Passive Vision Detection of Torch Pose in Swing Arc Narrow Gap Welding
Abstract
:1. Introduction
2. Passive Visual Sensing Detection System of Torch Pose
2.1. System Construction
2.2. System Principle
2.3. Welding Image Processing
3. Detection Method for Torch Pose
4. Experimental Results
4.1. Experimental Methods and Conditions
4.2. Detected Results of Torch Pose in Width-Varying Groove Welding
4.3. Detected Results of Torch Pose for Constant Groove Welding
5. Conclusions
- An elliptical model-based arc contour fitting method was proposed, which improves the detection accuracy of arc features by obtaining a fitted arc contour line.
- A method for detecting the torch center position was developed by scanning the limit points of the arc contour fitting line.
- A torch height position detection method was proposed by scanning the highest points of the arc contour fitting line.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.Y.; Zhu, J.; Fu, P.; Su, R.J.; Han, W.; Yang, F. A swing arc system for narrow gap GMA welding. ISIJ Int. 2012, 52, 110–114. [Google Scholar] [CrossRef]
- Wang, J.Y.; Jiang, Y.Q.; Zhu, J.; Liu, D.S.; Xu, G.X.; Li, W.H. Development of swing arc narrow gap GMAW process assisted by swaying wire. J. Mater. Process. Technol. 2023, 318, 118004. [Google Scholar] [CrossRef]
- Wang, J.Y.; Zhu, J.; Zhang, C.; Xu, G.X.; Li, W.H. Effect of arc swing parameters on narrow gap vertical GMA weld formation. ISIJ Int. 2016, 56, 844–850. [Google Scholar] [CrossRef]
- Chen, S.B.; Lv, N. Research evolution on intelligentized technologies for arc welding process. J. Manuf. Process. 2014, 16, 109–122. [Google Scholar] [CrossRef]
- Giron-cruz, J.; Pinto-lopera, J.; Alfaro, S. Weld bead geometry real-time control in gas metal arc welding processes using intelligent systems. Int. J. Adv. Manuf. Technol. 2022, 123, 3871–3884. [Google Scholar] [CrossRef]
- Muhammad, J.; Altun, H.; Abo-serie, E. Welding seam profiling techniques based on active vision sensing for intelligent robotic welding. Int. J. Adv. Manuf. Technol. 2017, 88, 127–145. [Google Scholar] [CrossRef]
- Biber, A.; Sharma, R.; Reisgen, U. Robotic welding system for adaptive process control in gas metal arc welding. Welding. World 2024, 68, 2311–2320. [Google Scholar] [CrossRef]
- Su, N.; Wang, J.Y.; Xu, G.X.; Zhu, J.; Jiang, Y.Q. Infrared visual sensing detection of groove width for swing arc narrow gap welding. Sensors 2022, 22, 2555. [Google Scholar] [CrossRef]
- Shen, Y.H.; Wei, Y.H.; Du, X.W.; Liu, R.P. Research on adaptive adjustment of welding torch pose in wire and arc additive remanufacturing of hot-forging dies. Int. J. Adv. Manuf. Technol. 2022, 121, 3499–3510. [Google Scholar] [CrossRef]
- Comas, T.F.; Diao, C.; Ding, J.; Williams, S.; Zhao, Y. A passive imaging system for geometry measurement for the plasma arc welding process. IEEE Trans. Ind. Electron. 2017, 64, 7201–7209. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, M.; Jiang, P.; Li, R.; Cheng, J.; Chen, Y. Microstructure of WTaNbMo refractory high entropy alloy coating fabricated by dynamic magnetic field assisted laser cladding process. J. Mater. Res. Technol. 2022, 20, 1908–1911. [Google Scholar] [CrossRef]
- Song, Y.L.; Li, W.T.; Wang, J.; Jue, L.; Zhang, S.L.; Zuo, H.Z.; Wang, X.G. Welding motion synchronization of tank with variable curvature section based on discrete planning method of welding torch posture. Int. J. Adv. Manuf. Technol. 2024, 130, 5727–5742. [Google Scholar] [CrossRef]
- Amano, S.; Tsujimura, Y.; Ogawa, T.; Shibata, T. Development of in-process welding torch position control system using AI technology. Weld. World 2023, 67, 1223–1234. [Google Scholar] [CrossRef]
- Lin, C.; Liu, G.L.; Li, S.T.; Mo, Y.; Han, Z.; Liang, X.B.; Pan, H.H. A novel 8 shape trajectory weaving welding control algorithm with auto adjust welding torch attitude. Int. J. Adv. Manuf. Technol. 2022, 120, 8377–8387. [Google Scholar]
- Bazhin, P.M.; Titov, N.V.; Zhidovich, A.O.; Avdeeva, V.V.; Kolomeichenko, A.V.; Stolin, A.M. Features of the carbo-vibroarc surfacing in the development of multicomponent cermet wear-resistant coatings. Surf. Coat. Technol. 2022, 429, 127952. [Google Scholar] [CrossRef]
- Panteleenko, F.I.; Sarantsev, V.V.; Stolin, A.M.; Bazhin, P.M.; Azarenko, E.L. Formation of composite coatings based on titanium carbide via electrospark alloying. Surf. Eng. Appl. Electrochem. 2011, 47, 328–337. [Google Scholar] [CrossRef]
- Tong, L.G.; Gu, J.C.; Yin, S.W.; Wang, L.; Bai, S.W. Impacts of torch moving on phase change and fluid flow in weld pool of SMAW. Int. J. Heat. Mass. Tran. 2016, 100, 949–957. [Google Scholar] [CrossRef]
- Mao, Y.F.; Xu, G.C. A real-time method for detecting weld deviation of corrugated plate fillet weld by laser vision sensor. Optik 2022, 260, 168786. [Google Scholar] [CrossRef]
- Wei, A.G.; Chang, B.H.; Meng, F.Y.; Du, D.; Han, Z.D. Research on the weld position detection for the T-joints in web-core sandwich panels based on eddy current technology. Sensors 2020, 20, 2691. [Google Scholar] [CrossRef]
- Liu, W.J.; Zhang, Y.F.; Meng, L.Z.; Yue, J.F. An innovative sensing method for seam tracking based on the arc ‘jump sidewall’ behavior. J. Mech. Sci. Technol. 2023, 37, 2325–2332. [Google Scholar] [CrossRef]
- Pinto-Lopera, J.; Motta, J.; Alfaro, S. Real-time measurement of width and height of weld beads in GMAW processes. Sensors 2016, 16, 1500. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.L.; Yu, H.W.; Zhong, J.Y.; Lin, T.; Chen, S.B. Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor. J. Mater. Process. Technol. 2012, 212, 1654–1662. [Google Scholar] [CrossRef]
- Zeng, J.L.; Chang, B.H.; Du, G.D.; Chang, S.H.; Hong, Y.X.; Wang, L.; Shan, J.G. A vision-aided 3D path teaching method before narrow butt joint welding. Sensors 2017, 17, 1099. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.K.; Geng, Y.S.; Tian, X.C.; Zou, L.L. Feature extraction and robot path planning method in 3D vision-guided welding for multi-blade wheel structures. Opt. Lasers Eng. 2024, 176, 108066. [Google Scholar] [CrossRef]
- Zhu, C.H.; Zhu, Z.M.; Ke, Z.J.; Zhang, T.Y. Internal parameters calibration of vision sensor and application of high precision integrated detection in intelligent welding based on plane fitting. Sensors 2022, 22, 2117. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; Chen, Z.; Rao, G.; Xu, J. Structured light-based visual servoing for robotic pipe welding pose optimization. IEEE Access 2017, 7, 138328. [Google Scholar] [CrossRef]
- Zhang, G.; Shi, Y.; Gu, Y.F.; Fan, D. Welding torch attitude-based study of human welder interactive behavior with weld pool in GTAW. Robot. Comput. Integr. Manuf. 2017, 48, 145–156. [Google Scholar] [CrossRef]
- Fang, W.H.; Tian, X.C. A novel model-based welding trajectory planning method for identical structural workpieces. Robot. Comput. Integr. Manuf. 2024, 89, 102772. [Google Scholar] [CrossRef]
- Wang, W.X.; Yamane, S.S.; Suzuki, H.; Toma, J.; Hosoya, K.; Nakajima, T.; Yamamoto, H. Tracking and height control in plasma robotic welding using digital CCD camera. Int. J. Adv. Manuf. Technol. 2016, 87, 531–542. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Su, N.; Xu, G.; Yang, M. An infrared visual sensing detection approach for swing arc narrow gap weld deviation. J. Mater. Process. Technol. 2017, 243, 258–268. [Google Scholar] [CrossRef]
- Su, N.; Wang, J.; Xu, G.X.; Zhu, J.; Wang, J.Y. Infrared visual sensing detection approach of swing arc narrow gap weld deviation based on outlier data filtering. IEEE Sens. J. 2022, 22, 16339. [Google Scholar] [CrossRef]
- Shi, M.; Xiong, J. Controlling torch height and deposition height in robotic wire and arc additive manufacturing on uneven substrate. Weld. World 2024, 68, 765–779. [Google Scholar] [CrossRef]
- Xia, L.; Zhou, J.P.; Xue, R.L.; Li, X.J.; Liu, H.S. Real-time seam tracking during narrow gap GMAW process based on the wide dynamic vision sensing method. J. Manuf. Process. 2023, 101, 820–834. [Google Scholar] [CrossRef]
Parameter Name | Value |
---|---|
Central wavelength of narrowband filter (nm) | 970 ± 20 |
Neutral density filter (%) | 10 |
Aperture | f/11 |
Exposure time (ms) | 3 |
Shooting depression angle (°) | 25 |
Global image size (pixel) | 544 × 544 |
Parameter Name | Value |
---|---|
Arc current (A) | 290 |
Arc voltage (V) | 28 |
Welding speed Vw (mm min−1) | 204 |
Solid wire diameter (mm) | 1.2 |
Torch standoff height (mm) | 20 |
Shielding gas/flowrate (L min−1) | Ar − 20%CO2/25 |
Arc swing frequency (Hz) | 2.5 |
Arc at-sidewall staying time (ms) | 100 |
Conductive-rod bending angle (°) | 8 |
Method | Range (mm) | Standard Deviation | Non-Detection Zone |
---|---|---|---|
TPD | 0.311 | 0.056 | ~10 mm |
CTCD | 0.428 | 0.060 | 0 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, N.; Jia, H.; Chen, L.; Wang, J.; Wang, J.; Song, Y. Passive Vision Detection of Torch Pose in Swing Arc Narrow Gap Welding. Sensors 2024, 24, 4996. https://doi.org/10.3390/s24154996
Su N, Jia H, Chen L, Wang J, Wang J, Song Y. Passive Vision Detection of Torch Pose in Swing Arc Narrow Gap Welding. Sensors. 2024; 24(15):4996. https://doi.org/10.3390/s24154996
Chicago/Turabian StyleSu, Na, Haojin Jia, Liyu Chen, Jiayou Wang, Jie Wang, and Youmin Song. 2024. "Passive Vision Detection of Torch Pose in Swing Arc Narrow Gap Welding" Sensors 24, no. 15: 4996. https://doi.org/10.3390/s24154996
APA StyleSu, N., Jia, H., Chen, L., Wang, J., Wang, J., & Song, Y. (2024). Passive Vision Detection of Torch Pose in Swing Arc Narrow Gap Welding. Sensors, 24(15), 4996. https://doi.org/10.3390/s24154996