
Citation: Dammann, A.; Siebler, B.;

Sand, S. Cramér–Rao Lower Bound

for Magnetic Field Localization

around Elementary Structures. Sensors

2024, 24, 2402. https://doi.org/

10.3390/s24082402

Academic Editors: Jae-Young Pyun

and Santosh Subedi

Received: 16 February 2024

Revised: 20 March 2024

Accepted: 23 March 2024

Published: 9 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Cramér–Rao Lower Bound for Magnetic Field Localization
around Elementary Structures
Armin Dammann * , Benjamin Siebler and Stephan Sand

German Aerospace Center (DLR), Oberpfaffenhofen, 82234 Wessling, Germany; benjamin.siebler@DLR.de (B.S.);
stephan.sand@DLR.de (S.S.)
* Correspondence: armin.dammann@DLR.de

Abstract: The determination of a mobile terminal’s position with high accuracy and ubiquitous
coverage is still challenging. Global satellite navigation systems (GNSSs) provide sufficient accuracy
in areas with a clear view to the sky. For GNSS-denied environments like indoors, complementary
positioning technologies are required. A promising approach is to use the Earth’s magnetic field for
positioning. In open areas, the Earth’s magnetic field is almost homogeneous, which makes it possible
to determine the orientation of a mobile device using a compass. In more complex environments like
indoors, ferromagnetic materials cause distortions of the Earth’s magnetic field. A compass usually
fails in such areas. However, these magnetic distortions are location dependent and therefore can be
used for positioning. In this paper, we investigate the influence of elementary structures, in particular
a sphere and a cylinder, on the achievable accuracy of magnetic positioning methods. In a first step,
we analytically calculate the magnetic field around a sphere and a cylinder in an outer homogeneous
magnetic field. Assuming a noisy magnetic field sensor, we investigate the achievable positioning
accuracy when observing these resulting fields. For our analysis, we calculate the Cramér–Rao
lower bound, which is a fundamental lower bound on the variance of an unbiased estimator. The
results of our investigations show the dependency of the positioning error variance on the magnetic
sensor properties, in particular the sensor noise variance and the material properties, i.e., the relative
permeability of the sphere with respect to the cylinder and the location of the sensor relative to the
sphere with respect to the cylinder. The insights provided in this work make it possible to evaluate
experimental results from a theoretical perspective.

Keywords: navigation, position estimation; estimation theory; magnetic field; magnetic sensor;
estimation error; Fisher information; Cramér–Rao lower bound

1. Introduction

Position information is becoming increasingly important in mobile communication
systems. Location-based services and navigation applications require such position infor-
mation with sufficient accuracy and availability in both outdoor and indoor environments.
In addition to applications, lower layers in mobile communication systems can benefit from
information about the mobile terminals’ locations as well [1].

There are a variety of technologies for the determination of a mobile terminal’s po-
sition. Global navigation satellite systems [2] like GPS, GLONASS, Galileo, Beidou, etc.
provide good accuracy and coverage in outdoor areas. Indoors, however, non-line-of-
sight and multipath propagation, together with weak signal power levels at the receiver,
make satellite-based positioning challenging or even impossible. In such challenging
environments, positioning based on terrestrial wireless networks is considered to be the
complementary technology. Received signals in a terrestrial wireless network provide a
relation between the position of a mobile terminal and the positions of the base stations
in the network. Several characteristics of a received signal carry information about the
position of a mobile terminal [3]. The time of arrival (TOA) and time difference of arrival
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(TDOA) exploit the signal propagation delay between base stations and the mobile terminal
for positioning. Other methods make use of the angle of arrival (AOA) or the received
signal strength (RSS) for mobile terminal positioning. Compared to satellite signals, ter-
restrial mobile radio signals provide higher power levels at the receiver. As in the case
of satellite-based positioning, multipath and non-line-of-sight propagation also degrade
the positioning performance based on terrestrial wireless networks severely. Furthermore,
at least three base stations must be observable to a mobile terminal in order to obtain a
two-dimensional position fix. This is hardly achieved in today’s mobile radio networks.
In the future, this situation might either change due to denser network cell structures,
or the requirement of receiving multiple base stations will become obsolete by applying
cooperative positioning methods [4].

Especially for pedestrian indoor navigation, the use of inertial sensors became popular
in recent years. Such sensors are cheap and widely deployed in today’s mobile devices.
However, if conventional dead reckoning is applied using inertial sensors, the positioning
error grows cubically in time due to sensor drift. In [5], the author proposes a pedestrian
tracking system using a foot-mounted inertial sensor. By detecting the resting phase of
the foot during a typical human walk, so-called zero-velocity updates are applied, which
reduce the positioning error from cubic to linear. However, the problem of an unlimited
growth of the positioning error remains. A step forward for solving the drift problem is to
use landmarks, i.e., location-dependent characteristics that can be observed and identified.
By regularly revisiting such landmarks, remaining inertial sensor drifts can be compensated.
Mobile radio networks or dedicated positioning systems can provide such landmarks. To
achieve an appropriate local distribution of landmarks, i.e., reference or base stations, some
installation of additional infrastructure might be required. Additionally, this infrastructure
has to be calibrated so that the positions of these reference stations are known. Both
the installation and calibration of positioning infrastructure is time-consuming and costly.
Therefore, a common approach is to use landmarks that can be detected with today’s mobile
terminal low-cost sensor equipment. Using the principles of simultaneous localization and
mapping (SLAM), the positions of the mobile terminal and the landmarks are estimated at
the same time, i.e., calibration happens on the fly. In [6], the authors propose a pedestrian
navigation system that combines odometry, obtained from a foot-mounted inertial sensor,
and RSS measurements of WiFi base stations as landmarks. Both the mobile terminal and
the WiFi bass stations’ positions are estimated using a SLAM approach based on Bayesian
filtering. The authors of [7] introduce an indoor positioning principle, solely based on a
foot mounted inertial sensor, called FootSLAM. The structure of walking routes are used as
location-dependent characteristics. The FootSLAM algorithm method detects and maps
these walking routes. When revisited, mapped walking routes are recognized that are used
for the compensation of the inertial sensor drift.

Another kind of location-dependent characteristic that can be used for positioning is
the Earth’s magnetic field. Ferromagnetic materials placed in that field cause distortions.
Regardless if being distorted or not, the Earth’s magnetic field observed by a magnetic
sensor in a mobile device in general depends on the position and/or the orientation of the
mobile device. A variety of positioning methods based on the observation of the Earth’s
magnetic field have been proposed and studied, which relate to our investigations. Many
of these methods come with experimental validation. This paper aims to provide basic
theoretical dependencies for magnetic field-based positioning so that the experimental
results regarding positioning performance can ultimately be evaluated and explained from
a theoretical perspective.

1.1. Related Work

The discovery and observation of magnetic phenomena goes back even before the
common era. As one result, the compass had already been developed centuries ago [8].
A compass indicates the direction of a surrounding magnetic field. In open areas, the
Earth’s magnetic field provides orientation towards the magnetic poles of the Earth. More
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complex environments like indoors show severe distortions of the Earth’s magnetic field,
which are mainly caused by surrounding ferromagnetic materials such as reinforcing
steel, for instance. A compass usually fails in such areas. Such distortions, however, are
location-dependent characteristics and can be considered as a local magnetic fingerprint.

In [9], the authors study the feasibility of using such fingerprints for positioning. They
found that the Earth’s magnetic field is temporarily stable enough, and its distortions can be
sufficiently significant in order to achieve submeter or even down to decimeter positioning
accuracy with fingerprinting methods. Obviously, higher local distortions in the magnetic
field provide higher positioning accuracy. Fingerprinting positioning methods require a
database, which must be created in a training or calibration phase.

Investigations in [10] address the behavior of the Earth’s magnetic field in the vicinity
of ferromagnetic materials. It was shown that ferromagnetic objects like pillars can be
identified and used as landmarks by observing significant changes in the magnetic field
strength around them. Furthermore, the experiments described in [10] show a good match
between the measured magnetic field strength and its prediction by analytical approxima-
tions. Also, long-term stability and reproducibility of the magnetic field observations are
found to be suitable for magnetic fingerprinting positioning.

In [11], Angermann et al. proposed to exploit the characteristic Earth magnetic field
perturbations for indoor positioning. The authors discuss various methods for the measure-
ment and mapping of the Earth’s magnetic field with sufficient granularity. For repeated
magnetic field measurements, only little noise was identified, which indicated good stabil-
ity and reproducibility of the Earth magnetic field observations. An autonomous robotic
platform for high resolution and complete mapping of the Earth’s magnetic field has been
developed and described in [12].

The suitability of the magnetic field was also shown for road [13] and railway environ-
ments [14]. Even in the airspace, the magnetic field shows distortions that, in combination
with an inertial navigation system, can be exploited for position estimation [15]. Unlike
in the other environments, the distortions in the airspace are not caused by nearby mag-
netic material but by the crustal field of the Earth [15], which typically is smaller than the
distortions observed, e.g., in indoor environments.

In [16], the theoretically achievable accuracy of magnetic localization for a wheeled
robot driving through an indoor environment has been analyzed by deriving a Bayesian
lower bound. The bound was based on a Gaussian process fitted to a data set of densely
measured magnetic field vectors. Thus, the bound requires an exhaustive measurement
campaign to be calculated, but once the data set is available, the bound can be used to assess
the quality of different filter algorithms. The paper showed that particle filters perform
well but are not optimal with respect to to their mean square error.

In contrast to performing magnetic field mapping as a required calibration step prior
to solving the actual positioning task, several research works propose using SLAM. In [17],
the authors provide an experimental proof of a concept for a SLAM approach that uses
the Earth’s magnetic field anomalies in combination with the odometry data of a robotic
platform. The magnetic field there was parametrically modeled using Gaussian processes.
The combination of magnetic and inertial sensors in a SLAM-based positioning solution
has been proposed in [18–20]. With this sensor combination, the authors of [19] obtained
positioning errors in the order of 10 cm to 20 cm when walking through a large building.

The works and methods mentioned above utilize the distortions of the Earth’s mag-
netic field for positioning. They mainly rely on experimental work for characterizing and
mapping the Earth’s magnetic field and its perturbations for positioning—either with a
traditional calibration step prior to running positioning algorithms or with SLAM-based
solutions. In order to quantify the positioning performance, estimated positions obtained
during experiments have been compared to the corresponding ground truth. Our work
presented in this paper complements these results by analyzing the achievable positional
accuracy using an estimation–theoretic approach based on the computation of Fisher
information and the Cramér–Rao lower bound.
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1.2. Contribution

In this paper, we aim to lower bound the achievable error variance for positioning
methods based on the observation of the ambient magnetic field. In particular, we address
the following questions:

• How does the achievable positioning performance depend on the magnetic sensor
properties, i.e., the sensor noise variance?

• How does the positioning performance depend on the distance from ferromagnetic
objects that cause magnetic field distortions?

• How does the ferromagnetic material properties, in particular the relative permeability,
influence the achievable positioning performance?

To answer these questions, we provide an analytical description of the magnetic field
around a sphere and a cylinder placed in an outer homogeneous static magnetic field in
Sections 2 and 3. We use these analytical field descriptions and calculate the Cramér–Rao
lower bound for position estimation based on noisy magnetic field observations in Section 4.
Section 5 provides examples and evaluations of the achievable positioning performance for
a ferromagnetic cylinder in the Earth’s magnetic field.

2. The Static Magnetic Field

Maxwell’s Equations—a set of four partial differential equations—describe the be-
havior and interrelation of charges, currents, and electric and magnetic fields. According
to these equations, dynamic electric and magnetic fields influence each other through
nonzero partial derivatives of those fields with respect to time. In the static case, how-
ever, these derivatives are zero, and Maxwell’s system of equations decouples. So, we
obtain two equations—in particular the Maxwell–Ampère equation and Gauss’s law for
magnetism—which describe any static magnetic field.

2.1. Maxwell’s Equations for the Static Magnetic Field

Maxwell’s equations for the static magnetic field can be found in many textbooks on
electromagnetic field theory, e.g., in [21,22]. The Maxwell–Ampère equation for the static
magnetic strength vector field H in the absence of currents reads as

rot H = 0. (1)

Another equation, describing the magnetic field, is Gauss’s law for magnetism. It
states that the magnetic flux density vector field is defined as

div B = div µ H = 0, (2)

with B = µ H being is a divergence-free vector field. In other words, this means that there
are no magnetic charges. Here, µ is a constant describing the material’s permeability. With
these conditions, we can express the magnetic strength vector field

H = − grad Ψ = −∇Ψ (3)

as the gradient of a scalar potential field Ψ. This choice fulfills (1), since the curl of a
gradient field is zero in general. Substituting (3) into (2) yields Laplace’s equation:

div grad Ψ = ∆Ψ = 0. (4)

This partial differential equation usually comes with boundary conditions. Thus,
a solution to that boundary value problem solves Laplace’s equation and additionally
satisfies the boundary conditions.

2.2. Boundary Values and Conditions

As mentioned above, we have to find a scalar magnetic potential field that is a solution
of Laplace’s equation and satisfies given boundary values and conditions. General bound-
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ary value constraints are the continuity of the parallel magnetic strength vector components
H∥

i and the perpendicular magnetic flux density vector components B⊥
i at the boundary

surfaces between materials, indexed by i, with different permeabilities, i.e.,

H∥
1 = H∥

2 , (5)

B⊥
1 = B⊥

2 . (6)

The boundary condition for the magnetic field strength components (5) follow from
the Maxwell–Ampère Equation (1). The continuity of the perpendicular magnetic flux
density (6) is a consequence of Gauss’s law for magnetism (2).

Subsequently, we investigate the magnetic field that results from the presence of
a ferromagnetic body like an iron sphere or cylinder in an outer magnetic field. It is
reasonable to assume that the influence of the ferromagnetic body on the magnetic field
decays with increasing distance. This yields the boundary value at infinite distance to
the ferromagnetic body in such a way that the solution of the boundary value problem,
−∇Ψ, converges to the original field H∞, which would be observable in absence of the
ferromagnetic structure. This assumption leads to the Neumann boundary condition:

lim
r→∞

−∇Ψ = H∞. (7)

Equivalently, we can require the magnetic potential field to take on specific values. In
this case, we obtain the Dirichlet boundary condition

lim
r→∞

Ψ = Ψ∞, (8)

which, except for an additive constant, is equivalent to the Neumann boundary condition.
The usual procedure of solution for boundary value problems is to find a general

solution for Laplace’s equation for each volume having a different permeability. Using
their remaining degrees of freedom, these solutions are then aligned to each other in order
to meet the given boundary values and constraints.

3. Ferromagnetic Structures in a Homogeneous Magnetic Field

As mentioned earlier, ferromagnetic materials cause distortions in the Earth’s ambient
magnetic field, which are inherently location dependent and can thus be used for position
estimation. In daily life, there are many environments, like indoors, where we find ferro-
magnetic materials in close proximity. Just think of the reinforcement steel in the concrete
hulls of buildings as an example.

In the following sections, we provide an analytical description of the magnetic poten-
tial field or magnetic field strength for a sphere and a cylinder, respectively, which we place
into an external homogeneous magnetic field.

3.1. Sphere

We consider an outer homogeneous magnetic strength vector field

H∞ = H∞ ez = H∞ cos(θ) er − H∞ sin(θ) eθ (9)

with magnitude H∞, which is oriented in z direction of a Cartesian coordinate system. The
second part of (9) provides the description of this field in spherical coordinates with unit
vectors er in the radial direction and eθ in the polar direction. This static magnetic field can
be obtained from the corresponding scalar magnetic potential field:

Ψ∞ = −H∞ z = −H∞ r cos(θ). (10)

Now, let us place a sphere with a permeability µin and a radius rsph into this magnetic
field at the origin of the coordinate system, as shown in Figure 1.
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Figure 1. Solid sphere with permeability µin in an outer medium with permeability µout.

The resulting magnetic field can be calculated by solving Laplace’s Equation (4) for
the magnetic scalar potential field. We split this field into the magnetic potential field
Ψin within the sphere and the outer field Ψout. At the sphere’s surface, the boundary
conditions (5) and (6) must hold. Additionally, the outer field has to fulfill the boundary
condition limr→∞ Ψout = Ψ∞.

For solving Laplace boundary value problems, a common approach is to apply the ‘sep-
aration of variables’ method. There, we assume a factorized solution of
Ψ(r, φ, θ) = R(r)Φ(φ)Θ(θ), where each of the three factors only depends on one co-
ordinate. This approach separates the Laplace differential equation into three ordinary
differential equations—one for each factor. These ordinary differential equations are easier
to solve. The solution of the Laplace boundary value problem through the separation of
variables is well known and therefore not in the focus of this paper. Interested readers are
referred to textbooks, e.g., ([21], p. 247 f.) or Appendix B. At the end, we obtain a solution
of the Laplace equation for the outer magnetic potential field of our problem as

Ψout = H∞

( µin
µout

− 1
µin
µout

+ 2

( rsph

r

)3
− 1

)
r cos(θ). (11)

Correspondingly, the inner magnetic potential field is

Ψin = −H∞
3

µin
µout

+ 2
r cos(θ). (12)

With the gradient operator ∇ :=
(

∂
∂r , 1

r
∂
∂θ , 1

r sin(θ)
∂

∂φ

)
for spherical coordinates, we

obtain the corresponding magnetic field strengths as

Hout = −∇Ψout = H∞

(
2

µr − 1
µr + 2

( rsph

r

)3
+ 1

)
cos(θ) er

+H∞

(
µr − 1
µr + 2

( rsph

r

)3
− 1

)
sin(θ) eθ

(13)

and

Hin = −∇Ψin = H∞
3

µr + 2
cos(θ) er

−H∞
3

µr + 2
sin(θ) eθ .

(14)
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For convenience, we have set µr =
µin
µout

. It is straightforward to verify this solution
by insertion into (4)–(8). For further investigations, we will require the magnetic strength
vector field outside the sphere in Cartesian coordinates. From (13) and with

er = sin(θ) cos(φ) ex + sin(θ) sin(φ) ey + cos(θ) ez (15)

eθ = cos(θ) cos(φ) ex + cos(θ) sin(φ) ey − sin(θ) ez (16)

we obtain

Hout =
3
2

H∞
µr − 1
µr + 2

( rsph

r

)3
sin(2 θ) cos(φ) ex

+
3
2

H∞
µr − 1
µr + 2

( rsph

r

)3
sin(2 θ) sin(φ) ey

+
1
2

H∞

[
2 +

µr − 1
µr + 2

( rsph

r

)3

(3 cos(2 θ) + 1)

]
ez.

(17)

Figure 2 shows the magnetic field strength for a ferromagnetic sphere with a relative
permeability of µr =

µin
µout

= 100 as a color plot exemplary for slice planes y = 0 and z = 0.
The magnetic field strength is expressed by its magnitude normalized to the homogeneous
field strength H∞. Its orientation is shown by magnetic flux lines.

Figure 2. Magnetic field strength and magnetic flux lines for a sphere with relative permeability
µr = 100 in an outer homogeneous magnetic field.

3.2. Cylinder

We assume a cylinder of infinite length with a permeability µin and a radius rsph
located along the z axis of a cylindrical coordinate system, as shown in Figure 3.
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ݕ
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Figure 3. Solid cylinder with permeability µin in an outer medium with permeability µout.

Due to its permeability µin being different from that of the outer medium µout, this
cylinder influences an outer homogeneous magnetic field. First, let us consider a homoge-
neous outer magnetic field with arbitrary direction. Since the dimension of the cylinder in
the z direction is infinite, there is no dependency of the resulting magnetic field on dimen-
sion z. For this reason, it is obvious that the cylinder does not influence the z component
of an outer homogeneous magnetic field. Therefore, we consider a homogeneous outer
magnetic field strength with its direction in the x–y plane. Without loss of generality, we
assume a homogeneous magnetic strength vector field in the x direction with magnitude
H∞, which we can express as

H∞ = H∞ ex. (18)

The resulting magnetic field can be obtained by solving Laplace’s Equation (4) for
the magnetic scalar potential field. We split this field into the magnetic potential field Ψin
within the cylinder and the outer field Ψout. The outer field has to fulfill the boundary
condition − grad Ψout = H∞ ex, r → ∞. The solution for the outer field is

Ψout = H∞

( µin
µout

− 1
µin
µout

+ 1

( rcyl

r

)2
− 1

)
r cos(φ). (19)

Correspondingly, the inner magnetic potential field is

Ψin = −H∞
2

µin
µout

+ 1
r cos(φ). (20)

A derivation for this solution can be found in Appendix C. With the gradient operator
∇ :=

(
∂
∂r , 1

r
∂

∂φ , ∂
∂z

)
for cylindrical coordinates, we obtain the corresponding magnetic field

strengths as

Hout = −∇Ψout = H∞

(
µr − 1
µr + 1

( rcyl

r

)2
+ 1

)
cos(φ) er

+H∞

(
µr − 1
µr + 1

( rcyl

r

)2
− 1

)
sin(φ) eφ

(21)

outside the cylinder and
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Hin = −∇Ψin = H∞
2

µr + 1
cos(φ) er

−H∞
2

µr + 1
sin(φ) eφ

(22)

inside the cylinder. For convenience, we have set µr =
µin
µout

. For further investigations, we
express the magnetic strength vector field in Cartesian coordinates. From (21) and with

er = cos(φ) ex + sin(φ) ey (23)

eφ = − sin(φ) ex + cos(φ) ey (24)

we obtain

Hout = H∞

(
1 +

µr − 1
µr + 1

( rcyl

r

)2
cos(2 φ)

)
ex

+H∞
µr − 1
µr + 1

( rcyl

r

)2
sin(2 φ) ey.

(25)

Figure 4 shows the magnetic field strength for a ferromagnetic sphere with a relative
permeability of µr =

µin
µout

= 100. The magnetic field strength is expressed by its magnitude
normalized to the homogeneous field strength H∞. Its orientation is shown by magnetic flux
lines. Since the magnetic field components neither contain components in the z direction
nor show a dependency on the z coordinate, it is sufficient to plot the magnetic field in two
dimensions, i.e., in the x–y plane with z = 0.

Figure 4. Magnetic field strength and magnetic flux lines for a cylinder with relative permeability
µr = 100 in an outer homogeneous magnetic field.

4. Positioning Performance—An Estimation–Theoretic Approach

Previously, we have calculated the magnetic field strength when placing elementary
structures, in particular a cylinder and a sphere, in an outer homogeneous magnetic field.
These magnetic fields H(a) depend on a variety of parameters, which we collect in a vector
a = (a1, . . . , aN). Since the magnetic field is location dependent, the parameter vector a also
contains location coordinates x. Thus, we can infer position information from the magnetic
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field strength measurement values. Usually, such measurements are noisy, which causes
noisy position estimates. We are interested in the achievable performance of positioning
based on noisy magnetic field strength measurements, in particular the variance in the
noisy position estimates.

For the evaluation of the position estimation error, we apply the Cramér–Rao lower
bound [23]. The Cramér–Rao lower bound is a fundamental lower bound on the variance
of any unbiased estimator. Its calculation in general requires the Fisher information matrix
F with components

Fk,ℓ = E
{
− ∂2

∂ak ∂aℓ
p
(

Ĥ | a
)}

= E
{

∂

∂ak
p
(

Ĥ | a
) ∂

∂aℓ
p
(

Ĥ | a
)}

, (26)

where p
(

Ĥ | a
)

denotes the likelihood function with respect to the noisy magnetic field
strength observations Ĥ, and E{·} defines the expectation operator with respect to that
likelihood function. Finally, the variance

VAR{âi} ≥
[
F−1

]
i,i

, (27)

of an estimate âi with respect to the parameter vector component ai is lower bounded by
the ith diagonal element of the inverse Fisher information matrix.

4.1. Measurement Model

As already mentioned above, the magnetic field H depends on the position x. We are
going to exploit this dependency for positioning. For that, we consider noisy measurements

Ĥ = H(x) + ϵ (28)

of the magnetic field strength, in particular its components. We assume that these mea-
surements consist of the magnetic field strength H(x) itself, which is disturbed by additive
white Gaussian noise ϵ =

(
ϵx, ϵy, ϵz

)T with zero mean and covariance

Σ = E
{

ϵ ϵT
}

. (29)

In this case, the likelihood function

p
(

Ĥ | x
)
=

exp
(
− 1

2
(

Ĥ − H(x)
)T

Σ−1(Ĥ − H(x)
))√

(2π)n det(Σ)
(30)

is a conditional Gaussian probability density function, where n is the length of the error
vector ϵ.

4.2. Fisher Information and the Cramér–Rao Lower Bound

With the spatial dependency of the magnetic field and the additive white Gaussian
noise measurement model we have introduced in (28), the Fisher information matrix is
calculated as [23]

F = J(x)T Σ−1 J(x). (31)

In the case of independent and identically distributed Gaussian noise, meaning
Σ = σ2I, (31) simplifies to

F =
1
σ2 J(x)T J(x). (32)

The Jacobian matrix
J(x) = ∇H(x) (33)

contains the gradients of the magnetic field strength components with respect to the spatial
parameters, which we wish to estimate. By applying the gradient operator for spherical
coordinates to (17), we obtain the Jacobian matrix
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Jsph(x) =
(

∂

∂r
,

1
r

∂

∂θ
,

1
r sin(θ)

∂

∂φ

)
H(x)

=
3
4

H∞

rsph

µr − 1
µr + 2

( rsph

r

)4
−6 sin(2 θ) cos(φ) 4 cos(2 θ) cos(φ) −4 cos(θ) sin(φ)

−6 sin(2 θ) sin(φ) 4 cos(2 θ) sin(φ) 4 cos(θ) cos(φ)
−6 cos(2 θ)− 1 −4 sin(2 θ) 0

 (34)

for a sphere in a homogeneous magnetic field, as introduced in Section 3.1.
For the cylinder case, we have calculated the magnetic field strength in Section 3.2.

We observe that there is neither a dependency of the magnetic field strength on the height
coordinate z nor a z component of the magnetic field strength itself. For this reason, position
estimation in the z direction is impossible. So if we neglect the z dimension, we consider the
remaining two-dimensional positioning problem in the x–y plane. By applying the gradient
operator for the remaining polar coordinates (r, φ) to (25), we obtain the Jacobian matrix:

Jcyl(x) =
(

∂

∂r
,

1
r

∂

∂φ

)
H(x)

= 2
H∞

rcyl

µr − 1
µr + 1

( rcyl

r

)3 (− cos(2 φ) − sin(2 φ)
− sin(2 φ) cos(2 φ)

)
.

(35)

With (32), the resulting Fisher information matrices are

Fsph =
9

16 r2
sph

H2
∞

σ2

(
µr − 1
µr + 2

)2 ( rsph

r

)8
12 cos(2 θ) + 37 4 sin(2 θ) 0

4 sin(2 θ) 16 0
0 0 16 cos2(θ)

 (36)

for the sphere and

Fcyl =
4

r2
cyl

H2
∞

σ2

(
µr − 1
µr + 1

)2 ( rcyl

r

)6
I2×2 (37)

for the cylinder case with an identity matrix I2×2 of dimensions 2 × 2. Inverting these
Fisher information matrices results in the Cramér–Rao lower bound matrices

Csph = F−1
sph =

location independent︷ ︸︸ ︷
38

147
r2

sph

magnetic
sensor

properties︷ ︸︸ ︷(
H2

∞
σ2

)−1

material pro-
perties, σ2

mat︷ ︸︸ ︷(
µr + 2
µr − 1

)2
×

×
(

r
rsph

)8

︸ ︷︷ ︸
radial distance

dependency, σ2
rad



392
57 (cos(2 θ)+6)2︸ ︷︷ ︸

=σ2
r

− 98 sin(2 θ)
57 (cos(2 θ)+6)2 0

− 98 sin(2 θ)
57 (cos(2 θ)+6)2

49 (12 cos(2 θ)+37)
114 (cos(2 θ)+6)2︸ ︷︷ ︸

=σ2
θ

0

0 0 49
114 cos2(θ)︸ ︷︷ ︸

=σ2
φ


︸ ︷︷ ︸

polar angle dependency︸ ︷︷ ︸
location dependent

(38)

for the sphere and
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Ccyl = F−1
cyl =

location independent︷ ︸︸ ︷
1
4

r2
cyl

(
H2

∞
σ2

)−1

︸ ︷︷ ︸
magnetic

sensor
properties

(
µr + 1
µr − 1

)2

︸ ︷︷ ︸
material pro-
perties, σ2

mat

(
r

rcyl

)6

︸ ︷︷ ︸
radial distance

dependency, σ2
rad

I2×2 (39)

for the cylinder.

4.3. Discussion of Results

Subsequently, we discuss the Cramér–Rao lower bound results of (38) and (39). The
diagonal elements of the Cramér–Rao lower bound matrices provide the lower bounds
for the variances of the parameter estimates. In our case, these parameter estimates are
the position of the magnetic sensor in the particular coordinate system we have used. The
corresponding variances describe the uncertainty along the unit vectors of the coordinate
system. For the spherical coordinates, which we have used in (38), we obtain the variances
in the radial (er), polar (eθ), and azimuthal (eφ) direction. In the case of the cylinder
coordinates, used in (39), we obtain the variances in the radial (er) and azimuthal (eφ)
direction. Note, we omit the z coordinate for the cylinder case, since there is no dependency
of the magnetic field on that coordinate. This makes an estimation of the z coordinate
impossible, as already discussed in Section 4.2.

From both (38) and (39), we observe that the solutions factorize into parts that depend
on the location of the sensor relative to the sphere with respect to the cylinder and parts
that are location independent. We have formatted these factors to be unitless and therefore
describe how the position estimation variances vary with respect to the squared radius of
the sphere (r2

sph) or the cylinder (r2
cyl). Subsequently, we discuss these factors mainly in

standard deviation form, i.e., the square root of these variance factors.

4.3.1. Dependency on Magnetic Sensor Properties

For both the sphere and the cylinder case, the solutions depend on the factor H2
∞

σ2 . This
factor does not depend on the sensor location and can be interpreted as a signal-to-noise
power ratio for the magnetic field strength measurements, which we modeled in (28). This
ratio is unitless and determined by the outer magnetic field strength and the measurement
noise variance σ2, which is a measure for the sensor quality. As this signal-to-noise ratio
increases by 10 dB, the position estimation variances decrease by one decade. In other
words, the corresponding position estimation standard deviations decrease by 1 decade
per 20 dB signal-to-noise ratio.

4.3.2. Dependency on Material Properties

A second location-independent factor contains the permeability µr of the sphere’s
respective and cylinder’s respective material relative to the outer medium. Figure 5 shows
the material factor σmat for both the sphere and the cylinder. In both cases, this factor shows
a pole at µr = 1. At µr = 1, the permeability of the sphere’s respective and cylinder’s
respective material is identical to that of the outer medium. Consequently, there is no
distortion of the outer stimulating magnetic field. It remains homogeneous and therefore
location independent, which makes position estimation impossible. This means that the
estimation uncertainty in the form of the estimation variances is approaching infinity.
For ferromagnetic materials, µr ≫ 1, the material factor σmat approaches an infimum of
1. As we can observe from (38) and (39), a relative permeability of µr = 100 results in
σmat =

102
99 ≈ 1.03 for the sphere and σmat =

101
99 ≈ 1.02 for the cylinder. So, there is only

little to gain if the relative permeability is further increased. It is interesting to note that
for ideal diamagnetic materials (µr = 0), like superconductors for example, we observe
different material factor values for the sphere (σmat = 2) and the cylinder (σmat = 1).
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Figure 5. Dependency of position estimation standard deviation on the relative permeability µr.

4.3.3. Dependency on Sensor Location

Previously, we have discussed those parts in the Cramér–Rao lower bounds that do
not depend on the magnetic sensor location. Distortions in the magnetic field, caused by
the sphere and the cylinder, are location dependent. From the Cramér–Rao lower bound
theory, it is known that higher variations in the magnetic field strength provide better
position estimation performance. Significant magnetic field strength variations can be
observed around the magnetic structures. With increasing distance to those magnetic struc-
tures, the distortions relax, and the magnetic field becomes more and more homogeneous.
Therefore, we expect higher position estimation performance around the magnetic object.
Subsequently, we discuss the corresponding location-dependent factors in the Cramér–Rao
lower bounds of (38) and (39).

Sphere

For the environment shown in Figure 1 with an outer homogeneous magnetic field in
the z direction, we expect the resulting magnetic field to be rotationally symmetric with
respect to the azimuth coordinate φ. From (13), we observe that there is neither a magnetic
field component in the eφ direction nor a dependency on the azimuth coordinate φ of the
remaining magnetic field components. Therefore, the position estimation performance is
independent of the azimuth coordinate φ.

The radial dependency factor σrad shown in (38) increases with the 4th power of the
radial distance r normalized to rsph, which is the radius of the sphere. So, the position
estimation error quickly increases when increasing the distance to the sphere. Figure 6
shows the radial dependency σrad as a function of the normalized radial distance. The
radial dependency factor affects the position estimation in all directions similarly.
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Figure 6. Radial dependency of position estimation standard deviation.

The diagonal elements of the Cramér–Rao lower bound matrix provide the lower
bounds for the variances of position estimation errors in the radial, polar, and azimuthal
directions, respectively. From (38), we observe that the corresponding standard deviation
factors σr, σθ , and σφ depend differently on the polar angle θ. Figure 7 shows the graphs of
these factors. Additionally, we have plotted the magnitude

σmag =
√

σ2
φ + σ2

θ + σ2
r (40)

of the position estimation error factors depending on the polar angle θ. We have normal-
ized the polar angle-dependent diagonal elements in (38) to the magnitude’s minimum.
Therefore,

σmag ≥ 1 (41)

with minima (min σmag = 1) occurring at θ = 0◦ and θ = 180◦.
The performance factors are limited for the radial and polar directions. In contrast, the

position estimation error in the azimuthal direction shows a singularity and goes to infinity
for θ → 90◦. It is interesting to note that

σφ ≥ σθ > σr, (42)

with σφ = σθ for θ = 0◦, 180◦. According to Figure 7, position estimation in the radial
direction always performs better than in the polar or azimuthal directions. The block
diagonal structure of the Cramér–Rao lower bound matrix indicates that the position esti-
mation performance in the azimuthal direction does not depend on the position estimation
performances achieved in the radial and polar directions.
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Figure 7. Polar angle dependency of position estimation standard deviation for a sphere in a
homogeneous magnetic field.

Figure 8 shows a three-dimensional sliced color plot for the magnitude of the location-
dependent position error factor, which is defined as

σloc = σrad σmag = σrad

√
σ2

φ + σ2
θ + σ2

r . (43)

Magnetic flux lines indicate the magnetic field strength and orientation. In the slice
plane y = 0, we observe the singularity discussed above. For the whole plane z = 0, or
equivalently θ = 90◦, the factor σφ and consequently σloc go to infinity. Nevertheless, we
still are able to estimate the remaining position coordinates, i.e., the radial distance r and
the polar angle θ, with sufficient accuracy.

Figure 8. Location dependency σloc of position estimation standard deviation for a sphere in a
homogeneous magnetic field.
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Cylinder

For the cylinder case, shown in Figure 3, the outer static magnetic field is directed
along the x axis. The cylinder itself has infinite dilatation in the z direction. With this choice
of the coordinate system, we obtain invariance with respect to the z coordinate and reduce
the problem to a two-dimensional one. Consequently, position estimation in the z direction
is not possible.

The radial dependency factor σrad shown in (39) increases with the 3th power of the
radial distance r normalized to the cylinder radius rcyl. Compared to the sphere, which
has a finite size in all the three dimensions, the impact of the inhomogeneity on the outer
magnetic field, and therefore the achievable position estimation accuracy, is more significant.
Figure 6 shows the corresponding graph in comparison to the sphere case.

From (21) and Figure 4, we observe that the magnetic field shows both a magnetic
field component in the eφ direction and a dependency on the azimuth coordinate φ of
the magnetic field components. As indicated by the identity matrix in (39) however, the
position estimation error variances are equal for both the radial (er) and the azimuthal (eφ)
directions. Despite the magnetic field not being rotationally symmetric, it is interesting to
see that the position estimation performance is independent of the azimuth coordinate φ in
this case.

5. Examples

Subsequently, we consider a vertical cylindrical pillar made of ferromagnetic material
as an example and assess the achievable positioning accuracy when measuring the Earth’s
magnetic field in the area around that pillar.

5.1. Cramér–Rao Lower Bound in the Presence of Quantization Noise

We start from (39). The diagonal elements of the Cramér–Rao lower bound matrix
are equal and provide the lower bounds for the variances of the position estimation in
the radial (er) and azimuthal (eφ) directions. We consider the square root of the diagonal
elements and obtain

σr

rcyl
=

σφ

rcyl
=

σmat

2

(
H2

∞

σ2
H

)− 1
2
(

r
rcyl

)3

(44)

as the Cramér–Rao lower bound for the estimation error standard deviation in both radial
and azimuthal direction normalized to the radius of the cylindrical pillar. For the position
estimation standard deviation of the Cramér–Rao lower bound, we obtain

σpos

rcyl
=

√
σ2

r + σ2
φ

rcyl
=

√
tr
(

Ccyl

)
rcyl

=
σmat

2

(
H2

∞

2 σ2
H

)− 1
2
(

r
rcyl

)3

=
σmat

2

(
B2

∞

2 σ2
B

)− 1
2
(

r
rcyl

)3

.

(45)

In our example, the outer magnetic field H∞ is the Earth’s magnetic field, which we
consider as sufficiently homogeneous around the pillar. We may describe the signal-to-
noise ratio (SNR) terms H2

∞/2σ2
H = B2

∞/2σ2
B in (45) either in the form of the magnetic strength

H or the magnetic flux density B. Both fields are proportional, where the proportionality
constant is µ0 = 4π · 10−7 V s

A m in a vacuum, which equals the permeability of air with
good approximation.

The Earth’s magnetic flux density in Central Europe is approximately B = 48.3 µT,
with a horizontal component of Bh ≈ 21 µT and a vertical component of Bz ≈ 43.5 µT.
As discussed in Section 3.2, the ferromagnetic pillar only influences the magnetic field
components perpendicular to its axis. So in our case,

B∞ = µ0 H∞ = Bh ≈ 21 µT. (46)
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Next, we have a look at the measurement noise variance σ2
H , or equivalently σ2

B, which
appears in the SNR terms in (45). As the source of measurement noise, we consider the
quantization noise of the magnetic field sensor. The quantization noise variance can be
calculated from the magnetic field sensor resolution as

σ2
B = µ2

0 σ2
H =

B2
res

12
, (47)

assuming that the quantization error is uniformly distributed within an interval of[
− Bres

2 ,+ Bres
2

]
. The range and resolution of several magnetic field sensors, which are

currently used in smartphones, are reported in data sheets [24–28]. The parameters relevant
to us, together with the corresponding quantization noise variances, are summarized in
Table 1.

Table 1. Magnetic field sensors’ characteristics.

Sensor Ref. Range [µT] Resolution
Bres [nT]

Quant. Noise σ2
B

[nT2] SNR H2
∞

2σ2
H
= B2

∞

2σ2
B

MMC246xMT [24] ±600 25 52.1 4.2 × 106

HMC5983 [25] ±88 73 444 5.0 × 105

YAS532 [26] ±1200 x,y: 150 1875 1.2 × 105

z: 250 5208
AKM8975 [27] ±1200 300 7500 2.9 × 104

YAS529 [28] ±300 x,y: 600 30,000 7.4 × 103

z: 1200 120,000

For completeness, we have included the SNR term H2
∞/2σ2

H = B2
∞/2σ2

B in Table 1.
Figure 9 shows the Cramér-Rao lower bounds according to (44). The permeability of

the cylinder’s material is assumed to be sufficiently large such that the material factor

σmat =

∣∣∣∣µr + 1
µr − 1

∣∣∣∣ (48)

becomes σmat ≈ 1 with good approximation.
As an example, let us consider the sensor MMC246xMT, which provides a resolution

of 25 nT. This resolution results in a quantization noise variance of 52.1 nT2 and provides

a signal-to-noise ratio of H2
∞

2 σ2
H

= B2
∞

2 σ2
B

= 4.2 × 106 = 66.2 dB with an outer horizontal

Earth magnetic flux density of Bh = B∞ = 21 µT. Note we express this variance in the
physical unit ’Nanotesla’. We consider the physical unit ’Nanotesla’ (nT) as a whole. To
avoid misinterpretations in the notation, please note that a variance of 1 nT2 = 1 (nT)2 =

10−18 (T)2.
To obtain a numerical example, let us assume a radius of rcyl = 10 cm for the vertical

pillar. From Figure 9, we observe that the Cramér–Rao lower bound for the position
estimation standard deviation at a distance of r = 10 · rcyl = 1 m is σpos = 0.244 · rcyl =
2.44 cm. If we further increase the distance by a factor of ten, i.e., r = 10 m to the center of
the cylinder, the position estimation standard deviation increases to σpos = 24.4 m.

The position estimation standard deviation is proportional to the 3rd power of the
(normalized) radius, thus meaning that the slope of the graphs in Figure 9 is three standard
deviation decades per distance decade. For our example, position estimation at distances
higher than 10 times the radius of the cylinder results in a standard deviation error, which
rapidly exceeds the distance itself.

Note in Section 4 that we have derived the Cramér–Rao lower bounds for additive
Gaussian noise, i.e., a Gaussian likelihood function. However, we have considered quanti-
zation and assumed a uniform likelihood function. In [29], it is shown that the Gaussian
likelihood function provides the largest Cramér–Rao lower bound among all likelihood
functions with equal variance. So, the Gaussian noise assumption provides a worst case.
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Figure 9. Cramér–Rao lower bound for position estimation standard deviation versus the distance of
the sensor to the center of a vertical cylindrical pillar in the Earth’s magnetic field according to (45)
with σmat = 1.

5.2. Cramér–Rao Lower Bound in the Presence of Earth’s Magnetic Field Noise

We continue our example of a vertical ferromagnetic pillar. Previously, we have
assumed that the Earth’s magnetic field strength, in particular its horizontal component,
is known to us. The Earth’s magnetic field, however, is fluctuating. We consider these
fluctuations as stochastic processes.

5.2.1. Characterization of the Earth’s Magnetic Field Noise

These stochastic processes are the sources of measurement noise in further investiga-
tions of our example. Figure 10 shows the fluctuations

∆B∞ = B∞ − B̄∞, (49)

i.e., the differences with respect to the corresponding mean values, for the three components
Bx, By, and Bz of the Earth’s magnetic flux density in a Cartesian coordinate system.

The horizontal components Bx and By point toward the north and east, respectively.
The vertical component Bz points toward the Earth’s center. The data was obtained from
an observatory in Fuerstenfeldbruck, Germany, which is part of the INTERMAGNET
network [30]. The data was collected in May 2016, with a sampling interval of 1 min. Out
of that data, we obtain the mean vector

B̄∞ =

(
B̄x
B̄y

)
=

(
20968
1053

)
nT (50)

and covariance matrix

Σ∞ = E
{

∆B∞ ∆BT
∞

}
=

(
212.32 −3.0913
−3.0913 358.04

)
nT2 (51)

of the horizontal components of the Earth’s magnetic flux density for our further investiga-
tions. The variances of the fluctuations in the x and y directions are significantly different
and show only little correlation. Another statistical property of the Earth’s magnetic flux
density that we are interested in is the shape of its probability density function (PDF). We
compare the PDF of the Earth’s magnetic flux density fluctuations with a corresponding
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Gaussian PDF with equal variance. For this comparison, we draw quantile–quantile (Q-Q)
plots [31], as shown in Figure 11.
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Figure 10. Earth’s magnetic field fluctuation in Fuerstenfeldbruck, Germany during May 2016.
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Figure 11. Quantile–quantile plots for the Earth magnetic field fluctuation in Fuerstenfeldbruck,
Germany during May 2016.

If the sample data are Gaussian distributed, the Q-Q plot varies randomly around the
main diagonal, which we have plotted as a dashed line. In the interval [−20, 20] nT, the
quantiles of the samples are quite close to those of the corresponding Gaussian distribution,
thus indicating a kind of ’bell’ shape. Deviations indicate increased tails (x component) or
skewness (z component) for instance.

We would like to emphasize that the analysis of the mean and variance of the Earth’s
magnetic flux density is based on an exemplary one-month data sample. Depending on
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the geomagnetic activity and geographical location, higher fluctuations may occur than in
this example. Such higher fluctuations mean higher variance values, which are regarded as
noise variance in our Cramér–Rao lower bound analysis.

To summarize, the PDFs of the Earth’s magnetic flux density fluctuations are approxi-
mately, but not perfectly, Gaussian-shaped. However, as mentioned earlier, the Gaussian
assumption provides a worst case assumption for calculating the Fisher information or,
correspondingly, the Cramér–Rao lower bound.

5.2.2. Cramér–Rao Lower Bound

For the derivation of the magnetic strength field in Section 3.2, we have assumed an
outer magnetic field in the x direction. The Earth’s outer magnetic field shows components
in both the x and y directions. With an appropriate rotation of the coordinate system, we
can generalize the result in (25) and obtain

Bout =

(
I2×2 +

1
σmat

( rcyl

r

)2
Φ(2 φ)

)
B∞ (52)

with

Φ(x) =
(

cos(x) sin(x)
sin(x) − cos(x)

)
(53)

and σmat, as defined in (39) and (48). Here, we describe the magnetic field in the form of
the magnetic flux density Bout = µ0 Hout instead of the magnetic strength Hout. Both fields
are proportional with the proportionality constant µ0.

As a next step, we analyze how fluctuations of the magnetic field B∞ transfer into
magnetic field fluctuations in the presence of a ferromagnetic pillar. According to (49), we
set B∞ = B̄∞ + ∆B∞, insert this into (52), and obtain

B̂out =

(
I2×2 +

1
σmat

( rcyl

r

)2
Φ(2 φ)

)
(B̄∞ + ∆B∞). (54)

as noisy magnetic flux density measurements. We identify

B̄out =

(
I2×2 +

1
σmat

( rcyl

r

)2
Φ(2 φ)

)
B̄∞ (55)

as the mean magnetic flux density and

ϵ =

(
I2×2 +

1
σmat

( rcyl

r

)2
Φ(2 φ)

)
∆B∞ (56)

as the noise part. With (56) and (51), we can calculate the noise covariance matrix as

Σ = E
{

ϵ ϵT
}

=

(
I2×2 +

1
σmat

( rcyl

r

)2
Φ

)
Σ∞

(
I2×2 +

1
σmat

( rcyl

r

)2
Φ

)T

.
(57)

For notational convenience, we have omitted the argument of matrix Φ. The Jaco-
bian matrix

J = ∇B̄out =

(
∂

∂r
,

1
r

∂

∂φ

)
B̄out

=
2

rcyl σmat

( rcyl

r

)3[
−Φ B̄∞ , Φ′ B̄∞

] (58)
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of the mean magnetic flux density B̄out is composed of two column vectors corresponding
to the derivatives of B̄out with respect to the radial and azimuthal directions. The derivative
of matrix Φ is calculated as

Φ′ = Φ′(x) =
d

dx
Φ(x) =

(
− sin(x) cos(x)
cos(x) sin(x)

)
. (59)

with (57) and (58), we can calculate the Fisher information matrix F = JT Σ−1 J according
to (31). We obtain the Cramér–Rao lower bound matrix as

C = F−1 =
(

JT Σ−1 J
)−1

= J−1 Σ JT−1

=
1

∥B̄∞∥2

( rcyl σmat

2

)2
(

r
rcyl

)6

J−1 Σ J

=

(
rcyl σmat

2 ∥B̄∞∥2

)2(
r

rcyl

)6(
B̄T

∞ΦΣΦB̄∞ −B̄T
∞ΦΣΦ′B̄∞

−B̄T
∞Φ′ΣΦB̄∞ B̄T

∞Φ′ΣΦ′B̄∞

) (60)

with ∥B̄∞∥2 = B̄2
x + B̄2

y as the squared magnitude of the mean magnetic flux density B̄∞.

The identities for the 2 × 2 matrices J−1 and JT−1 are derived in Appendix A.

5.2.3. Discussion of Results

The square root of the main diagonal elements of matrix C in (60) provide the Cramér–
Rao lower bound for the standard deviation

σr

rcyl
=

√
C1,1

rcyl
=

σmat

2 ∥B̄∞∥2

(
r

rcyl

)3√
B̄T

∞ΦΣΦB̄∞ (61)

for the radial estimation error and

σφ

rcyl
=

√
C2,2

rcyl
=

σmat

2 ∥B̄∞∥2

(
r

rcyl

)3√
B̄T

∞Φ′ΣΦ′B̄∞ (62)

for the azimuthal estimation error. For a more general description, the Cramér–Rao lower
bounds in (61) and (62) are normalized to the radius rcyl of the cylinder. In Section 4, we
have assumed a noise covariance of form Σ = σ2I. With this assumption, the noise variance
is constant, i.e., independent of the location of the sensor, and its components in both
the x and y directions are equal. However, the noise covariance, shown in (57) for our
example, depends on the location of the sensor through variable r and the argument of
matrix Φ, which in general show different main diagonal elements through (51). Compared
to the evaluations in Section 4, the Cramér–Rao lower bounds for both the radial and
azimuthal estimations are dependent on the azimuth φ as well. Figure 12 shows the
Cramér–Rao lower bounds for the position estimation standard deviations of the radial
and azimuthal components for a vertical cylindrical pillar in the Earth’s magnetic field
according to (61) and (62) for our example. The dependency on the azimuth φ is clearly
visible, since the contour lines are not circularly shaped.
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Figure 12. Cramér–Rao lower bound for position estimation standard deviation of the radial and
azimuthal component for a vertical cylindrical pillar in the Earth’s magnetic field according to (61)
and (62), with σmat = 1. (a) Radial estimation; (b) Azimuthal estimation.

For the calculation of the position estimation standard deviation of the Cramér–Rao
lower bound
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σpos

rcyl
=

√
σ2

r + σ2
φ

rcyl
=

√
tr(C)

rcyl
=

σmat

2

(
r

rcyl

)3√
tr(Σ)

∥B̄∞∥2

=
σmat

2

(
r

rcyl

)3

√√√√√√ tr

((
I2×2 +

1
σmat

( rcyl
r

)2
Φ

)
Σ∞

(
I2×2 +

1
σmat

( rcyl
r

)2
Φ

)T
)

∥B̄∞∥2

(63)

we have started with the 2nd line in (60) and used the identity tr
(
J−1ΣJ

)
= tr

(
ΣJJ−1) =

tr(Σ) for the trace operator. As in the case of the radial and azimuthal estimations, the
position estimation of the Cramér–Rao lower bound according to (63) depends on the
azimuth φ through matrix Φ. However, the influence of matrix Φ for the calculation of
the Earth’s magnetic field noise covariance matrix Σ rapidly decreases with the 2nd power
of radius r, i.e., the distance of the sensor to the center of the cylinder. Figure 13 shows
the position estimation of the Cramér–Rao lower bound according to (63). A significant
dependency on the azimuth φ is not visible.
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Figure 13. Cramér–Rao lower bound for position estimation standard deviation for a vertical
cylindrical pillar in the Earth’s magnetic field according to (63) with σmat = 1.

For sufficiently large distances r, the position estimation of the Cramér–Rao lower
bound approaches the asymptotic value

lim
r→∞

σpos

rcyl
=

σmat

2

(
∥B̄∞∥2

tr(Σ∞)

)− 1
2
(

r
rcyl

)3

, (64)

which is similar to (45) in its structure. In particular, we observe that the asymptotic
position estimation of the Cramér–Rao lower bound is independent of the azimuth φ. For
our example, the SNR term in (64) becomes

∥B̄∞∥2

tr(Σ∞)
=

(
209682 + 10532) nT2

(212.32 + 358.04) nT2 = 7.7 · 105. (65)

Note that the fluctuations in the Earth’s magnetic flux density are accounted for by the
covariance matrix Σ∞. Higher fluctuations lead to a higher trace, tr(Σ∞), of that covariance
matrix and consequently to a lower SNR and an increased Cramér–Rao lower bound.
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5.3. Cramér–Rao Lower Bound in the Presence of Quantization and Magnetic Field Noise

For the consideration of both the quantization noise and the Earth’s magnetic field
noise, we calculate a general noise covariance

Σ =

(
I2×2 +

1
σmat

( rcyl

r

)2
Φ

)
Σ∞

(
I2×2 +

1
σmat

( rcyl

r

)2
Φ

)T

+ σ2
B I2×2 (66)

which we then can insert into (61)–(63), thus replacing Σ∞. With the addition of the
corresponding covariance matrices in (66), we consider the magnetic field noise and sensor
quantization noise to be uncorrelated. For the asymptotic case, we have plotted the Cramér–
Rao lower bound according to (64) but replaced Σ∞ with Σ in (66). The graphs are shown
in Figure 14 as solid lines. For comparison, we have included the results that have been
obtained for the different sensors in Section 5.1 (Figure 9), where only the quantization noise
has been taken into account (dashed line with markers). When comparing the magnetic field
noise variance tr(Σ∞) = 570.36 nT2 with the sensor quantization noise tr

(
σ2

B I2×2
)
= 2 σ2

B,
with σ2

B summarized in Table 1, we observe that for the sensors AKM8975, YAS529, and
YAS532, the sensor quantization noise is dominant. Therefore, we approximately obtain the
performance derived in Section 5.1 for the sensors AKM8975, YAS529, and YAS532. This is
clearly visible in Figure 14. The results when considering quantization and magnetic field
noise match with the corresponding results when taking into account quantization noise
only (black, magenta, and blue dashed lines with markers), and the graphs overlap. For
the sensor HMC5983, the Earth’s magnetic field noise and the sensor quantization noise
variances are within a similar order of magnitude. An additional performance degradation
when taking into account the Earth’s magnetic field noise (red line) in addition to the
sensor quantization noise can be observed in Figure 14. When applying sensors with
significantly lower sensor noise, like the MMC246xMT, the Earth’s magnetic field noise
becomes dominant. Therefore, we can expect the results derived in Section 5.2 to have good
approximation.
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Figure 14. Cramér–Rao lower bound for position estimation standard deviation for a vertical
cylindrical pillar in the Earth’s magnetic field according to (64), with (66) and σmat = 1. Solid lines
represent results for considering the Earth’s magnetic field noise and the sensors’ quantization noise.
Dashed lines with markers (’+’) repeat results from Figure 9, where only quantization noise has
been considered.
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In our evaluations above, we have considered sensor quantization and fluctuations
in the magnetic flux density of the Earth as sources of noise. Electrical currents in the
environment can also lead to impairments in magnetic field-based position determination.
The resulting magnetic fields are superimposed on the Earth’s magnetic field and lead to
higher magnetic field noise and therefore to higher CRLBs.

6. Summary and Conclusions

In this paper, we aimed at assessing the achievable positioning performance based
on measuring the ambient magnetic field around elementary ferromagnetic structures,
in particular a sphere and a cylinder, from a theoretical point of view. For that, we have
calculated the Cramér–Rao lower bound for the position estimation around a sphere and a
cylinder placed in an outer homogeneous magnetic field. For these structures, the magnetic
field is analytically known.

We have seen that usual ferromagnetic materials like ordinary steel with a relative
permeability of several thousands are sufficient. Using specifically designed ferromagnetic
materials like permalloy, a nickel–iron magnetic alloy with µr ≈ 105, provides only little
additional performance improvements.

The results have also shown that the position estimation error variance is proportional
to the measurement noise variance. It is obvious that the sensor itself is a source of
measurement noise. In this paper, we have considered the sensor quantization noise,
which can differ by several orders of magnitude for different sensors. For the case that the
instantaneous outer magnetic field strength is not known perfectly, we have considered
outer magnetic field fluctuations as another source of measurement noise. In an example,
we have observed an outer Earth magnetic field variance of 570.36 nT2 of the horizontal
component. For low resolution sensors, the outer magnetic field variance can be neglected.
For high resolution sensors, the outer Earth magnetic field might be dominating. In order to
take advantage of a high sensor resolution, the instantaneous Earth magnetic field strength
has to be known. A potential solution is to simultaneously estimate that value with the
help of a magnetic sensor array instead of a single sensor.

The influence of a magnetic structure to the ambient magnetic field relaxes with in-
creasing distance. Therefore, the position estimation performance also decreases. For
a ferromagnetic sphere in an outer homogeneous magnetic field, we have seen that the
position estimation error variance increases by eight decades per distance decade. Cor-
respondingly, the position estimation standard deviation increases by four decades per
distance decade. Compared to a sphere, which has a limited size in all three dimensions,
we additionally investigated a cylinder with infinite size in one dimension. For the cylinder
case, the position estimation standard deviation increases by three decades per distance
decade. However, position estimation is only possible in two dimensions, i.e., the plane
perpendicular to the cylinder. Due to the rapidly increasing error, position estimation with
sufficient accuracy is possible only in close proximity of such ferromagnetic structures. Both
the position estimation standard deviation and the corresponding distance are proportional
to the size of the structure, which is in our case its radius.

In this paper, we have focused on elementary structures that allow for the analytic
description of the ambient magnetic field. This provided us with some general insights
into the positioning error and its principle dependencies on relevant parameters like the
permeability of the material. In practice, however, we face structures that are much more
complex. Such structures require a numerical calculation of their ambient magnetic field
and are out of the scope of this paper. Once the magnetic field has been calculated, the
methods used in this paper for assessing the achievable position estimation performance,
in particular the Cramér–Rao lower bound, can be applied in a similar way. Undoubtedly,
it is interesting to experimentally verify the research questions raised in Section 1.2 for the
considered setups of a ferromagnetic sphere or cylinder in an outer homogeneous magnetic
field. As we focus on the theoretical aspects in this paper, such experimental support is the
subject of further work.
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Appendix A. Properties of the Jacobian Matrix for a Cylinder in a Homogeneous
Magnetic Field

By construction, the matrices

Φ =

(
cos(x) sin(x)
sin(x) − cos(x)

)
and Φ′ =

(
− sin(x) cos(x)
cos(x) sin(x)

)
(A1)

are orthogonal and symmetric, i.e., Φ = ΦT = Φ−1 and Φ′ = Φ′T = Φ′−1. In particular,

Φ Φ = I and Φ′ Φ′ = I. (A2)

We can also verify that for an arbitrary vector a,

aTΦ Φ′a = 0 (A3)

holds. With the definition of matrix J in (58) we calculate

JT J =

(
2

rcyl σmat

)2 ( rcyl

r

)6
(
−B̄T

∞ Φ

−B̄T
∞ Φ′

) (
−Φ B̄∞ , Φ′ B̄∞

)
=

(
2

rcyl σmat

)2 ( rcyl

r

)6
(

B̄T
∞Φ ΦB̄∞ −B̄T

∞Φ Φ′B̄∞

−B̄T
∞Φ′ ΦB̄∞ B̄T

∞Φ′ Φ′B̄∞

)
.

(A4)

with the properties of the matrices Φ and Φ′ and after division of the right-hand side scalar
factor we obtain

1

∥B̄∞∥2

( rcyl σmat

2

)2
(

r
rcyl

)6

JT

︸ ︷︷ ︸
=J−1

J = I. (A5)

From the identity for J−1 above, we directly obtain

JT−1
=

1

∥B̄∞∥2

( rcyl σmat

2

)2
(

r
rcyl

)6

J =
rcyl σmat

2 ∥B̄∞∥2

(
r

rcyl

)3 [
−Φ B̄∞ , Φ′ B̄∞.

]
. (A6)

Appendix B. A Sphere in a Homogenous Magnetic Field

We assume a sphere with radius rsph, located at the origin of a spherical coordinate
system as shown in Figure 1.

www.intermagnet.org
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Appendix B.1. Solution of Laplace’s Equation in Spherical Coordinates

According to the method of separation of variables we assume that a solution

Ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (A7)

for Laplace’s equation can be factorized into three terms, each depending on one coordinate
variable only. With this approach, we obtain Laplace’s partial differential equation in
spherical coordinates as

0 = ∆Ψ(r, θ, φ) =
(

1
r2

∂
∂r r2 ∂

∂r +
1

r2 sin(θ)
∂
∂θ sin(θ) ∂

∂θ +
1

r2 sin2(θ)
∂2

∂φ2

)
R(r)Θ(θ)Φ(φ). (A8)

Appendix B.1.1. Separation of the Laplace Equation

Applying the Laplace operator and multiplying by r2

R(r)Θ(θ)Φ(φ)
yields

0 =
1

R(r)
∂

∂r
r2 ∂

∂r
R(r) +

1
sin(θ)Θ(θ)

∂

∂θ
sin(θ)

∂

∂θ
Θ(θ) +

1
sin2(θ)Φ(φ)

∂2

∂φ2 Φ(φ). (A9)

The first term depends only on r whereas the second and third term depends on
the angular coordinates θ and φ. (A9) can only hold if both the radial and the angular
component are constant. Therefore, (A9) separates into an ordinary differential equation

1
R(r)

∂

∂r
r2 ∂

∂r
R(r)− n(n + 1) = 0 (A10)

for the radial part and into a partial differential equation

1
sin(θ)Θ(θ)

∂

∂θ
sin(θ)

∂

∂θ
Θ(θ) +

1
sin2(θ)Φ(φ)

∂2

∂φ2 Φ(φ) + n(n + 1) = 0 (A11)

for the angular part. Finite solutions for the angular part only exist if the separation constant
is an integer value of form n(n + 1) [22]. Multiplying by sin2(θ), (A11) can be separated
further into an azimuth part

1
Φ(φ)

∂2

∂φ2 Φ(φ) + m2 = 0. (A12)

and a polar part

n(n + 1) sin2(θ) +
sin(θ)
Θ(θ)

∂

∂θ
sin(θ)

∂

∂θ
Θ(θ)− m2 = 0. (A13)

Appendix B.1.2. Solution of the Polar Part

Multiplying by Θ(θ)

sin2(θ)
and substituting x = cos(θ),

√
1 − x2 = sin(θ), ∂x = − sin(θ)∂θ

yields Legendre’s differential equation

∂

∂x
(1 − x2)

∂

∂x
P(x) +

(
n(n + 1)− m2

(1 − x2)

)
P(x) = 0, (A14)

where P(x) is obtained from Θ(θ) by substituting θ accordingly. Solutions of this differential
equations are the associated Legendre polynomials

Pm
n (x) =

(
1 − x2)m/2

2n n!
∂m+n

∂xm+n

(
x2 − 1

)n
, 0 ≤ m ≤ n, (A15)

which are a complete set of orthogonal functions in the interval −1 ≤ x ≤ +1.
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Appendix B.1.3. Solution of the Azimuth Part

A solution to (A12) is

Φm(φ) = Am cos(mφ) + Bm sin(mφ). (A16)

This solution must be periodic with a period of 2π. Thus, m must be an integer value.

Appendix B.1.4. Solution of the Radial Part

A solution for the radial Equation (A10) is

R(r) = Cn rn + Dn
1

rn+1 . (A17)

Appendix B.1.5. The General Solution

For the general solution we combine (A15), (A16), (A17) and get

Ψ(r, θ, φ) =
∞

∑
n=0

n

∑
m=0

(
Cn rn + Dn

1
rn+1

)
Pm

n (cos(θ))(Am cos(mφ) + Bm sin(mφ)) (A18)

Appendix B.2. Solution of the Boundary Value Problem

We assume a homogeneous magnetic strength vector field in z-direction with magni-
tude H∞ which we can express as

H∞ = H∞ ez = H∞ cos(θ) er − H∞ sin(θ) eθ (A19)

in Cartesian respectively spherical coordinates, which follows from the corresponding
magnetic potential field

Ψ∞ = −H∞ z = −H∞ r cos(θ). (A20)

with this choice, the resulting magnetic potential field must be rotationally symmetric in
azimuth direction. For this reason, the constant

m = 0 (A21)

which lets the azimuth part in (A18) vanish. We start with the magnetic potential field
outside the sphere. In order to fulfill the boundary constraints (A20) we require with the
remaining part of (A18)

lim
r→∞

Ψout = lim
r→∞

∞

∑
n=0

(
Cn rn + Dn

1
rn+1

)
P0

n(cos(θ)) !
= −H∞ r cos(θ), (A22)

where Cn and Dn are constants to be determined for the outer field. Since P0
1 (x) = x, we

observe that

Cn =

{
−H∞ n = 1,
0 n ̸= 1.

(A23)

The inner potential field

Ψin =
∞

∑
n=0

(
C̃n rn + D̃n

1
rn+1

)
P0

n(cos(θ)) (A24)

requires
D̃n = 0. (A25)

Otherwise, the magnetic potential diverges for r → 0.



Sensors 2024, 24, 2402 29 of 33

For n ̸= 1 we have Cn = 0. The boundary conditions at the sphere’s surface (r =
rsph, 0 ≤ θ ≤ π, 0 ≤ φ < 2π) from (5) respectively (6) yield the equation system

rn
sph C̃n − 1

rn+1
sph

Dn = 0

µin n rn−1
sph C̃n + µout (n+1)

rn+2
sph

Dn = 0
(A26)

This system of equation has full rank and, therefore, yields to the trivial solution
C̃n = 0 and Dn = 0 only. For n = 1, however, C1 = −H∞ and we get

C̃1 − 1
r3

sph
D1 = −H∞

µin
µout

C̃1 + 2
r3

sph
D1 = −H∞

(A27)

Solving the equations above provides

C̃1 = −H∞
3

µin
µout

+ 1
D1 = H∞

µin
µout

+ 1
µin
µout

+ 1
r3

sph (A28)

and leads to the scalar magnetic potential fields

Ψin = −H∞
3

µin
µout

+ 2
r cos(θ) (A29)

Ψout = H∞

( µin
µout

− 1
µin
µout

+ 2

( rsph

r

)3
− 1

)
r cos(θ) (A30)

inside and outside the sphere.

Appendix C. A Cylinder in a Homogenous Magnetic Field

We assume a cylinder of infinite length with radius rcyl, located along the z-axis of a
cylindrical coordinate system as shown in Figure 3.

Appendix C.1. Solution of Laplace’s Equation in Cylinder Coordinates

According to the method of separation of variables we assume that a solution

Ψ(r, φ, z) = R(r)Φ(φ) Z(z) (A31)

for Laplace’s equation can be factorized into three terms, each depending on one coordinate
variable only. With this approach, we obtain Laplace’s partial differential equation in
cylinder coordinates as

0 = ∆Ψ(r, φ, z) =
(

1
r

∂
∂r r ∂

∂r +
1
r2

∂2

∂φ2 +
∂2

∂z2

)
R(r)Φ(φ) Z(z). (A32)

Appendix C.1.1. Separation of the Laplace Equation

Applying the Laplace operator and dividing by R(r)Φ(φ) Z(z) yields

0 =
1

r R(r)
∂

∂r
r

∂

∂r
R(r) +

1
r2 Φ(φ)

∂2

∂φ2 Φ(φ) +
1

Z(z)
∂2

∂z2 Z(z). (A33)
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The first and second term depend on r and φ whereas the third term only depends on
height z. (A33) can only hold if both parts are constant. Therefore, (A33) separates into an
ordinary differential equation

1
Z(z)

∂2

∂z2 Z(z)− k2 = 0 (A34)

for the height and, after multiplication by r2, into

0 =
r

R(r)
∂

∂r
r

∂

∂r
R(r) + k2 r2 +

1
Φ(φ)

∂2

∂φ2 Φ(φ) (A35)

for the radial and azimuth part. Again, both parts must be constant, which separates (A35)
into an azimuth part

1
Φ(φ)

∂2

∂φ2 Φ(φ) + m2 = 0 (A36)

and a radial part

r
∂

∂r
r

∂

∂r
R(r) +

(
k2 r2 − m2

)
R(r) = 0. (A37)

Appendix C.1.2. Solution of the Azimuth Part

A solution to (A36) is

Φm(φ) = Am cos(mφ) + Bm sin(mφ). (A38)

This solution must be periodic with a period of 2π. Thus, m must be an integer value.

Appendix C.1.3. Solution of the Height Part

A solution for (A34) is

Zk(z) =

{
Ck exp(k z) + Dk exp(−k z), k ̸= 0,
C0 + D0 z, k = 0.

(A39)

In general, k is non-integer. So the coefficients Ck and Dk are functions dependent on k.
The solution above considers the special case k = 0. This leads to magnetic strength fields
which do not depend on z.

Appendix C.1.4. Solution of the Radial Part

Substituting x = k r in (A37) leads to the well-known Bessel differential equation

x
∂

∂x
x

∂

∂x
R(x) +

(
x2 − m2

)
R(x) = 0. (A40)

A solution is the Bessel functions of the first kind

Jm(x) =
∞

∑
ℓ=0

(−1)ℓ

Γ(m + ℓ+ 1) ℓ!

( x
2

)2ℓ+m
, (A41)

with Γ(x) as the Gamma function. For integer values x = n, this function is Γ(n + 1) = n!.
For non-integer values m, Jm(x) and J−m(x) provide two linearly independent solutions of
the Bessel differential equation. From the solution of the azimuth part we know that m is
an integer value. For m being an integer, a second linear independent solution is the Bessel
function of the second kind, also called Neumann function

Nν(x) =
Jν(x) cos(v x)− J−v(x)

sin(ν x)
. (A42)
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For integer values m we have to take the limit, which yields

Nm(x) = lim
ν→m

Nν(x) = lim
ν→m

Jν(x) cos(v x)− J−v(x)
sin(ν x)

. (A43)

For integer m, Bessel functions of the first kind, Jm(x), are finite at the origin x = 0.
The Neumann functions, Nm(x), diverge for x → 0.

For the special case k = 0, (A37) simplifies to

r
∂

∂r
r

∂

∂r
R(r) + m2 R(r) = 0. (A44)

This leads to a different form of solution. However, this solution is equivalent to
that which we obtain by taking the limit k → 0, i.e., considering the Bessel and Neumann
functions for small arguments.

In summary, the solution for the radial part in is

Rk,m(r) =


Em Jm(kr) + Fm Nm(kr), k ̸= 0,
Em rm + Fm

1
rm , k = 0, m > 0,

E0 + F0 ln
(

r
r0

)
, k = 0, m = 0.

(A45)

Appendix C.1.5. The General Solution

For the general solution we combine (A38), (A39), (A45) and get

Ψ(r, φ, z) =
∞

∑
m=0

∫ ∞

k=0
Φm(φ) Zk(z) Rk,m(r) dk. (A46)

Appendix C.2. Solution of the Boundary Value Problem

First let us consider a homogeneous outer magnetic field with arbitrary direction.
Since the dimension of the cylinder in z-direction is infinite, there is no dependency of the
resulting magnetic field on dimension z. For this reason, it is obvious that the cylinder
does not influence the z-component Hz,∞ ez of an outer homogenous field. So, any constant
magnetic strength vector field in z-direction, or equivalently a magnetic potential of form
Ψ = −Hz,∞ z solves the boundary value problem. A consequence of the longitudinal
invariance is that the separation constant

k = 0. (A47)

Therefore, we consider a homogeneous outer magnetic strength field with a direction
in the x-y-plane. Without loosing generality we assume a homogeneous magnetic strength
vector field in x-direction with magnitude H∞ which we can express as

H∞ = H∞ ex = H∞ cos(φ) er − H∞ sin(φ) eφ (A48)

in Cartesian respectively cylinder coordinates, which follows from the corresponding
magnetic potential field

Ψ∞ = −H∞ x = −H∞ r cos(φ). (A49)

For k = 0 we start with the outer magnetic potential field which has to fulfill the

boundary constraint at infinite distance, limr→∞ Ψout
!
= Ψ∞ in particular

lim
r→∞

E0 + F0 ln
(

r
r0

)
+

∞

∑
m=1

(
Em rm + Fm

1
rm

)
(Am cos(m φ) + Bm sin(m φ))

!
= −H∞ r cos(φ). (A50)
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Comparing both sides of the equation we observe that Em = 0 for m ̸= 1, E1 = −H∞,
F0 = 0 and Bm = 0, which provides the remaining outer field as

Ψout = −H∞ r cos(φ) +
∞

∑
m=1

Fm
1

rm cos(m φ). (A51)

The inner potential field requires Fm = 0. Otherwise the field diverges for r → 0. From
the outer field we observe that there are no sin(·) components. Therefore, these terms will
also vanish from the inner solution. This remaining potential field is

Ψin =
∞

∑
m=1

Ãm rm cos(m φ), (A52)

where the coefficients Em have been included in Ãm.
For m ≥ 2 the boundary conditions at the cylinder’s surface (r = rcyl, 0 ≤ φ <

2π,−∞ ≤ z ≤ +∞) from (5) respectively (6) yield the equation system

m rm−1
cyl Ãm − m

rm+1
cyl

Fm = 0

µin m rm−1
cyl Ãm + µout m

rm+1
cyl

Fm = 0
(A53)

This system of equation has full rank and, therefore, yields to the trivial solution
Ãm = 0 and Fm = 0 only. For m = 1, however, E1 = −H∞. After some simplifications we
obtain

Ã1 − 1
r2

cyl
F1 = −H∞

µin
µout

Ã1 + 1
r2

cyl
F1 = −H∞

(A54)

Solving the equations above provides

Ã1 = −H∞
2

µin
µout

+ 1
F1 = H∞

µin
µout

− 1
µin
µout

+ 1
r2

cyl (A55)

and leads to the scalar magnetic potential fields

Ψin = −H∞
2

µin
µout

+ 1
r cos(φ) (A56)

Ψout = H∞

( µin
µout

− 1
µin
µout

+ 1

( rcyl

r

)2
− 1

)
r cos(φ) (A57)

inside and outside the cylinder.
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