and Comprehensive Review. Int. J. Commun. Syst. 2022, 35, e5036. [Google Scholar] [CrossRef]
- Bembe, M.; Abu-Mahfouz, A.; Masonta, M.; Ngqondi, T. A Survey on Low-Power Wide Area Networks for IoT Applications. Telecommun. Syst. 2019, 71, 249–274. [Google Scholar] [CrossRef]
- Alazzai, W.K.; Abood, B.S.Z.; Al-Jawahry, H.M.; Obaid, M.K. Precision Farming: The Power of AI and IoT Technologies. E3S Web Conf. 2024, 491, 04006. [Google Scholar] [CrossRef]
- Shams, M.Y.; Gamel, S.A.; Talaat, F.M. Enhancing Crop Recommendation Systems with Explainable Artificial Intelligence: A Study on Agricultural Decision-Making. Neural Comput. Appl. 2024, 36, 5695–5714. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, M. Enhancing Agricultural Decision-Making through an Explainable AI-Based Crop Recommendation System. In Proceedings of the 2024 International Conference on Signal Processing and Advance Research in Computing (SPARC), Lucknow, India, 12–13 September 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar]
- Kostopoulos, G.; Davrazos, G.; Kotsiantis, S. Explainable Artificial Intelligence-Based Decision Support Systems: A Recent Review. Electronics 2024, 13, 2842. [Google Scholar] [CrossRef]
- Ruiz-Juárez, H.M.; Castillo-Araujo, J.; Orozco-del-Castillo, M.G.; Cuevas-Cuevas, N.L.; Cárdenas-Pimentel, F.; Cáceres-Escalante, R. A Decision Tree as an Explainable Artificial Intelligence Technique for Identifying Agricultural Production Predictor Variables in Mexico. In Telematrics and Computing; Springer: New York, NY, USA, 2023; pp. 1–14. [Google Scholar] [CrossRef]
- Cartolano, A.; Cuzzocrea, A.; Pilato, G. Analyzing and Assessing Explainable AI Models for Smart Agriculture Environments. Multimed. Tools Appl. 2024, 83, 37225–37246. [Google Scholar] [CrossRef]
- Ryo, M. Explainable Artificial Intelligence and Interpretable Machine Learning for Agricultural Data Analysis. Artif. Intell. Agric. 2022, 6, 257–265. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Tansey, K.; Liu, J.; Delaney, B.; Quan, W. An Interpretable Approach Combining Shapley Additive Explanations and LightGBM Based on Data Augmentation for Improving Wheat Yield Estimates. Comput. Electron. Agric. 2025, 229, 109758. [Google Scholar] [CrossRef]
- Bouni, M.; Hssina, B.; Douzi, K.; Douzi, S. Interpretable Machine Learning Techniques for an Advanced Crop Recommendation Model. J. Electr. Comput. Eng. 2024, 2024, 7405217. [Google Scholar] [CrossRef]
- Mallinger, K.; Corpaci, L.; Neubauer, T.; Tikász, I.E.; Goldenits, G.; Banhazi, T. Breaking the Barriers of Technology Adoption: Explainable AI for Requirement Analysis and Technology Design in Smart Farming. Smart Agric. Technol. 2024, 9, 100658. [Google Scholar] [CrossRef]
- Akanbi, M.B.; Banjoko, I.K.; Adedotun, K.J.; Raji, A.K. AI-Powered Smart Irrigation Systems and Solar Energy Integration: A Sustainable Approach to Enhancing Agricultural Productivity in Nigeria. J. Renew. Agric. Technol. Res. 2024, 6, 156–170. [Google Scholar]
- Shekhar, S.; Durgam, M.; Khose, S.B.; Pohshna, C.; Bhalekar, D.G. Advancement and Challenges of Implementing Artificial Intelligence of Things in Precision Agriculture. In Artificial Intelligence Techniques in Smart Agriculture; Springer Nature: Singapore, 2024; pp. 217–236. [Google Scholar] [CrossRef]
- Singh, A.K. Early Presence/Introduction of African and East Asian Millets in India: Integral to Traditional Agriculture. Nucleus 2023, 66, 261–271. [Google Scholar] [CrossRef]
- Garske, B.; Bau, A.; Ekardt, F. Digitalization and AI in European Agriculture: A Strategy for Achieving Climate and Biodiversity Targets? Sustainability 2021, 13, 4652. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the Potential Applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Ryan, M. The Social and Ethical Impacts of Artificial Intelligence in Agriculture: Mapping the Agricultural AI Literature. AI Soc. 2023, 38, 2473–2485. [Google Scholar] [CrossRef]
- Uddin, M.; Chowdhury, A.; Kabir, M.A. Legal and Ethical Aspects of Deploying Artificial Intelligence in Climate-Smart Agriculture. AI Soc. 2024, 39, 221–234. [Google Scholar] [CrossRef]
- Atapattu, A.J.; Perera, L.K.; Nuwarapaksha, T.D.; Udumann, S.S.; Dissanayaka, N.S. Challenges in Achieving Artificial Intelligence in Agriculture. In Artificial Intelligence Techniques in Smart Agriculture; Springer Nature: Singapore, 2024; pp. 7–34. [Google Scholar] [CrossRef]
- Maia, R.F.; Lurbe, C.B.; Hornbuckle, J. Machine Learning Approach to Estimate Soil Matric Potential in the Plant Root Zone Based on Remote Sensing Data. Front. Plant Sci. 2022, 13, 931491. [Google Scholar] [CrossRef]
- Fountas, S.; Espejo-García, B.; Kasimati, A.; Gemtou, M.; Panoutsopoulos, H.; Anastasiou, E. Agriculture 5.0: Cutting-Edge Technologies, Trends, and Challenges. IT Prof. 2024, 26, 40–47. [Google Scholar] [CrossRef]
- Hammouch, H.; El-Yacoubi, M.A.; Qin, H.; Berbia, H. A Systematic Review and Meta-Analysis of Intelligent Irrigation Systems. IEEE Access 2024, 12, 128285–128304. [Google Scholar] [CrossRef]
- Talwani, S.; Rakhra, M.; Sarkar, T. Perspectives on the Future of Agriculture and Recent Developments in Agricultural Technology. In Proceedings of the 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 14–15 March 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Araújo, S.O.; Peres, R.S.; Ramalho, J.C.; Lidon, F.; Barata, J. Machine Learning Applications in Agriculture: Current Trends, Challenges, and Future Perspectives. Agronomy 2023, 13, 2976. [Google Scholar] [CrossRef]
- Ruixue, Z.; Chenxue, Y.; Jianhua, Z.; Jiao, L.I.; Jian, W. Agricultural Intelligent Knowledge Service: Overview and Future Perspectives. Smart Agric. 2022, 4, 105. [Google Scholar] [CrossRef]
- Aarif KO, M.; Alam, A.; Hotak, Y. Smart Sensor Technologies Shaping the Future of Precision Agriculture: Recent Advances and Future Outlooks. J. Sens. 2025, 2025, 2460098. [Google Scholar] [CrossRef]
- Bhangar, N.A.; Shahriyar, A.K. Iot and Ai for Next-Generation Farming: Opportunities, Challenges, and Outlook. Int. J. Sustain. Infrastruct. Cities Soc. 2023, 8, 14–26. [Google Scholar]
- Manik, A.; Kuntoji, A.; Kumar, D.; Gupta, S. Data Fusion and Integration Platforms for Smart Farming. In Agriculture 4.0; CRC Press: New York, NY, USA, 2024; pp. 169–184. ISBN 9781003570219. [Google Scholar]
- Taha, M.F.; Mao, H.; Zhang, Z.; Elmasry, G.; Awad, M.A.; Abdalla, A.; Mousa, S.; Elwakeel, A.E.; Elsherbiny, O. Emerging Technologies for Precision Crop Management Towards Agriculture 5.0: A Comprehensive Overview. Agriculture 2025, 15, 582. [Google Scholar] [CrossRef]
- Baldi, A.; Carnevali, L.; Collodi, G.; Lippi, M.; Manes, A. Multi-Task Neural Networks for Multi-Step Soil Moisture Forecasting in Vineyards Using Internet-of-Things Sensors. Smart Agric. Technol. 2025, 10, 100769. [Google Scholar] [CrossRef]
- Karada, M.S.; Khan, I.M.; Sureshkumar, R.; Kumar, D. Precision Agriculture: Merging IoT and AI for Site-Specific Management. In Agriculture 4.0; CRC Press: Boca Raton, FL, USA, 2024; pp. 133–149. ISBN 9781003570219. [Google Scholar]
- Vangala, A.; Sutrala, A.K.; Das, A.K.; Jo, M. Smart Contract-Based Blockchain-Envisioned Authentication Scheme for Smart Farming. IEEE Internet Things J. 2021, 8, 10792–10806. [Google Scholar] [CrossRef]
- Shreya, S.; Chatterjee, K.; Singh, A. BFSF: A Secure IoT Based Framework for Smart Farming Using Blockchain. Sustain. Comput. Inform. Syst. 2023, 40, 100917. [Google Scholar] [CrossRef]
- Almalki, F.A.; Soufiene, B.O.; Alsamhi, S.H.; Sakli, H. A Low-Cost Platform for Environmental Smart Farming Monitoring System Based on IoT and UAVs. Sustainability 2021, 13, 5908. [Google Scholar] [CrossRef]
- Amiri-Zarandi, M.; Dara, R.A.; Duncan, E.; Fraser, E.D.G. Big Data Privacy in Smart Farming: A Review. Sustainability 2022, 14, 9120. [Google Scholar] [CrossRef]
- Padhiary, M.; Barbhuiya, J.A.; Roy, D.; Roy, P. 3D Printing Applications in Smart Farming and Food Processing. Smart Agric. Technol. 2024, 9, 100553. [Google Scholar] [CrossRef]
- Revathi, K.; Tamilselvi, T.; Arunkumar, R.; Samydurai, A. A Smart drone for ensuring precision agriculture with artificial neural network. Indian J. Comput. Sci. Eng. 2022, 13, 897–906. [Google Scholar] [CrossRef]
- Barrile, V.; Simonetti, S.; Citroni, R.; Fotia, A.; Bilotta, G. Experimenting Agriculture 4.0 with Sensors: A Data Fusion Approach between Remote Sensing, UAVs and Self-Driving Tractors. Sensors 2022, 22, 7910. [Google Scholar] [CrossRef]
- Oliveira, L.F.P.; Moreira, A.P.; Silva, M.F. Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead. Robotics 2021, 10, 52. [Google Scholar] [CrossRef]
- King, A. Technology: The Future of Agriculture. Nature 2017, 544, S21–S23. [Google Scholar] [CrossRef] [PubMed]
- Ball, D.; Ross, P.; English, A.; Milani, P.; Richards, D.; Bate, A.; Upcroft, B.; Wyeth, G.; Corke, P. Farm Workers of the Future: Vision-Based Robotics for Broad-Acre Agriculture. IEEE Robot. Autom. Mag. 2017, 24, 97–107. [Google Scholar] [CrossRef]
- Said Mohamed, E.; Belal, A.A.; Kotb Abd-Elmabod, S.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart Farming for Improving Agricultural Management. Egypt. J. Remote Sens. Space Sci. 2021, 24, 971–981. [Google Scholar] [CrossRef]
- Bacco, M.; Barsocchi, P.; Ferro, E.; Gotta, A.; Ruggeri, M. The Digitisation of Agriculture: A Survey of Research Activities on Smart Farming. Array 2019, 3, 100009. [Google Scholar] [CrossRef]
- Bauer, J.; Aschenbruck, N. Design and Implementation of an Agricultural Monitoring System for Smart Farming. In Proceedings of the 2018 IoT Vertical and Topical Summit on Agriculture—Tuscany (IOT Tuscany), Tuscany, Italy, 8–9 May 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Eastwood, C.; Klerkx, L.; Ayre, M.; Dela Rue, B. Managing Socio-Ethical Challenges in the Development of Smart Farming: From a Fragmented to a Comprehensive Approach for Responsible Research and Innovation. J. Agric. Environ. Ethics 2019, 32, 741–768. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A Review of Social Science on Digital Agriculture, Smart Farming and Agriculture 4.0: New Contributions and a Future Research Agenda. NJAS Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Molin, J.P.; Bazame, H.C.; Maldaner, L.; Corredo, L.D.P.; Martello, M.; Canata, T.F. Precision Agriculture and the Digital Contributions for Site-Specific Management of the Fields. Rev. Ciência Agronômica 2020, 51, e20207720. [Google Scholar] [CrossRef]
- Amiri-Zarandi, M.; Hazrati Fard, M.; Yousefinaghani, S.; Kaviani, M.; Dara, R. A Platform Approach to Smart Farm Information Processing. Agriculture 2022, 12, 838. [Google Scholar] [CrossRef]
- Bahlo, C.; Dahlhaus, P.; Thompson, H.; Trotter, M. The Role of Interoperable Data Standards in Precision Livestock Farming in Extensive Livestock Systems: A Review. Comput. Electron. Agric. 2019, 156, 459–466. [Google Scholar] [CrossRef]
- van der Burg, S.; Bogaardt, M.-J.; Wolfert, S. Ethics of Smart Farming: Current Questions and Directions for Responsible Innovation towards the Future. NJAS-Wagening. J. Life Sci. 2019, 90, 100289. [Google Scholar] [CrossRef]
- Mallinger, K.; Baeza-Yates, R. Responsible AI in Farming: A Multi-Criteria Framework for Sustainable Technology Design. Appl. Sci. 2024, 14, 437. [Google Scholar] [CrossRef]
- Zampati, F. Ethical and Legal Considerations in Smart Farming: A Farmer’s Perspective. In Towards Responsible Plant Data Linkage: Data Challenges for Agricultural Research and Development; Springer International Publishing: Cham, Switzerland, 2023; pp. 257–272. [Google Scholar] [CrossRef]
- Kaur, J.; Hazrati Fard, S.M.; Amiri-Zarandi, M.; Dara, R. Protecting Farmers’ Data Privacy and Confidentiality: Recommendations and Considerations. Front. Sustain. Food Syst. 2022, 6, 903230. [Google Scholar] [CrossRef]
- Eshbayev, O.; Xursandov, K.; Pulatovna, K.U.; Sitora, A.; Jamalova, G. Advancing Green Technology Systems through Digital Economy Innovations: A Study on Sustainable. E3S Web Conf. 2024, 576, 02009. [Google Scholar] [CrossRef]
- Sikka, R.; Pal Singh, D.; Sharma, M.K.; Ojha, A. Advancing Agriculture in Smart Cities: Renewable Energy and Artificial Intelligence-Powered IoT. E3S Web Conf. 2024, 540, 13010. [Google Scholar] [CrossRef]
Screening Stage | Number of Records | Notes |
---|---|---|
Records identified through database search | 585 | Scopus, Web of Science, IEEE Xplore, SpringerLink, Google Scholar |
Records removed (non-English) | –10 | Language exclusion |
Records removed (not open access) | –415 | Open-access filter applied |
Records remaining after filtering | 160 | Only OA papers considered |
Records removed (non-peer-reviewed, gray lit.) | –48 | Only journal articles and conference papers retained |
Studies included in the final review | 112 | Used in analysis and discussion |
Technology Type | Typical Applications | Deployment Cost | Effectiveness | Durability | Scalability |
---|---|---|---|---|---|
Optical Sensors | Remote crop monitoring, NDVI | Medium to High | High for above-ground vegetation indices | Moderate (weather-sensitive) | High (e.g., satellite/UAV-based) |
Acoustic Sensors | Pest detection, soil compaction, drainage | Low to Medium | Moderate—depends on signal clarity | High (few moving parts) | Moderate (requires calibration) |
Electromagnetic Sensors | Soil conductivity, moisture mapping | Medium | High precision in subsurface soil data | High (non-invasive) | Moderate (field-based setup) |
Soil/Water Sensors | Irrigation control, nutrient balance | Low to Medium | High—real-time, in situ data | Variable (sensor-specific) | High (commonly deployed in WSNs) |
Application Area | AI Model/Algorithm | Sensor Type | Case Study/Region |
---|---|---|---|
Precision Irrigation | Random Forest, SVM | Soil moisture sensors, WSNs | India [55], USA [51] |
Fertilizer Optimization | KNN, Decision Trees | Soil nutrient sensors, UAV imagery | Saudi Arabia [120], Spain [118] |
Pest and Disease Detection | Convolutional Neural Networks | Multispectral imaging, camera UAVs | China [125], Colombia [21] |
Crop Monitoring and Yield Estimation | Deep Learning, LSTM | Optical sensors, NDVI, drones | Australia [27], Italy [131] |
Livestock Grazing/Grassland Monitoring | Clustering (K-means), Rule-based | Soil probes, GPS collars, drones | Ireland [35], Kenya [135] |
Urban Smart Grasslands | Image Recognition + IoT Fusion | Fixed camera networks, soil sensors | Germany [38], Japan [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, T.; Mikiciuk, G.; Durlik, I.; Mikiciuk, M.; Łobodzińska, A.; Śnieg, M. The IoT and AI in Agriculture: The Time Is Now—A Systematic Review of Smart Sensing Technologies. Sensors 2025, 25, 3583. https://doi.org/10.3390/s25123583
Miller T, Mikiciuk G, Durlik I, Mikiciuk M, Łobodzińska A, Śnieg M. The IoT and AI in Agriculture: The Time Is Now—A Systematic Review of Smart Sensing Technologies. Sensors. 2025; 25(12):3583. https://doi.org/10.3390/s25123583
Chicago/Turabian StyleMiller, Tymoteusz, Grzegorz Mikiciuk, Irmina Durlik, Małgorzata Mikiciuk, Adrianna Łobodzińska, and Marek Śnieg. 2025. "The IoT and AI in Agriculture: The Time Is Now—A Systematic Review of Smart Sensing Technologies" Sensors 25, no. 12: 3583. https://doi.org/10.3390/s25123583
APA StyleMiller, T., Mikiciuk, G., Durlik, I., Mikiciuk, M., Łobodzińska, A., & Śnieg, M. (2025). The IoT and AI in Agriculture: The Time Is Now—A Systematic Review of Smart Sensing Technologies. Sensors, 25(12), 3583. https://doi.org/10.3390/s25123583