
Citation: Carvalho, J.; Vieira, D.;

Rodrigues, C; Trinta, F. LM2K Model

for Hosting an Application Based on

Microservices in Multi-Cloud.

Sensors 2023, 23, 4450. https://

doi.org/10.3390/s23094450

Academic Editor: Seongsoo Cho

Received: 7 February 2023

Revised: 7 April 2023

Accepted: 13 April 2023

Published: 2 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

LM2K Model for Hosting an Application Based on
Microservices in Multi-Cloud
Juliana Carvalho 1, Dario Vieira 2,* , Christiano Rodrigues 2,3 and Fernando Trinta 3

1 Information System Department, Federal University Piauí—(UFPI), Picos 64607-670, PI, Brazil;
julianaoc@ufpi.edu.br

2 Efrei Research Lab, EFREI Paris, 94800 Villejuif, France
3 Computing Department, Federal University Ceará—(UFC), Fortaleza 60440-900, CE, Brazil;

fernando.trinta@dc.ufc.br
* Correspondence: dario.vieira@efrei.fr

Abstract: Cloud computing has become a popular delivery model service, offering several advan-
tages. However, there are still challenges that need to be addressed when applying the cloud model
to specific scenarios. Two of such challenges involve deploying and executing applications across
multiple providers, each comprising several services with similar functionalities and different capa-
bilities. Therefore, dealing with application distributions across various providers can be a complex
task for a software architect due to the differing characteristics of the application components. Some
works have proposed solutions to address the challenges discussed here, but most of them focus
on service providers. To facilitate the decision-making process of software architects, we previously
presented PacificClouds, an architecture for managing the deployment and execution of applications
based on microservices and distributed in a multi-cloud environment. Therefore, in this work, we
focus on the challenges of selecting multiple clouds for PacificClouds and choosing providers that
best meet the microservices and software architect requirements. We propose a selection model
and three approaches to address various scenarios. We evaluate the performance of the approaches
and conduct a comparative analysis of them. The results demonstrate their feasibility regarding
performance.

Keywords: multi-cloud; microservice; cloud selection

1. Introduction

Cloud computing has emerged as a popular delivery model service in recent years.
According to [1], it provides a large set of easily accessible and usable virtualized resources.
We can dynamically reconfigure these resources to adapt to variable loads, enabling opti-
mized resource utilization. Cloud providers typically use a pay-per-use model and must
offer infrastructure guarantees through customized service-level agreements.

Applications built on cloud concepts offer benefits such as elastic growth, easy mainte-
nance and updating, and efficient resource utilization through multi-tenancy approaches.
However, building cloud-centric applications presents several challenges from a software
engineering perspective. These obstacles encompass issues such as data privacy, migrating
applications to the cloud, and vendor lock-in, a problem where applications are restricted
to specific providers [2,3]

In recent years, several works have proposed solutions to the challenges related to
developing native cloud applications, including those with system components distributed
across multi-cloud providers. The distribution of these components considers require-
ments such as performance, availability, and operational costs of the service from the
provider [4–6]. This scenario, known as a multi-cloud provider environment, provides soft-
ware architects with various possibilities to set up applications while ensuring the service
that best meets the application needs, regardless of which provider offers the service [7,8].

Sensors 2023, 23, 4450. https://doi.org/10.3390/s23094450 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094450
https://doi.org/10.3390/s23094450
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8418-6778
https://orcid.org/0000-0002-1993-5442
https://doi.org/10.3390/s23094450
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094450?type=check_update&version=1

Sensors 2023, 23, 4450 2 of 32

A multi-cloud provider environment encompasses different views on how applications
use them. In this sense, different works proposed taxonomies and classifications, such
as [8–10]. According to [11], there are three cloud service delivery models: multi-cloud,
cloud federation, and inter-cloud. In this work, we adopted the multi-cloud service delivery
model, as it does not depend on an agreement between providers and, consequently, offers
a higher number of providers and cloud services.

Using multi-cloud providers can bring many economic benefits, especially if we
consider the significant growth in the number of cloud providers and the number of
resources they offer. However, many challenges remain, such as security, privacy, trust,
legal issues, resource management, and the service-level agreement (SLA) of services [9].
In order to address these problems, we proposed PacificClouds [12], an approach that aims
to manage the entire process of deploying and executing a microservice-based application
distributed in a multi-cloud environment from the software architect’s perspective.

A microservice is an architectural style that has stood out in the design of cloud
applications. According to [13], microservices decompose a monolithic business system
into independently deployable services. Thus, we can build applications and organize
codes in several different parts. Moreover, we execute them in separate processes, as
described by [14]. The suitability of this architectural style for cloud applications also
makes it a natural candidate for applications distributed in a multi-cloud environment.
Therefore, in this paper, we focus on applications based on microservices.

In this paper, we propose a new provider selection model and three different ap-
proaches for this model. Unlike our previous works [15–17], we now consider that the
communication time between microservices deployed in different providers must be han-
dled. Next, we detail our main contributions.

1. We propose a new provider selection model named Link Microservice Mapped to the
Knapsack (LM2K).

2. We propose and implement three approaches for this model: (i) dynamic, (ii) greedy,
and (iii) ant colony.

3. Unlike other works in the literature, our proposed model considers that a microservice
can only be hosted by a single provider, decreasing the communication costs among
cloud services.

4. We evaluate the performances of all approaches, compare the results obtained, and
present each approach’s feasibility.

5. We expand the taxonomy provider and service granularity (PSG) [17]. It seeks to
identify the number of providers and services before and after selecting providers for
the models and approaches proposed in the literature.

The remainder of this paper is organized as follows. Section 2 presents the multi-cloud
providers scenario and the vendor lock-in problem. Next, we present related works in
Section 3. In Sections 4 and 5, we present the LM2K model, the three proposed approaches,
and their implementations. In Section 6, we describe the tools, scenarios, experiments, and
discuss the results. Finally, in Section 7, we present our conclusions and future works.

2. Multiple Cloud Providers

Cloud computing proliferation occurs mainly due to its essential characteristics: re-
source pooling, broad Internet access, measured service, on-demand self-service, and rapid
elasticity [18]. Moreover, cloud providers present the resources as if they are inexhaustible.
In this model, users pay cloud providers based on resource usage and do not worry about
infrastructure and service management, reducing operating costs for enterprises.

In this context, many cloud providers have emerged. In order to serve the largest
number of customers and win them over, many providers have adopted specific strategies
in how their users use resources. For this reason, users who want to make the most of cloud
computing, either by using services from multiple providers to compose more complex
and innovative applications, or by migrating from one provider to another to obtain better

Sensors 2023, 23, 4450 3 of 32

quality services, are required to rework their applications. In this way, the user becomes
hostage to the cloud provider; this is also known as the [2] vendor lock-in problem.

One way to take advantage of cloud computing is to use multiple clouds. According
to [11,19], a multi-cloud application uses geographically distinct cloud resources, sequen-
tially or simultaneously. There are several terminologies for multi-cloud environments.
Following our previous works, we adopt the definition presented in [11] and, therefore, we
classify the delivery model used in this work as multi-cloud.

The resource management functions in multiple clouds are major challenges; they are
responsible for (i) selecting resources in various clouds for the application deployment,
(ii) monitoring the execution time of the application resources distributed across multiple
clouds according to the functional and non-functional requirements, and (iii) monitoring
the cloud providers’ resources. Resource management in multiple clouds can be thought
of from the perspectives of software architects and providers. In this context, resource
management plays an essential role in the distribution and execution of a distributed
application and, consequently, in interoperability and portability. It makes the multi-
cloud environment more flexible by offering the most appropriate resources to meet the
requirements, both in the deployment and in the execution of an application.

3. Related Work

In this work, we propose the LM2K model to address the multi-cloud provider’s
selection to deploy microservices from a software architect’s perspective. Furthermore, we
propose three solutions: (i) a dynamic algorithm, (ii) a greedy algorithm, and (iii) an ant
colony-based algorithm.

Other works in the literature also deal with the cloud provider selection problem.
However, due to the number of open issues in this subject, the primary concern of these
works is scattered across different aspects. This section describes and compares some
research works that address the cloud provider selection problem from the software archi-
tect’s perspective and divides the works into three categories. The first category describes
works that select services from a single cloud provider. The second presents works that
select only one service among the services offered by multiple providers. Finally, in the
third category, the works select various services from multiple providers.

3.1. Single Cloud for Service Selection

Reference [20] proposed a service composition using the eagle strategy with whale
optimization algorithm (ESWOA). In this work, the authors used simple additive weight-
ing (SAW) to classify candidate services, and user-defined requirement thresholds. The
proposed solution only uses a sequential service composition structure but transforms the
other types of structures into sequential structures. [6] presented the optimal fitness-aware
cloud service composition (OFASC) using an adaptive genetic algorithm based on geno-
type evolution (AGEGA), which considers various quality of service (QoS) parameters. It
provides solutions that satisfy the QoS parameters and the connectivity restrictions of the
service composition.

Reference [21] proposed a structure for cloud service selections with criteria inter-
actions (CSSCI) that applied a fuzzy measure and a Choquet integral to measure and
aggregate non-linear relations between criteria. The authors used a non-linear constraint
optimization model to estimate the interaction ratios of importance and Shapley’s criteria.

Reference [22] introduced a modified particle swarm optimization (PSO) approach
based on QoS that reduces the search space for composing cloud services. They also
proposed a modified PSO-based cloud service composition algorithm (MPSO-CSC), which
removes the dominant cloud services and then employs the PSO to find the ideal cloud
service set.

Reference [23] deals with the selection and dynamic composition of services for multi-
ple tenants. The authors proposed a multi-tenant middleware for dynamic service composi-

Sensors 2023, 23, 4450 4 of 32

tion in the Software-as-a-Service (SaaS) cloud. They presented a coding representation and
adequacy functions to model service selection and composition as an evolutionary search.

3.2. Multiple Clouds for a Service Selection

The works described in this subsection used multi-cloud providers to select only one
service from one cloud provider. Thus, despite using multi-cloud providers in the selection
process, they did not select multiple services from multi-cloud providers or interrelate
services and providers as in this work.

Reference [24] presented a classification-oriented prediction method that helps in the
process of discovering candidate cloud services that generate greater user satisfaction. The
approach proposed by the authors encompasses two primary functions: service classifica-
tion by similarity and service classification prediction in the cloud, taking into account a
user’s preference. For this, the authors used a cloud service classification prediction method
called CSRP, which covers the identification of similar neighbors, customer preferences,
customer satisfaction estimation, and classification prediction.

Reference [25] proposed a hybrid multi-criteria decision-making model for selecting
services from the available providers. The methodology assigns several classifications for
cloud services based on QoS parameters, using an extended gray technique for order pref-
erence by similarity to ideal solution (TOPSIS), integrated with the hierarchical analytical
process (AHP).

3.3. Multiple Clouds for Multiple Service Selections

This subsection describes works that used multiple cloud providers in the selection
process, and they selected multiple services from multiple providers. The works presented
in this subsection selected only one service from each provider, while our models select
microservices that require several cloud services.

Reference [26] proposed two task-scheduling algorithms in a cloud federation envi-
ronment, both based on a common SLA. The algorithm receives a set of independent tasks
and a set of m cloud providers, along with the runtime, gain, and cost penalty of tasks at
different cloud providers. The problem is to schedule all tasks to the clouds concerning
the SLA so that there is a balance between the overall processing time and the cost gain
penalty.

Reference [4] proposed an automated approach for the selection and configuration of
cloud providers for a microservice in a multi-cloud environment. The approach proposed by
the authors uses domain-specific language to describe the requirements of an application’s
multi-cloud environment and provides a systematic method for obtaining appropriate
configurations that meet the requirements of an application and the restrictions of cloud
providers. The solution proposed by [4] deals with cloud service selections composing
microservices, in which the cloud services must be different cloud providers.

Reference [27] proposed a composite service selection (CSS) approach to address the
configuration that involves multiple simultaneous requests for the composite service. The
authors selected various service combinations in a multi-cloud environment. However,
in our model, the services of the same combination can be in different cloud providers.
Additionally, their work only deals with the sequential structure in each combination and
does not consider the interactions among the selected combinations.

Reference [28] proposed a multi-objective hybrid evolutionary algorithm called ADE-
NSGA-II to compose services in an inter-cloud environment, meeting users’ QoS require-
ments. In the proposed algorithm, the authors used adaptive mutation and a crossover
operator to replace strategies of the genetic algorithm of non-dominated ordering-II (NSGA-
II). The work of [28] differs from ours, as they dealt with the composition of services when
selecting a service from each provider.

Table 1 summarizes the main characteristics of all related works presented in this
section. The first two columns of the table enumerate and reference the related work. The
third, fourth, and fifth columns use a taxonomy to identify the focus of the work concerning

Sensors 2023, 23, 4450 5 of 32

the number of providers and services used in each phase, which we call provider and
service granularity (PSG). The third column shows the number of providers in the selection
process, the fourth shows the number of selected providers, and the fifth indicates the
granularity of services per selected provider. Column six presents the methods used to
solve the selection problem, and the last column defines whether the user defines the
requirements threshold. Furthermore, in Table 1, n indicates the number of providers in the
selection process (n > 1), and m indicates the number of providers selected by the selection
process (1 < m ≤ n).

Table 1. Summary of related work characteristics.

Characteristics

Items Related Work PSG Method
User-

Defined
Threshold(1) (2) (3)

1 [20] 1 1 Service
Composition ESWOA Yes

2 [6] 1 1 Service
Composition

OFASC and
AGEGA No

3 [21] 1 1 Service Authors-
defined No

4 [22] 1 1 Service
Composition MPSO-CSC Yes

5 [23] 1 1 Service
Composition

Authors-
defined Yes

6 [24] n 1 Service CSRP No

7 [25] n 1 Service
Grey Technique,

TOPSIS, and
AHP

No

8 [26] n m Tasks Authors-
defined No

9 [4] n m Service Authors-
defined No

10 [27] n m Service Authors-
defined No

11 [28] n m Service Authors-
defined Yes

12 Dynamic UM2K
[15]

n m Microservice SAW, Dynamic
Algorithm Yes

13 Greedy UM2K
[16]

n m Microservice SAW, Greedy
Algorithm Yes

14 UM2Q [17] n m Microservice SAW,
Authors-defined Yes

15 Dynamic LM2K n m Microservice SAW, Dynamic
Algorithm Yes

16 Greedy LM2K n m Microservice SAW, Greedy
Algorithm Yes

17 Ant Colony
LM2K n m Microservice

SAW, Ant
Colony

Optimization
Algorithm

Yes

PSG—providers and services granularity, (1) provider granularity in the selection process, (2) provider granularity
in the selection result, (3) service granularity per provider.

Sensors 2023, 23, 4450 6 of 32

4. Multi-Cloud Selection Model: LM2K

PacicClouds uses various functionalities to meet different goals, and one of its primary
tasks is to select the available cloud providers that best serve application microservices.
The main objective of this work is to choose cloud providers for hosting the application
microservices. However, many cloud providers are available, and each provider offers
several services. Furthermore, an application can have multiple microservices, each of
which may require several cloud services to meet its needs. Therefore, selecting suitable
cloud providers to host an application distributed in multiple clouds is a complex task.

This section proposes a new multi-cloud selection model for PacificClouds to host
applications based on microservices, named Linked Microservice Mapped to Knapsack
(LM2K). This model focuses on applications by considering communications among
microservices and mapping the multi-choice knapsack problem.

The proposed selection model selects cloud providers from the software architect’s
perspective. Therefore, it is necessary to define their requirements before deploying an
application. We assume that the provider’s capabilities are known. In this work, we focus
on three requirements: (i) response time, (ii) availability, and (iii) application execution cost.
However, our model can support other requirements, such as energy cost and different
types of cloud resources (e.g., CPU), as long as the cloud provider provides that information,
and the architect considers it an important feature.

First, we will describe the formalization of the service model. Then, we will explain
the process of selecting providers. All the descriptions of equation nomenclature are
summarized in Appendix A.

4.1. Formalization

The required cloud services used to compose a microservice have different require-
ments, and the providers offer many services with the same functionalities but with differ-
ent capabilities. In this work, we chose to assess the application response time (execution
time plus delay), cloud availability, and application execution cost, but other requirements
can be included in our model. We use three user requirements that are sufficient to help
one understand the proposed selection process. However, several other user requirements
can be defined without significant changes in the code. In addition, the requirements for
the communication links among the microservices must be added to all requirements.

Definition 1. Cloud service model —as S(S.rt,S.a,S.c), where S.rt is the response time, S.a is
availability, and S.c is cost, as in [29].

Definition 2. Cloud service class—as SCl = {Sl1, Sl2, . . . , Slo}, in which Sl1, Sl2, . . . , Slo are
services of the same provider with the same functionalities but different capabilities.

Definition 3. Service provider model—as SPk = {SCk1, SCk2, . . . , SCkp}, in which SCk1, SCk2,
. . . , SCkp are service classes.

Definition 4. Cloud provider set—as CP = {SP1, SP2, . . . , SPq}, in which SP1, SP2, . . . , SPq are
service providers.

Definition 5. Microservice model—as MSi = {Sk1
i1 , Sk2

i2 , . . . , Skr
ir }, in which Sk1

i1 , Sk2
i2 , . . . , Skr

ir are
cloud services that are indispensable to executing a microservice, and they should be of different
service classes. Thus, 1 6 kr 6 o, in which o is the maximum number of classes for a cloud provider.
Moreover, a microservice consists of a task flow, and cloud services must perform it. Figure 1 shows
four basic structures to compose a task: sequential, circular, parallel, and selection [30]. In Figure 1,
Xv indicates the Skv

iv , i.e., the service j from the provider k for the microservice i.
This work considers the task flow for a microservice, as shown in Figure 2. The task flow is

an acyclic graph, in which each vertex represents a service, and each arrow represents a precedence
relation between the services, following the basic structures shown in Figure 1. All cloud services

Sensors 2023, 23, 4450 7 of 32

used by a microservice must belong to the same provider. In Figure 2, Xv indicates the Skv
iv , i.e., the

service j from the provider k for microservice i.

(a) Sequential (b) Circular

(c) Parallel (d) Selection

Figure 1. Structure of a microservice task.

Figure 2. Task flow example.

Definition 6. Application model—as AP = {MS1, MS2, . . . , MSt}, in which MS1, MS2, . . . , MSt
are microservices. For the application composition, microservices must use the basic structures
shown in Figure 1. In Figure 1, Xv indicates the MSv, i.e., microservice v.

The application tasks are microservices. Therefore, an application task flow is a microservice
flow. Figure 2 shows an example of a microservice flow considered in this work. In Figure 1, Xv
indicates the MSv, i.e., microservice v. It differs from a single microservice task flow because the
microservices of an application can be hosted on different cloud providers. In contrast, the cloud
services required for a microservice must belong to the same provider.

To calculate the microservice requirements in the LM2K model, the microservice flow is divided
into two levels: the term and the sequence. Figures 3 and 4 show the terms and sequences of the
example of the microservice flow in Figure 2.

In Figure 3, terms 1 and 2 are the microservice flows of Figure 2, which must be performed in
parallel. In Figure 4, the term sequences are the microservice flows for a term and only one of them
is activated each time the microservice flow is executed.

Figure 3. Terms of the microservice flow.

Sensors 2023, 23, 4450 8 of 32

Figure 4. The sequences of the terms of the microservice flow.

The next subsections describe how to calculate the values required for application
execution distributed across multi-cloud providers. For this, we consider the application
microservice flow and communication links. We define communication links as the com-
munication among microservices. The formulas for calculating the requirement values are
in accordance with [30–34].

4.1.1. Availability Requirement
The cloud provider availability for an application must at least meet the threshold

set up by a software architect. MinAvbty is the minimum availability threshold set by a
software architect. In (1), we define AP.a as the availability, which is the product among all
the application terms. Moreover, (2) defines Termj.a as the application term j availability.
The availability of Termj.a is the sum of all sequence availabilities that belong to term j.
In (3), we name Seqij.a as the availability of the sequence i of the term j, which is the
product of all microservice availabilities, the availability of all communication links, and
the sequence selection probability represented by α (3).

AP.a =
num(Term)

∏
j=1

Termj.a > MinAvbty,

∀Termj | Termj ∈ AP

(1)

Termj.a =
num(Seq)

∑
i=1

Seqij.a, ∀Seqij | Seqij ∈ Termj (2)

Seqij.a = α×
num(MS)

∏
k=1

MSk.a×
num(MS−1)

∏
k=1

Linksk.a,

∀MSk | MSk ∈ Seqij, Linkk.ainSeqij

(3)

We calculate the availability of a microservice in a similar way to the application
availability. The difference is that we based the application availability on the microservice
flow. In contrast, we based the microservice availability on the cloud service availability.
Cloud services are the services needed to compose a microservice.

4.1.2. Response Time Requirement
An application response time must meet the threshold set by a software architect. A

software architect defines MaxRT as the maximum response time threshold, which is the
sum of the maximum execution time threshold (MaxExecTime) and the maximum delay
threshold (MaxDelay), as shown in (4). In (5), we define AP.rt as the response time of an
application, which receives the longest response time of all terms in an application and
must be less than or equal to MaxRT. Moreover, (6) defines Termj.rt as the response time

Sensors 2023, 23, 4450 9 of 32

for the term j, which is assigned the sum of the response times for all strings that belong to
the term j; (7) represents the response time for the sequence i of the term j; (7) represents
the response time sum of all microservices that belong to the sequence, and the delays
between each microservice multiplied by the sequence selection probability. We represent
the sequence selection probability by α. We represent the delay between two microservices
in a sequence of Linkk.rt.

MaxRT = MaxExecTime + MaxDelay (4)

AP.rt =
num(Term)

max
j=1

{Termj.rt} 6 MaxRT,

∀Termj | Termj ∈ AP
(5)

Termj.rt =
num(Seq)

∑
i=1

Seqij.rt, ∀Seqij | Seqij ∈ Termj (6)

Seqij.rt = α× (
num(MS)

∑
k=1

MSk.rt +
num(MS−1)

∑
k=1

Linkk.rt),

∀MSk | MSk ∈ Seqjj, Linkk ∈ Seqij

(7)

We calculate the response time for a microservice in a similar way to the application’s
response time, but we based the application’s response time on the microservice flow. In
contrast, we based the microservice response time on the cloud service response time.
Cloud services are the services required to compose a microservice.

4.1.3. Cost Requirements
The application execution cost should not exceed the budget, which is the cost thresh-

old set up by a software architect. In (8), we define AP.c as the application execution cost,
which is attributed to the total cost of all terms that belong to an application microservice
flow and it must be less than or equal to the budget; (9) defines Termj.c as the term j cost,
to which we assign the cost sum of all sequences belonging to the term j. We represent
the sequence i cost from the term j in (10). Moreover, (10) receives the cost sum of all
microservices that belong to the sequence and the communication links costs between each
microservice multiplied by the sequence selection probability. We represent the sequence
selection probability by α and the communication link cost between two microservices in a
sequence by Linkk.c.

AP.c =
num(Term)

∑
j=1

Termj.c 6 Budget, ∀Termj

| Termj ∈ AP

(8)

Termj.c =
num(Seq)

∑
i=1

Seqij.c, ∀Seqij | Seqij ∈ Termj (9)

Seqij.c = α× (
num(MS)

∑
k=1

MSk.c +
num(MS−1)

∑
k=1

Linkk.c),

∀MSk | MSk ∈ Seqij, Linkk ∈ Seqij

(10)

We calculate the availability, response time, and cost for a microservice in a similar
way to the application availability, response time, and cost, respectively. The difference
is that we based the application availability, response time, and cost on the microservice
flow. In contrast, we based the microservice availability, response time, and cost on the
cloud service availability, response time, and cost, respectively. The cloud services are the
services required to compose a microservice.

Sensors 2023, 23, 4450 10 of 32

4.2. Cloud Provider Selection Process

This subsection details the cloud provider selection process for the model, which is
divided into three levels. The first level discovers all candidate cloud services of a microser-
vice across all cloud providers. The second level determines the candidate providers for all
microservices of an application. The third level selects providers to deploy all microser-
vices of an application. As in our previous work [15–17], this process is a combinatorial
optimization problem that we mapped to the multiple-choice knapsack problem. Next, the
three levels are described in detail.

4.2.1. First Level

We select the services of each provider that meet all requirements of the software
architects, which results in a set of candidate services for each provider. Next, we rank all
candidate services in each provider. We use the simple additive weighting (SAW) technique
as in [35], which has two phases: scaling and weighting.

• Scaling phase: First, a matrix R = (Rij; 1 6 i 6 n; 1 6 j 6 3) is built by merging
the requirement vectors of all candidate services. For this, the user requirements are
numbered from 1 to 3, where 1 = availability, 2 = response time, and 3 = cost. The
candidate services refer to the same microservice service. The entire process must be

done for each microservice service. Each row Ri corresponds to a cloud service S
kj
ij

and each column Rj corresponds to a requirement. Next, the requirements should
be ranked using one of the two criteria described in Equations (11) and (12) in order
to normalize the values. Equations (11) and (12) are used based on the requirements.
For example, for the response time, the smaller, the better, contrary to availability, the
greater, the better. Moreover, RMax

j = Max(Rij), RMin
j = Min(Rij), 1 6 i 6 n.

Negative: the higher the value ⇑, the lower the quality ⇓.

Vij =


RMax

j −Rij

RMax
j −RMin

j
if RMax

j − RMin
j 6= 0

1 if RMax
j − RMin

j = 0
(11)

Positive: the higher the value ⇑, the higher the quality ⇑.

Vij =


Rij−RMin

j

RMax
j −RMin

j
if RMax

j − RMin
j 6= 0

1 if RMax
j − RMin

j = 0
(12)

• Weighting phase: All candidates will receive a weight, which is the overall require-
ments score, for each candidate cloud service (Equation (13)).

Score(Si) =
3

∑
j=1

(Vij ×Wj) |Wj ∈ [0, 1],
3

∑
j=1

Wj = 1 (13)

At the end of the first level, we must identify and classify all candidate services of a
microservice for all available cloud providers.

4.2.2. Second Level

We must build all candidate cloud service combinations from a provider to compose
a microservice. For this, we must combine candidate services from a microservice that is
offered by the same provider; (14) defines SSPik as the set of candidate combinations from
the provider k for the microservice i. In addition, in (14), combikj indicates the combination
j from the provider k to the microservice i. In (15), a combikj combination is a set of cloud

services from different classes to meet the microservice i needs. In (15), Ski
ij indicates

the candidate service j of the class j from the provider k needed for function j from
microservice i. The microservice has a maximum of r functions and, consequently, requires

Sensors 2023, 23, 4450 11 of 32

a maximum of r cloud services, a candidate provider has a maximum of m combinations
and a microservice has a maximum of q candidate providers.

SSPik = {combik1, . . . , combikm} (14)

combikj = {Sk1
i1 , . . . , Skr

ir } (15)

We must calculate each combination score and cost in SSPik, as shown in (16) and (17).
Moreover, (16) defines combikj.score as the combination of each service score sum plus the
communication link score sum between each service that belongs to the service flow of
the microservice. Furthermore, (17) defines combikj.c as the total cost of all services plus
the cost of each communication link between services in a combination, according to the
service flow of the microservice.

combikj.score =
r

∑
x=1

Score(Skx
ix) +

r−1

∑
x=1

Score(Linkx) (16)

combikj.c =
r

∑
x=1

Skx
ix).c +

r−1

∑
x=1

Linkx.c (17)

At the end of the second level, there is a set of all candidate combinations from
all providers available for application microservices (SAMS), and each combination has
a score and a cost. Moreover, (18) defines SMSi as a candidate providers’ set for the
microservice i. In (18), SSPik indicates the set of candidate combinations from the provider
k to the microservice i. In (19), we define SAMS as the set of candidate providers for each
microservice of the application. An application has a maximum of t microservices.

SMSi = {SSPik | k ∈ [1, q]} (18)

SAMS = {SMS1, . . . , SMSt} (19)

4.2.3. Third Level

To host each microservice application, we must select the SAMS cloud providers (the
result of the second level). For this, we must build candidate combinations for SAMS, so
that each has a candidate combination for each microservice, and a set of these combinations
is named SAPP (20). Moreover, in (20), combiki jki

indicates the candidate combination j
from the candidate provider k to the microservice i. Subsequently, (21) defines SAPPl .c
as the execution cost for each combination in SAPP and checks whether it is less than or
equal to the application execution cost, and excludes it otherwise. Next, we calculate each
item score in SAPP. A candidate combination score (SAPPl .score) is the score sum for each
combination of items, as shown in (22).

SAPP = {(comb1k1 jk1
, . . . , combtkt jkt

)

| combiki jki
∈ SSPik, SSPik ∈ SMSi, SMSi ∈ SAMS,

1 6 i 6 t, 1 6 ki 6 qi, 1 6 jki
6 wki

}

(20)

SAPPl .c =
t

∑
i=1

combiki jki
.c +

t−1

∑
i=1

Linkki
.c (21)

SAPPl .score =
t

∑
i=1

combiki jki
.score +

t−1

∑
i=1

Linkki
.score (22)

Summarily, the selection process first selects the services of all providers that meet
all requirements, which results in a set of candidate services from all available cloud
providers. Then, we assemble all combinations of candidate services from all providers

Sensors 2023, 23, 4450 12 of 32

that can be used to compose that microservice. Finally, we select one of the application
combinations containing a provider to host each microservice based on a score. Therefore,
as in our previous works [15–17], the selection process described for the LM2K model can
be considered a combinatorial optimization problem. Hence, we mapped the selection
process to the multiple-choice knapsack problem as in our previous works [15–17].

5. Approaches for the LM2K Model

In this section, we present and describe our proposed approaches for the LM2K model.
We mapped the selection process to the multi-choice knapsack problem and employed
three algorithms suggested in the literature for this type of problem: dynamic (Section 5.1),
greedy (Section 5.2), and ant colony (Section 5.3). We chose the dynamic algorithm to
show an optimal solution, the greedy algorithm to accept larger data inputs, and the ant
colony algorithm to obtain a better solution to the greedy (and a better data input than the
dynamic). In this way, we can offer alternatives for the selection process according to the
software architect’s needs.

5.1. Dynamic Approach

In this subsection, we present the example and the algorithm for the dynamic approach
of the LM2K model.

5.1.1. Dynamic Approach Example

We present an example in Figure 5 that has three microservices and three candidate
combinations for each one. The matrix presents the score, cost, and provider for each candi-
date combination. The software architect set a budget threshold of 12 for this application.
Therefore, the matrix has 13 possible budgets (columns), ranging from 0 to 12. The filling
of the matrix takes into account the communication links between the providers. We fill the
last 13 columns by considering each candidate combination’s cost and score, as well as the
potential application budgets.

Figure 5. Dynamic approach example for LM2K. The replaced scores are highlighted in pink. In blue
are the scores that were affected by the altered scores. In orange is the selected combination for each
microservice.

In Figure 5, we fill the first column with zeros, as well as the first row, which is an extra
row that does not include any combination. To fill in each cell for the first microservice
combination, we check the combination’s cost. If it is higher than the budget value, we want
to fill in the cell, we fill the cell with the previous cell value in the same column. Otherwise,
we insert the combination score in the cell. The next step is to fill the cells corresponding to
the other microservices. If the combination cost is higher than the budget value we want
to fill, the cell value will be the highest value among the candidate combinations of the
previous microservice from the same column.

In this example, we consider that the values of the requirements for providers P4 and
P5 do not meet the application needs since we need to consider communication links. Thus,

Sensors 2023, 23, 4450 13 of 32

we notice that combination 1 for microservice 2 belongs to provider P5 and 2 to provider
P4. In column 5 for combination 1, the value should be 1.2 (0.5 + 0.7), the combination score
plus the highest score of microservice 1 in column 3 (5 − 2). Therefore, this cell receives
the highest score from microservice 1, in column 5. The same applies to combination 2 for
microservice 2 in column 9 (in pink). The values of these cells influence the combination
values 3 and 2, from columns 5 and 12, respectively, for microservice 3 (in blue).

Finally, we must select a combination for each microservice. For this, we check the
combination for the last microservice (microservice 3) and select the highest score, which is
column 12 combination 1. Then, we update the budget by reducing the cost of microservice
3 from the budget (12 − 1). For microservice 2, we repeat the first step and search for
the highest score on the new budget, which is combination 3 in column 11. Since the
combination for microservice 2 is 7, we now have a budget of 4 (11 − 7). Lastly, for
microservice 3, the highest score comes from combination 3, in column 4. The final result
is highlighted in orange. Furthermore, we notice the influence of the communication link
between the providers.

5.1.2. Dynamic Algorithm

In this subsection, we describe the dynamic algorithm, divided into two parts as
follows: the first part, illustrated by Algorithm 1, represents the first and second levels for
the dynamic, greedy, and ant colony approaches; and the second part, which describes the
third level and is illustrated by Algorithm 2.

Algorithm 1: Base Algorithm—Part 1.
input : Set of the application requirements ap

Set of the available providers’ capabilities cp
Set of the communication links between services and providers lSer e lPr
Execution flow set between the microservice tasks and microservices fSer e fPr

output : Set of providers prvdsMs to host microservices

1 sams← initialize with empty set ; // list of candidate combinations with its score and its cost for all
microservices

2 foreach ms of the ap do
3 ssp← initialize with empty set ; // list of microservice candidate combinations in all providers
4 foreach sp of the cp do
5 candServ← discoveryCandServ (ms,sp);
6 if (notempty(candServ)) then
7 matReq← sawScalingPh (candServ);
8 candSerSC← sawScorePh (candServ,matReq,ap.weight);
9 ssp← ssp + (sp.number,combMsSp (candSerSC))

10 end
11 end
12 sms← initialize with empty set ; // list of candidate combinations, score, and cost of a

microservice in all providers
13 foreach comb of the ssp do
14 combSC← calculateCombSC (comb,lSer,fSer);
15 combCost← calculateCombCost (comb,lSer,fSer);
16 sms← sms + (comb,combSC,combCost);
17 end
18 sams← sams + (ms.number,sms);
19 end

Algorithm 1 takes a five-set input: (i) a set of application requirements, (ii) a set of
capabilities of the available providers, (iii) a set of communication links from the available
providers, (iv) the execution flow set for the microservice functions, and (v) the set of
application microservices. The algorithm searches for the available provider services that
meet all microservice requirements on line 5. Then, it sorts them using SAW on lines 7
and 8. Next, on line 9, it combines the services so that each combination has all of the
services that a microservice requires. This process is repeated for all available providers.
Furthermore, Algorithm 1 calculates the score and cost for each combination on lines 14
and 15, respectively. The algorithm calculates each combination’s score and cost values,
considering the microservice task execution flow, availability, response time, and cost value
of each communication link between the services required for a microservice in the same
provider. This process is repeated for all application microservices between lines 2 and

Sensors 2023, 23, 4450 14 of 32

19. In the end, Algorithm 1 outputs a set of candidate combinations for each microservice
(SAMS), each with a score and a cost.

Algorithm 2: Dynamic algorithm—Part 2.
1 sol← initialize the matrix with 0;
2 last← 0;
3 foreach sms of the sams do
4 for j← (last+ 1) to sizeof(sms) + last do
5 for cost← 1 to ap.c do
6 if (combCost[j] > cost) then sol (cost,j)← maxLine (sol (cost),ms [j-1].number);
7 else
8 if ms[j].number == 1 then sol (cost,j)← combSC[j];
9 else

10 if (ms [j].number 6=ms [j- 1].number) then
11 (combSC,pr)← discoveryPrComb (maxLine (sol (cost- combCost [j]),ms

[j-1].number));
12 res← clAvaRT (combSC,pr,combSC [j],ms [j].number,lPr,fPr);
13 if res == true then sol (cost,j)← max (combSC + combSC [j], maxLine (sol

(cost),ms [j-1].number));
14 else sol (cost,j)← maxLine (sol (cost),ms [j-1].number);
15 end
16 else
17 (combSC,pr)← discoveryPrComb (maxLine (sol (cost- combCost [j]),ms [j].number

- 1));
18 res← clAvaRT (combSC,pr,combSC [j],ms [j].number,lPr,fPr);
19 if res == true then
20 sol (cost,j)← max (combSC + combSC [j], maxLine (sol (cost),ms [j

].number-1));
21 end
22 else
23 sol (cost,j)← maxLine (sol (cost),ms [j].number - 1);
24 end
25 end
26 end
27 end
28 end
29 end
30 last← sizeof(sms) + last;
31 end

Algorithm 2 outputs a set of providers to host each application’s microservice. It
represents the mapping of the selection process to the multi-choice knapsack problem.
From lines 1 to 33, the algorithm selects a combination to host a microservice among the
candidate combinations in SAMS (output of Algorithm 1). The algorithm creates a matrix
(Sol) where each row contains a candidate combination for a microservice, and the columns
represent the application budgets. The last column displays the budget threshold value
defined by the software architect. The Sol Matrix is filled with the score values according
to the candidate and the microservice it belongs to, ensuring that the combinations with
the highest score, when combined, do not exceed the application’s budget (AP.c). Thus,
Algorithm 2 selects a combination to host a microservice among the candidate combinations
in SAMS between lines 1 and 33. This process is illustrated in the example in Section 5.1.1.

5.2. Greedy Approach

In this subsection, we describe the greedy approach to our proposed model. We
present an example and the algorithm that contains the details of the selection process.

5.2.1. Greedy Approach Example

Figure 6a presents the set of all candidate combinations for all application microser-
vices, which has 4 candidate combinations for each of the 3 microservices.

Sensors 2023, 23, 4450 15 of 32

(a) Candidate Combinations. (b) Exclusion. (c) Selection.

Figure 6. Greedy approach example for LM2K—part 1. The combinations that should be excluded
are highlighted in the figure.

Figure 6a shows the score, cost, and provider of each candidate combination. The
combination cost is used to order candidate combinations for each microservice. It shows
the exclusion of candidate combinations from each microservice that is dominated or lp-
dominated described in [36]. In this example, combinations 2, 3, and 4 of microservices
1, 2, and 3, respectively (highlighted in the figure), have higher costs than the previous
combination, even though they have a lower score. Therefore, these combinations should
be excluded. Figure 6c shows the candidate combinations that are suitable for selection.

The next step in the selection process is to calculate the incremental efficiency for
all candidate combinations, except for the combinations with the lowest cost in each mi-
croservice, as shown in Figure 7a. Incremental efficiency is the cost–benefit of a candidate
combination, and we use (23) to calculate it. In (23), i and j represent candidate com-
binations for a microservice, and j must be immediately after i. Moreover, sc and cost
are the scores and the costs of the combinations. Then, the candidate combinations must
be put in decreasing order, observing the incremental efficiency, except for the candidate
combinations with lower costs for each microservice (in Figure 7b).

e =
scj − sci

costj − costi
| 1 < j 6 num(comb), i 6 j (23)

(a) Incremental Efficiency. (b) Sorting.

Figure 7. Greedy approach example for LM2K—part 2.

The lowest cost combinations for each microservice compose the initial solution, and
we subtract their respective costs from the application budget. In the example, combination
1 of each microservice makes up the initial solution, and the application budget threshold
is 12, with the lowest combination costs being 1, 3, and 1, respectively. We then check the
possibility of replacing each solution combination with one from the set ordered by the
incremental efficiency in Figure 7b.

To perform the replacement, we must observe the requirement values of the communi-
cation links between providers. Thus, in Figure 8a, we substitute combination 1 for 2, both
for microservices 2 and 3. However, when combination 1 is replaced by 2 in microservice 1,
the communication link values do not meet the application’s needs. Then, we must remove
combination 2 for microservice 1. Next, we must continue the replacement process, but it is

Sensors 2023, 23, 4450 16 of 32

not possible, as the next value (line 5 in Figure 7b) exceeds the budget. Thus, combination 1
is selected for microservice 1, as shown in Figure 8b.

(a) Communication Link Exclusion. (b) Combination Selection.

Figure 8. Greedy approach example for LM2K—part 3. The selected combinations for Microservices
2 and 3 are highlighted in blue and green, respectively. In orange is the removed combination for
Microservice 1, and in yellow is the selected combination.

5.2.2. Greedy Algorithm

Algorithm 1 represents the first and second levels for the three approaches of the
LM2K model. Algorithm 3 illustrates the third level of the selection process using a greedy
algorithm for the LM2K model.

Sensors 2023, 23, 4450 17 of 32

Algorithm 3: Greedy Algorithm—Part 2.
1 foreach sms of the sams do
2 sorByCost (sms);
3 end
4 foreach sms of the sams do
5 for j← 0 to sizeof(sms)− 1 do
6 if dominated (sms[j+ 1], sms[j]) then remove (sms [j +1]);
7 end
8 end
9 foreach sms of the sams do

10 for j← 0 to sizeof(sms)− 1 do
11 if lp-dominated (sms[j+ 2], sms[j+ 1], sms[j]) then remove (sms [j +1]);
12 end
13 end
14 foreach sms of the sams do
15 budGet← budGet− sms[0]cost ;
16 end
17 r← [] ; i← 0 ; k← 0 ;
18 foreach sms of the sams do
19 for j← 1 to sizeof(sms)− 1 do
20 SC← sms[j].SC− sms[j− 1].SC ;
21 Cost← sms[j]cost− sms[j− 1]cost ;
22 e← sms[j] + (sms[j].SC)/(sms[j]cost) ;
23 r[k]← r[k] + (i, j,SC,Cost, e);
24 k← k+ 1 ;
25 end
26 i← i+ 1 ;
27 end
28 sortDecreasingByE (r);
29 z← [] ; i← 0 ;
30 foreach sms of the sams do
31 z← z+ (i, sms[0]sp, 1, sms[0].SC) ;
32 i← i+ 1 ;
33 end
34 k← 0 ;
35 repeat
36 budGet← budGet− r[k]cost ;
37 foreach itemZ of the z do
38 if (r[k][0] == itemZ[0]) then
39 aux← z;
40 removeItem(itemZ, aux);
41 insertItem(r[k], aux);
42 res← checkReqs(aux);
43 if res == true then itemZ[3]← r[k].SC;
44 end
45 end
46 k← k+ 1 ;
47 until (budGet == 0orbudGet ≤ r[k]cost);
48 return (z) ;

Sensors 2023, 23, 4450 18 of 32

In Algorithm 3, we classify candidate combinations for each microservice using the
combination cost, line 2. From lines 4 to 8 and 9 to 13, we exclude each microservice’s
dominated and lp-dominated candidate combinations according to [36]. Between lines
14 and 16, we subtract the first candidate combination cost from the budget for each
microservice. From lines 17 to 27, we created an instance of the knapsack problem. For
this, on line 20, we assign to SC the difference between the combination score j and the
combination score j−1 for each microservice. On line 21, we assign to cost the difference
between the combination cost j and the combination cost j−1 for each microservice. On
line 22, we calculate the incremental efficiency; on line 23, we add to r a tuple containing
the microservice identifier i, the candidate combination identifier j, the score resulting
from line 20, the cost resulting from line 21, and the incremental efficiency e. Then, on line
28, we sort r in decreasing order according to the incremental efficiency.

After identifying the candidate combinations with the highest profit, we build the
final solution by placing the selected combinations in Z. Thus, from lines 29 to 33, we add a
tuple to Z, which contains the microservice identifier i, the provider identifier sms[0].sp,
the combination identifier (in this case, it is equal to 1), and the score of the first candidate
combination of a microservice. Then, we obtain the combinations to host each microservice,
between lines 34 and 41. In line 36, we update the budget by subtracting the cost r[k]
from it. Between lines 37 and 39, we compare the microservice identifier of r[k] with the
microservice identifier of z. If the communication link requirements meet the application
needs, we update the item score z with the item score r[k]. Finally, we obtain z, which
contains all service combinations to host all microservices, and each combination can belong
to a different provider. This process can be seen in the example of Section 5.2.1.

5.3. Ant Colony Approach

According to [37], the ant colony algorithm is a multi-agent system in which there is
a low level of interactions among agents, known as ants, resulting in complex behavior
similar to that of a real ant colony. The algorithm is based on the concept of modeling
the problem as a search problem, where artificial ants search for the path with the lowest
cost. Pheromone, a distributed information type, is modified by the ants to reflect their
accumulated experience during problem-solving. The amount of pheromone in a given
path influences the choices of the ants: the higher the pheromone level, the more likely an
ant is to select that path. This indirect means of communication aims to provide information
about the quality of the path components to attract other ants. In the following sections, we
will present an example and provide details of the selection process.

5.3.1. Ant Colony Approach Example

For the LM2K model, each microservice represents a group of items, and each candi-
date combination (Combij) is an item i of group j. Figure 9 shows the set of all candidate
combinations for all application microservices, which has ij candidate combinations for
each microservice j. For each candidate combination of Figure 9, we add the score, the cost,
the provider to which it belongs, and the initial pheromone. We must order the candidate
combinations for each microservice by the combination cost. The process has n ants, and
each of them must build an individual solution. In each solution, we consider the response
time, availability, and cost for the communication links between the providers of each
candidate combination selected by an ant. We repeat the process (m cycles), and each ant
builds a solution in each cycle, generating m solutions. The highest profit solution in each
cycle is selected, and the best solution is selected by the end of all cycles.

Sensors 2023, 23, 4450 19 of 32

Figure 9. Example of the ant colony approach of model LM2K.

5.3.2. Ant Colony Algorithm

The algorithm for the ant colony approach has two parts, similar to the other ap-
proaches for the model. The first contains the first and second levels, and Algorithm 1
describes them. This subsection describes Algorithm 4, which represents the third level of
the ant colony approach. The budget threshold is the knapsack capacity, and the pheromone
is the profit.

Algorithm 4: Ant Colony Algorithm—Part 2.
1 solution sApp← initialize with empty set links lApp← initialize with empty set repeat
2 solution sAnts← initialize with empty set;
3 links lAnts← initialize with empty set;
4 foreach eachAnt of the nAnts do
5 solution sTerm← initialize with empty set;
6 links lTerm← initialize with empty set;
7 foreach eachTerm of the flowTerm do
8 solution sMS← initialize with empty set;
9 links lMS← initialize with empty set;

10 foreach eachMS of the eachTerm do
11 combCandidates← Set of Candidate Combinations for eachMS;
12 if eachMS == first microservice then To select a combination randomly from comb belongs to

combCandidates;
13 else To select a combination from comb belongs to combCandidates with probability p;
14 updatePheLocal (τcomb,ρ,τ0);
15 lMS← { lMS ∪ prvdComb };
16 sMS← { sMS ∪ comb };
17 end
18 lTerm← { lTerm ∪ lMS };
19 sTerm← { sTerm ∪ sMS };
20 end
21 if (profit (sTerm,lTerm) > profit (sAnts,lAnts)) then
22 sAnts← sTerm;
23 lAnts← lTerm
24 end
25 end
26 if profit (sAnts,lAnts) > profit (sApp,lApp)) then
27 sApp← sAnts;
28 lApp← lAnts
29 end
30 updatePheGlobal (τ,ρ,sApp);
31 until m;
32 return (sApp)

The input for this algorithm consists of the application execution flow set, a set of
communication link capabilities between providers, and a set of all candidate combinations
for each microservice obtained from the first and second levels. Furthermore, the algorithm
initializes a set of pheromones for each combination, representing the initial pheromone
level, denoted as τ0. In Equation (24), we assign τ0 as the sum of the product between the
normalized requirement value and its respective priority. The normalized requirement
value is obtained by dividing the requirement value by the range between the minimum
and maximum values. Thus, AMin, RTMin, and CMin are the minimum values for each
requirement (availability, response time, and cost), while AMax, RTMax, and CMax are the
maximum values. Furthermore, priA, priRT, and priC are the priorities for the availability,
response time, and cost, respectively. The process has m iterations and nAnts ants. In each
cycle of this algorithm, the nAnts ants build individual solutions.

Sensors 2023, 23, 4450 20 of 32

The microservices belonging to the application execution flow are the knapsack groups.
Thus, the algorithm selects the first microservice candidate from the execution flow. The
algorithm chooses the candidate combination from the first group randomly. Then, it up-
dates the local pheromone, according to τji, as shown in (25), which is the local pheromone
of candidate combination j from microservice i. In (25), we calculate τji based on τ0
and the growth parameter called (ρ). The value of (ρ) must be between 0 < ρ < 1. For
the other groups from the execution flow, the algorithm selects the most likely candidate
combinations, according to (26).

An ant finishes building a solution when the solution contains a combination of each
microservice from the execution flow. After each ant has created a solution, the algorithm
identifies the best one for that iteration. Then, it updates the pheromone according to the
best solution and according to τ, as shown in (27). We calculated τ based on ρ and the
combination score. When the algorithm performs the maximum number of cycles, it ends.

The attractiveness of a combination depends on the pheromone deposited in it, and
the combination selected in a group is the one that has the greatest attractiveness. The
attractiveness of a combination is calculated by (26) [29]. In (26), β is a parameter that
determines the relative importance of heuristic information and the pheromone level; the
greater the β, the greater the influence of heuristic information in the selection process;
q0 is a parameter that determines the probability of choosing the best component and
0 < q0 < 1; q is a random number in the range [0, 1]; ηji is the score of the selected
combination. According to [38], if q0 = 1, ants will choose only the component with the
highest value since q0) will always be greater than q, which makes the algorithm a greedy
search. However, if q0 = 0, the algorithm will be more stochastic and less convergent.

τ0 =
AMin
AMax

× priA +
RTMin
RTMax

× priRT +
CMin
CMax

× priC (24)

τji = (1− ρ)× τji + ρ× τ0 (25)

p =


maxji{η

β
ji × τji} if q 6 q0

η
β
ji×τji

∑ji{η
β
ji×τji}

otherwise
(26)

τ = (1− ρ)× τ + ρ× score (27)

6. Evaluation and Outcomes

In Sections 4 and 5, we described the model and approaches for selecting multi-
cloud providers to host a microservice-based application based on the software architect’s
perspective. A single provider must host an application’s microservice that best meets the
microservice requirements. To evaluate the performance of the proposed approaches for
the LM2K model, in this section, we describe the tools implemented, the scenarios, and the
experiments. Furthermore, we analyze the results obtained from the experiments.

6.1. Tool Description

We developed a tool for each proposed approach in the model. The tools were
implemented using Python 3.7, and the input and output data were in the JavaScript Object
Notation (JSON) format. For the LM2K model, the tool requires three input files. The first
file is divided into two parts: one containing the requirements of the microservice-based
application, and the other containing the capabilities of the available cloud providers.
The second file includes the execution flow among the application’s microservices and
the execution flow among the tasks within each microservice. The third file contains
information about the capabilities of the interactions between the available cloud providers.
The tool outputs a JSON file that contains the selected providers and services for hosting
each microservice of the application.

Sensors 2023, 23, 4450 21 of 32

6.2. Setting Scenarios

In this subsection, we describe the scenarios, experiments, and performance evaluation
results for all approaches of the proposed model.

We conducted each experiment 30 times to ensure a normal distribution, as recom-
mended by [39]. The scenarios were synthetically configured, aligning with common
practices in the field, given the limited availability of datasets in the cloud computing
research domain [40]. The providers in all scenarios were organized into sets based on
the number of providers or provider services. We described twelve applications based on
microservices, varying in the number of microservices, as presented in Table 2.

We assume that all microservices have the same size and require the same number of
cloud services, but their requirements may vary. Each microservice requires three cloud
services, which fall into different classes: computer, storage, and database. Consequently,
the total number of cloud services required by an application is three times the number of
microservices. Table 2 provides information on the number of microservices and the total
services required for each configured application.

Most experiments use only five applications out of the twelve configured ones. Only
experiments that check the influence of the number of microservices on the selection time
of cloud services use most applications. Moreover, we set up three requirements for each
microservice. The configured requirements are budget, response time, and availability, and
we also determined the priority of each of them. We used them in all experiments and
approaches. We performed the experiments on a MacBook Air with an i5 processor, 4 GB
of RAM, and a 256 GB SSD.

Table 2. Applications for all experiments.

Applications Characteristics

Number of Microservices Number of Services

APP1 5 15

APP2 6 18

APP3 10 30

APP4 14 42

APP5 15 45

APP6 18 54

APP7 20 60

APP8 22 66

APP9 25 75

APP10 30 90

APP11 35 105

APP12 40 120

The application budget is the maximum value available to hire all cloud services
needed for an application. The sum of all cloud service costs from all cloud providers used
by the application is the application cost. In this manner, we also defined the budget classes,
each with a different application budget cost, but the service price remained the same for
all applications. Furthermore, we determined the service prices based on the minimum
and maximum costs of cloud services described for the providers’ capabilities.

We conducted experiments to explore variations in service costs by manipulating
the budget classes. We defined availability and response time requirements within the
capabilities of most providers. For instance, if we set the service cost to 10 and each
microservice requires 3 services, the total cost for a single microservice would be 30. In a
scenario where the application consists of 6 microservices, the budget would amount to 180.

Sensors 2023, 23, 4450 22 of 32

Similarly, for an application with 9 microservices, the budget would be 270. Both budgets
fall into the same budget class. Alongside the budget class, we also established requirement
classes with varying values. These classes were configured to decrease the response time
and cost as the availability requirement increased. Thus, a higher requirement class value
indicates a greater degree of restriction.

We present all experiment results in graphs, in which the y-axis shows the average
provider selection time in milliseconds (s), the lines represent each application, and the
x-axis shows the experiment.

6.3. Dynamic Approach Experiments

This section evaluates the performance of the dynamic approach of the LM2K model.
To accomplish this, we established scenarios comprising the following components: (i) sets
of providers (Table 3); (ii) capabilities of communication links among available providers;
(iii) applications (Table 2); and (iv) the execution flow for each microservice application
and its corresponding tasks, as described in Section 6.1. Table 3 presents eight sets of
providers, with four sets differing in the number of providers and four sets differing in the
number of services per provider. Furthermore, we configured the information pertaining
to communication among the available providers, including availability, delay, and cost.

Table 3. Set of providers for the dynamic approach.

Approach

Characteristics of Sets

Number of
Sets

Number of
Providers by

Sets

Number of
Services by

Class

Number of
Services by

Provider

Number of
Services by

Set

Dynamic LM2K

4 5

4 12 60

5 15 75

6 18 90

7 21 105

4

5

4 12

60

6 72

7 84

8 96

We evaluated the performance of the dynamic approach of the LM2K model through
seven experiments. For this, we used 8 out of the 12 configured applications (Table 2)
for the experiment that varied the number of microservices. The applications used in
this experiment were APP1, APP3, APP5, APP7, APP9, APP10, APP11, and APP12. We
also utilized five configured applications (APP2, APP3, APP4, APP6, and APP8) for other
experiments. The availability, response time, and cost variation requirements depend on
the type of assessment.

For each application, the software architect must define the budget threshold, availabil-
ity, and response time in addition to their weight. Moreover, the architect must configure
execution flows among the application’s microservices and each microservice. Thus, it must
define each sequence among microservices and determine which microservices belong
to the sequence, order, and frequency. A software architect must also specify the same
information for the task sequences for each microservice.

From the configured scenarios, we defined experiments to evaluate the performance of
the selection process. First, we conducted experiments by varying the number of providers,
the number of services per provider, and the number of application microservices. In these
experiments, the cost, availability, and response time requirements remained unchanged,
and we defined values for them that should be met by most of the available providers.
Figure 10 presents the results obtained from these experiments. In Figure 10a, we illustrate
the results obtained by varying the number of providers. For this, we used the last four

Sensors 2023, 23, 4450 23 of 32

sets of providers from Table 3, which differ in the number of providers and are represented
on the x-axis of Figure 10a. We can observe that the selection time increases significantly
with an increase in the number of providers, but after a certain threshold, the growth rate
decreases.

(a) (b)

(c)

Figure 10. First three experiments of the dynamic approach—Table 3 sets. (a) Average Time per Set
of Providers. (b) Average Time per Set of Provider Services. (c) Average Time per Microservices by
Application.

Figure 10b shows the result of the experiment, in which we vary the number of services
per provider. In this experiment, we use the first four providers in Table 3, which differ in
the number of services per provider and are presented on the x-axis of Figure 10b. We can
notice that the increase in the average selection time is large when increasing the number
of services by providers. Figure 10c illustrates the result of the experiment, in which we
vary the number of application microservices, and we used the set of providers of the fifth
line in Table 3. In Figure 10c, the x-axis shows the number of microservices by application.
We can observe that the number of microservices influences the outcomes.

From the results obtained in the first three experiments, we selected the set of the
fifth row from Table 3 for another four experiments, consisting of five providers, with
each provider offering four services per class. Figure 11 illustrates the results of these four
experiments in separate graphs. In the experiment shown in Figure 11a, we configure
the availability requirement with four different classes, where each class has the same
percentage of variation in individual values based on the number of microservices in
each application. The cost and response time requirements are set to values that should
be met by most of the available providers. We observed that the availability values did
not significantly influence the average selection time. This result can be attributed to
the fact that in order to meet the defined availability value, cloud services need to have
high availability values. As a result, the number of services with such high availability
does not vary significantly between different availability values. Figure 11b examines
the performance of the approach when varying the response time requirement, with the
applications configured to have four different values. The availability and cost requirements

Sensors 2023, 23, 4450 24 of 32

were set to values that should be met by most available providers. The results indicate that
the response time values also do not significantly impact the average selection time, similar
to the availability experiment.

(a) (b)

(c) (d)

Figure 11. Four last experiments of the dynamic approach. (a) Average time for different classes of
Availability. (b) Average time for different classes of Response Time. (c) Average time for different
classes of the Budget Class. (d) Average time for different classes of the ’Requirements’ Class.

In the experiment depicted in Figure 11c, we introduced budget classes as described
in the preamble of Section 6.2. The results demonstrate that as the budget class increases,
the average selection time also increases, which is in contrast to the findings of the previous
two experiments. Therefore, the budget requirement has a significant impact on the average
selection time. In the experiment shown in Figure 11d, where all three requirements are
varied simultaneously, we created requirement classes as described earlier in Section 6.2.
The results reveal that the average selection time increases as the requirements classes
increase, primarily influenced by the cost requirement.

6.4. Greedy Approach Experiments

The purpose of this section is to verify the performance of the LM2K model’s greedy
approach. To achieve this goal, we configured eight sets of providers, as shown in Table 4.
Thus, four sets of providers differ by the number of providers, and four sets vary by the
number of services per provider. In the sets that differ by the number of providers, each one
has 25 services per class. The information defined for communication between providers
includes delay, cost, and availability. We used 8 out of the 12 configured applications
(Table 2) for the experiment that varied the number of microservices. The applications used
in this experiment were APP1, APP3, APP5, APP7, APP9, APP10, APP11, and APP12. We
used five of the configured applications for other experiments, i.e., APP2, APP3, APP4,
APP6, and APP8. The requirements for availability, response time, and cost variation
depend on the type of assessment.

After setting up all of the scenarios, we performed three experiments (in Figure 12).
The first experiment verified the performance of the approach by varying the number of

Sensors 2023, 23, 4450 25 of 32

providers, the second by varying the number of services by providers, and the third by
varying the number of application microservices.

Table 4. Set of providers for the greedy approach of LM2K.

Approach

Characteristics of Sets

Number of
Sets

Number of
Providers by

Sets

Number of
Services by

Class

Number of
Services by

Provider

Number of
Services by

Set

Greedy LM2K

4

10

25 75

1500

20 1500

30 2250

40 3000

4 15

20 60 900

25 75 1125

30 90 1350

35 105 1575

(a) (b)

(c)

Figure 12. First three experiments for the greedy approach—Table 4 sets. (a) Average Time per Set of
Providers. (b) Average Time per Set of Provider’s Services. (c) Average Time per Microservices by
Application.

In the graphs, the x-axis shows the values related to the experiments. In Figure 12a,
the x-axis shows the number of providers according to the first four lines of Table 4. In
Figure 12b, the x-axis shows the number of services according to the last four lines of
Table 4. In Figure 12c, the x-axis shows the number of microservices by application and the
set of providers of the sixth line in Table 4. In the graphs in Figure 12, we notice that the
average selection time increases with the increase in the number of providers, the number
of services per provider, and the number of application microservices, respectively.

Sensors 2023, 23, 4450 26 of 32

From the first 3 experiments, we carried out 4 other experiments; we used a set of
15 providers, and each provider had 25 services per class, as described on the 5th line in
Table 4. Figure 13 illustrates the experiments with a graph for each experiment.

(a) (b)

(c) (d)

Figure 13. Four last experiments for the greedy approach. (a) Average time for different classes of
Availability. (b) Average time for different classes of Response Time. (c) Average time for different
classes of the Budget Class. (d) Average time for different classes of the ’Requirements’ Class.

In the experiment displayed in Figure 13a, there are four different classes for the
availability requirement, in which each class has the same percentage, but the values vary
individually according to the number of microservices in each application. We defined the
response time and cost requirements with fixed values that can meet most providers. In the
experiment in Figure 13b, there are four different values for the response time requirement.
Availability and cost requirements remain fixed with values that can meet most providers.
Figure 13c presents the result of the experiment, and it is possible to notice that none of the
applications had an influence on the selection time with the variation of the budget classes,
which were described in the preamble of Section 6.2. Figure 13d shows the result of the
experiment, with three requirements modified at the same time so that when the availability
requirement increased, the requirements of the response time and cost decreased. Thus,
a smaller class is less restricted, and a larger one is more restricted. In Figure 13, we can
observe that none of the experiments influenced the average selection time. The values
differed only by application, as each one had a different number of microservices.

6.5. Ant Colony Approach Experiments

This section investigates the performance of the ant colony-bioinspired approach of
the LM2K model. To achieve this, we define scenarios similar to the greedy approach of

Sensors 2023, 23, 4450 27 of 32

this model. Table 5 shows four sets of providers, which differ by the number of providers,
and another four sets that vary in the number of services per provider. The communication
between providers is characterized by delay, cost, and availability. We configured the
applications following the same structure as the greedy approach of the proposed models,
as presented in Table 2. Additionally, we define the execution flows to be the same as those
in the greedy approach of the LM2K model, which were described in Section 6.4.

Table 5. Set of providers for the ant colony approach of LM2K.

Approach

Characteristics of Sets

Number of
Sets

Number of
Providers by

Sets

Number of
Services by

Class

Number of
Services by

Provider

Number of
Services by

Set

Ant Colony LM2K

4

10

10 30

300

20 600

30 900

40 1200

4 15

10 30 450

13 39 585

15 45 675

18 54 810

After setting up the scenarios, we carried out three experiments to verify the perfor-
mance of the approach by varying the number of providers, the number of services per
provider, and the number of application microservices. Figure 14 presents the results of the
three experiments, respectively.

(a) (b)

(c)

Figure 14. First three experiments for the ant colony approach—Table 5 sets. (a) Average Time per
Set of Providers. (b) Average Time per Set of Provider’s Services. (c) Average Time per Microservices
by Application.

Sensors 2023, 23, 4450 28 of 32

In the graphs, the x-axis shows the values related to the experiments. In Figure 14a,
the x-axis shows the number of providers according to the first four lines of Table 5. In
Figure 14b, the x-axis shows the number of services according to the last four lines of
Table 5. In Figure 14c, the x-axis shows the number of microservices by application and
uses the set of providers from the sixth line in Table 5. In the graphs of Figure 12, we notice
that the average selection time increases with the increase in the number of providers, the
number of services per provider, and the number of application microservices, respectively.
We also observe that the number of microservices per application has a greater influence
on the increase in the average selection time.

We performed another 4 experiments, for which, we used a set with 15 providers, and
each provider had 25 services per class as described in the fifth line in Table 5. Figure 15
shows a graph for each experiment. All experiments have the same configuration as
the experiments performed for the greedy approach of the LM2K model presented in
Section 6.4, except for the sets of providers. As in the experiments for the greedy approach,
we notice that none of the experiments influenced the average selection time. The values
differed only by application, as each of them has a different number of microservices.

(a) (b)

(c) (d)

Figure 15. Four last experiments for the ant colony approach. (a) Average time for different classes of
Availability. (b) Average time for different classes of Response Time. (c) Average time for different
classes of the Budget Class. (d) Average time for different classes of the ’Requirements’ Class.

6.6. Comparison of Outcomes

The LM2K model addresses applications based on microservices that depend on each
other and require communication among them. Consequently, the calculation of application
requirements distributed in multiple clouds needs to consider the microservice execution
flow, including the availability, delay, and cost of communication between providers.

Sensors 2023, 23, 4450 29 of 32

Therefore, the approaches to the models need to address aspects that the other models
did not consider. According to this context and the results obtained from the experiments,
we observe that, in most outcomes, the average selection time does not change with the
requirement variation. This result occurs because, in order to meet the thresholds defined
by a software architect, providers must offer services with high values. Thus, the variation
in the quantity of the offer has an insignificant amount in the average selection time.
The exception is the dynamic approach for experiments that have budget variations, as
they influence the average selection times and, thus, limit the size of the input for this
approach. The greedy approach accepts a more considerable input than the ant colony
approach, having an average time shorter than this. The ant colony approach allows for
more significant input than the dynamic approach, and it also has shorter average selection
times.

All experiments performed have varied at least one of the requirements or altered
the number of providers per set or the number of services per provider. The experiments
show the average time that each approach needs to select cloud providers to host the
microservices of an application. We note that there is variation in the average selection time
among applications because each application has a different number of microservices.

According to the experiments carried out, we also observed that there is a variation in
the provider selection, the application requirement values, the number of providers, the
number of services per provider, and even some changes in the provider’s capabilities,
which allows us to obtain better offers. This result shows the sensitivity of the approaches
proposed. Therefore, a software architect must adequately define the application require-
ment values to obtain better offers.

7. Final Consideration and Future Works

The growth of cloud computing and, consequently, the increased number of providers
and services have facilitated the software development process. Moreover, these cloud
providers have specialized their services in a way that increases the chance of a user be-
coming a prisoner to that provider, i.e., not being able to migrate to another provider or
distribute an application across multi-cloud providers. For a software architect to maxi-
mize the benefits of cloud computing, it is necessary to encourage the use of multi-cloud
providers, with each microservice hosted by the provider that best meets the application’s
needs. Despite the many benefits of using multi-cloud providers, there are challenges,
particularly in the absence of cooperation agreements among the involved providers in a
multi-cloud environment.

One of the first decisions that a software architect must make for a traditional appli-
cation is to choose the cloud providers to host each component, as the implementation
depends on the provider selected. However, applications developed for the cloud must
use an architectural style that brings greater flexibility, such as microservices. Thus, an
application based on microservices facilitates its distribution to multi-cloud providers. Nev-
ertheless, multi-cloud providers offer services with the same functionalities, but different
capabilities, and each application’s microservice may need multiple cloud services. It is up
to the software architect to perform the arduous task of selecting a service combination for
each microservice from all available cloud providers.

In this work, we proposed a new model called Link Microservice Mapped to the Knap-
sack (LM2K) and presented three approaches for selecting providers to host application
microservices from the software architect’s perspective. These approaches include a dynamic
algorithm, a greedy algorithm, and an ant colony algorithm.

The results showed that all proposed approaches are viable. However, each approach
demands a different number of providers and application microservices. The ant colony’s
algorithm cannot deal with input sizes as big as the greedy, though it usually provides
better results than the greedy solution. Furthermore, the dynamic approach will provide
the optimal solution but can only work with scenarios with a small number of providers,
services, and microservices. Therefore, each approach has a particular suitability that

Sensors 2023, 23, 4450 30 of 32

depends on the number of providers, services, and microservices. Designing a specific
scenario to compare them would not be a reasonable comparison.

In this work, we analyzed the approaches proposed for selecting multiple providers.
Future work will involve conducting a more detailed analysis of the services and providers
chosen in each approach. This analysis will examine how the selection may change based
on variations in requirement values or priorities. Additionally, we plan to compare the
proposed approaches based on the quality of the services selected in each experiment. The
quality of services refers to the values and priorities of the requirements.

Author Contributions: Investigation , J.C., D.V. and F.T.; Writing—original draft, J.C.; Writing—
review & editing, C.R. and D.V.; Supervision, D.V. and F.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Linked Microservice Mapped to the Knapsack Equation Nomenclature

Table A1. Description of equations’ nomenclature.

Description Equation Nomenclature

Availability (.a) (1) AP.a
Availability (.a) of j-th application term (.a) (2) Termj.a
Availability (.a) of sequence i of the term j (3) Seqij.a
Maximum Response Time Threshold (.rt) (4) MaxRT
Response Time (.rt) of Application (5) AP.rt
Response Time (.rt) of j-th term (6) Termj.rt
Response Time (.rt) of i-th sequence of the j-th term (7) Seqij.rt
Application Execution Cost (.c) (8) AP.c
Cost (.c) of j-th term (9) Termj.c
Cost (.c) of i-th sequence of the j-th term (10) Seqij.c
Requirements Score of each candidate service (13) Score(Si)
Set of candidate combinations from the provider (14) SSPik
Combination (comb) of services for the i-th microservice (15) combikj
Score (.score) of services’ combinations (16) combikj.score
Cost (.cost) of services’ combinations (17) combikj.c
Candidate providers’ set for the i-th microservice (18) SMSi
Candidate combinations from k-th provider to i-th microservice (18) SSPi
Set of all candidate combinations of providers for application
microservices (19) SAMS

Candidate combination for each microservice (20) SAPP
Execution Cost (.c) for each SAPP combination (21) SAPPl .c
Score (.score) for each SAPP combination (22) SAPPl .score
Incremental Efficiency (e): cost–benefit of a candidate combination (23) e

References
1. Vaquero, L.M.; Rodero-Merino, L.; Caceres, J.; Lindner, M. A break in the clouds. ACM Sigcomm Comput. Commun. Rev. 2009, 39,

50. https://doi.org/10.1145/1496091.1496100.
2. Opara-Martins, J.; Sahandi, R.; Tian, F. Critical review of vendor lock-in and its impact on adoption of cloud computing. In

Proceedings of the International Conference on Information Society, i-Society 2014, London, UK, 10–12 November 2014; pp. 92–97.
https://doi.org/10.1109/i-Society.2014.7009018.

3. Mezgár, I.; Rauschecker, U. The challenge of networked enterprises for cloud computing interoperability. Comput. Ind. 2014, 65,
657–674. https://doi.org/10.1016/j.compind.2014.01.017.

4. Sousa, G.; Rudametkin, W.; Duchien, L. Automated Setup of Multi-Cloud Environments for Microservices-Based Applications.
In Proceedings of the 9th IEEE International Conference on Cloud Computing, Francisco, CA, USA, 27 June–2 July 2016.
https://doi.org/10.1109/CLOUD.2016.49.

Sensors 2023, 23, 4450 31 of 32

5. Wang, Y.; He, Q.; Ye, D.; Yang, Y. Service Selection Based on Correlated QoS Requirements. In Proceedings of
the IEEE International Conference on Services Computing (SCC), Honolulu, HI, USA, 25–30 June 2017; pp. 241–248.
https://doi.org/10.1109/SCC.2017.38.

6. Jatoth, C.; Gangadharan, G.R.; Buyya, R. Optimal Fitness Aware Cloud Service Composition using an Adaptive Genotypes
Evolution based Genetic Algorithm. Future Gener. Comput. Syst. 2019, 94, 185–198. https://doi.org/10.1016/j.future.2018.11.022.

7. Petcu, D. Multi-Cloud: Expectations and Current Approaches. In Proceedings of the 2013 International Workshop on Multi-
cloud Applications and Federated Clouds, Prague, Czech Republic, 22 April 2013; ACM: New York, NY, USA, 2013; pp. 1–6.
https://doi.org/10.1145/2462326.2462328.

8. Petcu, D. Consuming Resources and Services from Multiple Clouds: From Terminology to Cloudware Support. J. Grid Comput.
2014, 12, 321–345. https://doi.org/10.1007/s10723-013-9290-3.

9. Toosi, A.N.; Calheiros, R.N.; Buyya, R. Interconnected Cloud Computing Environments. Acm Comput. Surv. 2014, 47, 1–47.
https://doi.org/10.1145/2593512.

10. Grozev, N.; Buyya, R. Inter-Cloud architectures and application brokering: taxonomy and survey. Softw. Pract. Exp. 2014, 44,
369–390. https://doi.org/10.1002/spe.2168.

11. Petcu, D. Portability in Clouds: Approaches and Research Opportunities. Scalable Comput. Pract. Exp. 2014. 15, 251–270.
https://doi.org/10.12694/s...ARTICLE.

12. Carvalho, J.O.D.; Trinta, F.; Vieira, D. PacificClouds: A Flexible MicroServices based Architecture for Interoperability in Multi-
Cloud Environments. In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER
2018), Funchal, Portugal, 19–21 March 2018; pp. 448–455. https://doi.org/978-989-758-295-0.

13. Sethi, M. Cloud Native Python: Build and Deploy Applications on the Cloud Using Microservices, AWS, Azure and More; Packt Publishing
Ltd.: Birmingham, UK, 2017.

14. Ziade, T. Python Microservices Development; Packt Publishing Ltd.: Birmingham, UK, 2017.
15. Carvalho, J.; Vieira, D.; Trinta, F. Dynamic Selecting Approach for Multi-cloud Providers. In Cloud Computing—CLOUD 2018,

Proceedings of the 11th International Conference, Held as Part of the Services Conference Federation, SCF 2018, Seattle, WA, USA, 25–30
June 2018; Luo, M., Zhang, L.J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 37–51.

16. Carvalho, J.; Vieira, D.; Trinta, F. Greedy Multi-cloud Selection Approach to Deploy an Application Based on Microservices. In
Proceedings of the 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP),
Pavia, Italy, 13–15 February 2019. https://doi.org/10.1109/PDP.2019.00021.

17. Carvalho, J.; Vieira, D.; Trinta, F. UM2Q: multi-cloud selection model based on multi-criteria to deploy a distributed microservice-
based application. In Proceedings of the 10th International Conference on Cloud Computing and Services Science, Online, 7–9
May 2020; SCITEPRESS-Science and Technology Publications: Setubal, Portugal, 2020; pp. 56–68.

18. Sosinsky, B. Cloud Computing Bible; Wiley Publishing Inc.: Hoboken, NJ, USA, 2011; p. 473.
19. NIST. NIST Cloud Computing Standards Roadmap; Technical Report; NIST: Gaithersburg, MD, USA, 2011.
20. Gavvala, S.K.; Jatoth, C.; Gangadharan, G.R.; Buyya, R. QoS-aware cloud service composition using eagle strategy. Future Gener.

Comput. Syst. 2019, 90, 273–290. https://doi.org/10.1016/j.future.2018.07.062.
21. Sun, L.; Dong, H.; Hussain, O.K.; Hussain, F.K.; Liu, A.X. A framework of cloud service selection with criteria interactions. Future

Gener. Comput. Syst. 2019, 94, 749–764. https://doi.org/10.1016/j.future.2018.12.005.
22. Khanam, R.; Kumar, R.R.; Kumar, C. QoS based cloud service composition with optimal set of services using PSO. In Proceedings

of the 4th IEEE International Conference on Recent Advances in Information Technology, RAIT 2018, Dhanbad, India, 15–17
March 2018; pp. 1–6. https://doi.org/10.1109/RAIT.2018.8389039.

23. Kumar, S.; Bahsoon, R.; Chen, T.; Li, K.; Buyya, R. Multi-Tenant Cloud Service Composition Using Evolutionary Optimization. In
Proceedings of the International Conference on Parallel and Distributed Systems—ICPADS, Singapore, 11–13 December 2018; pp.
972–979. https://doi.org/10.1109/PADSW.2018.8644640.

24. Ding, S.; Wang, Z.; Wu, D.; Olson, D.L. Utilizing customer satisfaction in ranking prediction for personalized cloud service
selection. Decis. Support Syst. 2017, 93, 1–10. https://doi.org/10.1016/j.dss.2016.09.001.

25. Jatoth, C.; Gangadharan, G.; Fiore, U.; Computing, R.B. SELCLOUD: A hybrid multi-criteria decision-making model for selection
of cloud services. Soft Comput. 2018, 23, 4701–4715. https://doi.org/https://doi.org/10.1007/s00500-018-3120-2.

26. Panda, S.K.; Pande, S.K.; Das, S. SLA-based task scheduling algorithms for heterogeneousmulti-cloud environment. Arab. J. Sci.
Eng. 2018, 43, 913–933. https://doi.org/10.1007/s13369-017-2798-2.

27. Moghaddam, M.; Davis, J.G. Simultaneous service selection for multiple composite service requests: A combinatorial auction
approach. Decis. Support Syst. 2019, 120, 81–94. https://doi.org/10.1016/j.dss.2019.03.005.

28. Liu, L.; Gu, S.; Zhang, M.; Fu, D. A hybrid evolutionary algorithm for inter-cloud service composition. In Proceedings of the 9th
International Conference On Modelling, Identification and Control, ICMIC 2017, Kunming, China, 10–12 July 2017; pp. 482–487.
https://doi.org/10.1109/ICMIC.2017.8321692.

29. Liu, H.; Xu, D.; Miao, H.K. Ant colony optimization based service flow scheduling with various QoS requirements in cloud
computing. In Proceedings of the 1st ACIS International Symposium on Software and Network Engineering, SSNE 2011, Seoul,
Republic of Korea, 19–20 December 2011; pp. 53–58. https://doi.org/10.1109/SSNE.2011.18.

30. Zhou, J.; Yao, X.; Lin, Y.; Chan, F.T.; Li, Y. An adaptive multi-population differential artificial bee colony algorithm for many-
objective service composition in cloud manufacturing. Inf. Sci. 2018, 456. https://doi.org/10.1016/j.ins.2018.05.009.

Sensors 2023, 23, 4450 32 of 32

31. Hongzhen, X.; Limin, L.; Dehua, X.; Yanqin, L. Evolution of Service Composition Based on Qos under the Cloud Computing
Environment. In Proceedings of 2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS),
Chongqing, China, 28–29 May 2016; pp. 66–69.

32. Zeng, L.; Benatallah, B.; Ngu, A.H.; Dumas, M.; Kalagnanam, J.; Chang, H. QoS-aware middleware for Web services composition.
IEEE Trans. Softw. Eng. 2004, 30, 311–327. https://doi.org/10.1109/TSE.2004.11.

33. Alrifai, M.; Risse, T. Combining Global Optimization with Local Selection for Efficient QoS-aware Service Composition. In
Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain, 20–24 April 2009; ACM: New York, NY,
USA, 2009; pp. 881–890. https://doi.org/10.1145/1526709.1526828.

34. Canfora, G.; Di Penta, M.; Esposito, R.; Villani, M.L. An Approach for QoS-aware Service Composition Based on Genetic
Algorithms. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, Washington, DC, USA,
25–29 June 2005; ACM: New York, NY, USA, 2005. https://doi.org/10.1145/1068009.1068189.

35. Seghir, F.; Khababa, A. A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service
composition. J. Intell. Manuf. 2016, 29, 1773–1792.. https://doi.org/10.1007/s10845-016-1215-0.

36. Kellerer, H.; Pferschy, U.; Pisinger, D., The Multiple-Choice Knapsack Problem. In Knapsack Problems; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 317–347. https://doi.org/10.1007/978-3-540-24777-7_11.

37. Goldbarg, M.C.; Goldbarg, E.; Luna, H.P.L. Otimização Combinatória e Meta-Heurísticas; Elsevier: Rio de Janeiro, Brazil, 2016.
38. Wei-Neng Chen.; Jun Zhang. An Ant Colony Optimization Approach to a Grid Workflow Scheduling Problem With Various QoS

Requirements. IEEE Trans. Syst. Man Cybern. Part 2009, 39, 29–43. https://doi.org/10.1109/TSMCC.2008.2001722.
39. Hogendijk, J.; Whiteside, A.E.S.D. Sources and Studies in the History of Mathematics and Physical Sciences; Springer:

Berlin/Heidelberg, Germany, 2011; p. 415. https://doi.org/10.1007/978-0-387-87857-7.
40. Hayyolalam, V.; Pourhaji Kazem, A.A. A systematic literature review on QoS-aware service composition and selection in cloud

environment. J. Netw. Comput. Appl. 2018, 110, 52–74. https://doi.org/10.1016/j.jnca.2018.03.003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Multiple Cloud Providers
	Related Work
	Single Cloud for Service Selection
	Multiple Clouds for a Service Selection
	Multiple Clouds for Multiple Service Selections

	Multi-Cloud Selection Model: LM2K
	Formalization
	Availability Requirement
	Response Time Requirement
	Cost Requirements

	Cloud Provider Selection Process
	First Level
	Second Level
	Third Level

	Approaches for the LM2K Model
	Dynamic Approach
	Dynamic Approach Example
	Dynamic Algorithm

	Greedy Approach
	Greedy Approach Example
	Greedy Algorithm

	Ant Colony Approach
	Ant Colony Approach Example
	Ant Colony Algorithm

	Evaluation and Outcomes
	Tool Description
	Setting Scenarios
	Dynamic Approach Experiments
	Greedy Approach Experiments
	Ant Colony Approach Experiments
	Comparison of Outcomes

	Final Consideration and Future Works
	Linked Microservice Mapped to the Knapsack Equation Nomenclature
	References

