Full-Matrix Imaging in Fourier Domain towards Ultrasonic Inspection with Wide-Angle Oblique Incidence for Welded Structures
Abstract
1. Introduction
2. Methods
2.1. Wave Field Extrapolation with Vertical Incidence
2.2. Wave Field Extrapolation with Oblique Incidence
2.3. The Extended Direct Chebyshev Fourier Method (EDCF)
2.4. Implementation Details
- By performing a 2D FFT over t,x for the transmitting and receiving sound pressure, wave fields and are obtained, respectively.
- By extrapolating the wave fields from depth to depth , calculation of area a in the wedge is avoided.
- In area b, the sound speeds are variable axially and laterally. We need to calculate the wave spectra through a 1D IFFT over from the wave fields.
- The extrapolation in area b is conducted using the third-order EDCF with a small depth interval .
- In areas c and d, the sound speed is considered constant. Conventional wave field extrapolation is conducted to improve the calculational efficiency.
- The cross-correlation imaging condition is realized after extrapolation for both Steps 4 and 5, followed by superimposition over the angular frequency and the transmission .
- The final image is obtained by rotating the coordinates from to O′x′z′ and cutting out the ROI.
3. Simulations
4. Experiments and Analysis
4.1. Direct-Mode Experiment
4.2. Full-Skip Experiment
4.3. Weld Inspection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Hu, S.J.; Sun, L.; Freiheit, T. Intelligent welding system technologies: State-of-the-art review and perspectives. J. Manuf. Syst. 2020, 56, 373–391. [Google Scholar] [CrossRef]
- Shaloo, M.; Schnall, M.; Klein, T.; Huber, N.; Reitinger, B. A Review of Non-Destructive Testing (NDT) Techniques for Defect Detection: Application to Fusion Welding and Future Wire Arc Additive Manufacturing Processes. Materials 2022, 15, 3697. [Google Scholar] [CrossRef]
- Sun, H.; Ramuhalli, P.; Jacob, R.E. Machine learning for ultrasonic nondestructive examination of welding defects: A systematic review. Ultrasonics 2023, 127, 106854. [Google Scholar] [CrossRef]
- Li, W.; Zhou, Z.; Li, Y. Inspection of butt welds for complex surface parts using ultrasonic phased array. Ultrasonics 2019, 96, 75–82. [Google Scholar] [CrossRef]
- Yan, T.F.; Wang, G.Z.; Wang, K.; Xuan, F.Z.; Tu, S.T. Limit loads of dissimilar metal welded joints for joining safe end to pipe-nozzle of nuclear pressure vessel. Int. J. Press. Vessel. Pip. 2021, 194, 104554. [Google Scholar] [CrossRef]
- Drinkwater, B.W.; Wilcox, P.D. Ultrasonic arrays for non-destructive evaluation: A review. NDT E Int. Indep. Nondestruct. Test. Eval. 2006, 39, 525–541. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, H. Sound Field Modeling Method and Key Imaging Technology of an Ultrasonic Phased Array: A Review. Appl. Sci. 2022, 12, 7962. [Google Scholar] [CrossRef]
- Felice, M.V.; Fan, Z. Sizing of flaws using ultrasonic bulk wave testing: A review. Ultrasonics 2018, 88, 26–42. [Google Scholar] [CrossRef]
- Hwang, Y.-I.; Park, J.; Kim, H.-J.; Song, S.-J.; Cho, Y.-S.; Kang, S.-S. Performance Comparison of Ultrasonic Focusing Techniques for Phased Array Ultrasonic Inspection of Dissimilar Metal Welds. Int. J. Precis. Eng. Manuf. 2019, 20, 525–534. [Google Scholar] [CrossRef]
- Xu, X.; Chang, Z.; Wu, E.; Wu, S.; Chen, J.; Yang, K.; Jin, H. Data fusion of multi-view plane wave imaging for nozzle weld inspection. NDT E Int. 2024, 141, 102989. [Google Scholar] [CrossRef]
- Sy, K.; Bredif, P.; Iakovleva, E.; Roy, O.; Lesselier, D. Development of methods for the analysis of multi-mode TFM images. J. Phys. Conf. Ser. 2018, 1017, 012005. [Google Scholar] [CrossRef]
- Subramaniam, S.; Kanfoud, J.; Gan, T.-H. Zero-Defect Manufacturing and Automated Defect Detection Using Time of Flight Diffraction (TOFD) Images. Machines 2022, 10, 839. [Google Scholar] [CrossRef]
- Holmes, C.; Drinkwater, B.W.; Wilcox, P.D. Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation. NDT E Int. 2005, 38, 701–711. [Google Scholar] [CrossRef]
- Velichko, A.; Wilcox, P.D. An analytical comparison of ultrasonic array imaging algorithms. J. Acoust. Soc. Am. 2010, 127, 2377–2384. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.-X.; Yan, S.-G.; Zhang, B.-X. An ultrasonic multi-wave focusing and imaging method for linear phased arrays. Chin. Phys. B 2021, 30, 074301. [Google Scholar] [CrossRef]
- Hunter, A.J.; Drinkwater, B.W.; Wilcox, P.D. The wavenumber algorithm for full-matrix imaging using an ultrasonic array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2450–2462. [Google Scholar] [CrossRef]
- Skjelvareid, M.H.; Olofsson, T.; Birkelund, Y.; Larsen, Y. Synthetic aperture focusing of ultrasonic data from multilayered media using an omega-K algorithm. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 1037–1048. [Google Scholar] [CrossRef]
- Jin, H.; Chen, J. An efficient wavenumber algorithm towards real-time ultrasonic full-matrix imaging of multi-layered medium. Mech. Syst. Signal Process. 2021, 149, 107149. [Google Scholar] [CrossRef]
- Olofsson, T. Phase shift migration for imaging layered objects and objects immersed in water. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 2522–2530. [Google Scholar] [CrossRef]
- Wu, H.; Chen, J.; Yang, K.; Hu, X. Ultrasonic array imaging of multilayer structures using full matrix capture and extended phase shift migration. Meas. Sci. Technol. 2016, 27, 045401. [Google Scholar] [CrossRef]
- Ji, K.; Zhao, P.; Zhuo, C.; Jin, H.; Chen, M.; Chen, J.; Ye, S.; Fu, J. Efficient phase shift migration for ultrasonic full-matrix imaging of multilayer composite structures. Mech. Syst. Signal Process. 2022, 174, 109114. [Google Scholar] [CrossRef]
- Margrave, G.F. Theory of nonstationary linear filtering in the Fourier domain with application to time-variant filtering. Geophysics 1998, 63, 244–259. [Google Scholar] [CrossRef]
- Margrave, G.F.; Ferguson, R.J. Wavefield extrapolation by nonstationary phase shift. Geophysics 1999, 64, 1067–1078. [Google Scholar] [CrossRef]
- Stoffa, P.L.; Fokkema, J.T.; de Luna Freire, R.M.; Kessinger, W.P. Split-step Fourier migration. Geophysics 1990, 55, 410–421. [Google Scholar] [CrossRef]
- Lianjie, H.; Youli, Q. Ultrasound pulse-echo imaging using the split-step Fourier propagator. In Proceedings of the Conference on Medical Imaging 2007, San Diego, CA, USA, 18–19 February 2007. [Google Scholar]
- Li, H.J.; Le, L.H.; Sacchi, M.D.; Lou, E.H.M. Ultrasound imaging of long bone fractures and healing with the split-step fourier imaging method. Ultrasound Med. Biol. 2013, 39, 1482–1490. [Google Scholar] [CrossRef]
- Gazdag, J.; Sguazzero, P. Migration of seismic data by phase shift plus interpolation. Geophysics 1984, 49, 124–131. [Google Scholar] [CrossRef]
- Lukomski, T. Full-matrix capture with phased shift migration for flaw detection in layered objects with complex geometry. Ultrasonics 2016, 70, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Chen, Z.; Luo, W.; Zhong, H.; Lu, C. Extended Non-Stationary Phase-Shift Migration for Ultrasonic Imaging of Irregular Surface Component. IEEE Access 2021, 9, 3004–3015. [Google Scholar] [CrossRef]
- Lukomski, T. Non-stationary phase shift migration for flaw detection in objects with lateral velocity variations. Insight 2014, 56, 477–482. [Google Scholar] [CrossRef]
- Yu, B.; Jin, H.; Mei, Y.; Chen, J.; Wu, E.; Yang, K. A Modified Wavenumber Algorithm of Multi-Layered Structures with Oblique Incidence Based on Full-Matrix Capture. Appl. Sci. 2021, 11, 10808. [Google Scholar] [CrossRef]
- Fu, L.-Y. Broadband constant-coefficient propagators. Geophys. Prospect. 2005, 53, 299–310. [Google Scholar] [CrossRef]
- Huang, L.-J.; Fehler, M.C. Globally optimized Fourier finite-difference migration method. In Proceedings of the 2000 SEG Annual Meeting, Calgary, AB, Canada, 6–11 August 2000. [Google Scholar]
- Huang, L.-J.; Fehler, C.M. Quasi-Born Fourier migration. Geophys. J. Int. 2000, 140, 521–534. [Google Scholar] [CrossRef]
- de Hoop, M.V.; Le Rousseau, J.H.; Wu, R.-S. Generalization of the phase-screen approximation for the scattering of acoustic waves. Wave Motion 2000, 31, 43–70. [Google Scholar] [CrossRef]
- Mason, J.C.; Handscomb, D.C. Chebyshev Polynomials; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Zhang, J.-H.; Wang, W.-M.; Wang, S.-Q.; Yao, Z.-X. Optimized Chebyshev Fourier migration: A wide-angle dual-domain method for media with strong velocity contrasts. Geophysics 2010, 75, S23–S34. [Google Scholar] [CrossRef]
- Song, H.; Zhang, J.; Zou, Y. Direct expansion of Fourier extrapolator for one-way wave equation using Chebyshev polynomials of the second kind. Geophysics 2022, 87, S63–S73. [Google Scholar] [CrossRef]
- Merabet, L.; Robert, S.; Prada, C. The multi-mode plane wave imaging in the Fourier domain: Theory and applications to fast ultrasound imaging of cracks. NDT E Int. 2020, 110, 102171. [Google Scholar] [CrossRef]
- Skjelvareid, M.H.; Birkelund, Y.; Larsen, Y. Internal pipeline inspection using virtual source synthetic aperture ultrasound imaging. NDT E Int. Indep. Nondestruct. Test. Eval. 2013, 54, 151–158. [Google Scholar] [CrossRef]
- Weston, M.; Mudge, P.; Davis, C.; Peyton, A. Time efficient auto-focussing algorithms for ultrasonic inspection of dual-layered media using Full Matrix Capture. NDT E Int. Indep. Nondestruct. Test. Eval. 2012, 47, 43–50. [Google Scholar] [CrossRef]
- Claerbout, J.F. Imaging the Earth’s Interior. Geophys. J. R. Astron. Soc. 1986, 86, 217–219. [Google Scholar] [CrossRef]
- Gazdag, J. Wave equation migration with the accurate space derivative method. Geophys. Prospect. 1980, 28, 60–70. [Google Scholar] [CrossRef]
- Boyd, J.P. Chebyshev and Fourier Spectral Methods; Courier Corporation: North Chelmsford, MA, USA, 2001. [Google Scholar]
- Saini, A.; Felice, M.V.; Fan, Z.; Lane, C.J.L. Optimisation of the Half-Skip Total Focusing Method (HSTFM) parameters for sizing surface-breaking cracks. NDT E Int. 2020, 116, 102365. [Google Scholar] [CrossRef]
Algorithms | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Execution Time (s) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
API | SNR (dB) | API | SNR (dB) | API | SNR (dB) | API | SNR (dB) | API | SNR (dB) | ||
TFM | 0.7699 | 48.6 | 1.0972 | 43.9 | 1.4455 | 43.6 | 1.4046 | 47.4 | 3.1322 | 40.9 | 20.29 |
Yu’s method | 0.8729 | 50.4 | 1.2296 | 38.4 | 2.1169 | 36.0 | 7.7996 | 24.3 | \ | \ | 1.98 |
SSF | 0.8729 | 50.4 | 1.9365 | 24.8 | 2.4042 | 40.3 | 3.2350 | 41.9 | 4.7710 | 26.0 | 2.21 |
Second-order EDCF | 0.8729 | 50.4 | 1.1769 | 38.4 | 1.7451 | 40.2 | 2.2841 | 47.0 | 3.3456 | 36.4 | 2.31 |
Third-order EDCF | 0.8729 | 50.4 | 1.1908 | 39.3 | 1.7276 | 43.1 | 1.4499 | 47.0 | 3.7069 | 39.6 | 2.48 |
Defect Type | Vertical Depth (mm) | Horizontal Distance (mm) |
---|---|---|
Lack of penetration | 25.4 | 21.2 |
Infused groove | 6.8 | 13.4 |
Longitudinal crack | 19.8 | 19.0 |
Cluster porosity | 15.6 | 20.7 |
Slag inclusion | 11.3 | 20.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Xu, X.; Yang, K.; Wu, H. Full-Matrix Imaging in Fourier Domain towards Ultrasonic Inspection with Wide-Angle Oblique Incidence for Welded Structures. Sensors 2024, 24, 832. https://doi.org/10.3390/s24030832
Chen M, Xu X, Yang K, Wu H. Full-Matrix Imaging in Fourier Domain towards Ultrasonic Inspection with Wide-Angle Oblique Incidence for Welded Structures. Sensors. 2024; 24(3):832. https://doi.org/10.3390/s24030832
Chicago/Turabian StyleChen, Mu, Xintao Xu, Keji Yang, and Haiteng Wu. 2024. "Full-Matrix Imaging in Fourier Domain towards Ultrasonic Inspection with Wide-Angle Oblique Incidence for Welded Structures" Sensors 24, no. 3: 832. https://doi.org/10.3390/s24030832
APA StyleChen, M., Xu, X., Yang, K., & Wu, H. (2024). Full-Matrix Imaging in Fourier Domain towards Ultrasonic Inspection with Wide-Angle Oblique Incidence for Welded Structures. Sensors, 24(3), 832. https://doi.org/10.3390/s24030832