Multi-Wavelength Biometric Acquisition System Utilizing Finger Vasculature NIR Imaging
Abstract
:1. Introduction
- Reliability—the solution must generate minimal false detections;
- Uniqueness—no two people should have the same set of characteristics;
- Acceptability—no user objections to measurement/use;
- Reasonable cost of the solution.
Name | Vol. | Imgs. | NIR Length | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SNU [25] (2009) | 20 | 200 | 830 | XB | X | - | - | - | - | - | - | X |
THU-FVFDT [26] (2009) | 60 | 120 | 890 | XB | X | - | - | - | X | - | - | - |
PKU [27] (2010) | 5208 | 50,700 | 850 | XB | - | - | - | - | - | - | - | X |
SDUMLA [28] (2011) | 106 | 3616 | 890 | XB | - | - | X | - | - | - | - | - |
HKPU [29] (2012) | 156 | 6264 | 850 | XB | X | X | - | - | - | - | - | X |
UTFVP [30] (2013) | 60 | 1440 | 850 | XB | - | - | - | - | - | - | - | - |
MMCBNU [31] (2013) | 100 | 6000 | 850 | XB | X | - | - | - | - | - | - | - |
CFVD [32] (2013) | 13 | 1345 | 850 | XB | X | X | - | - | - | - | - | - |
VERA [33] (2014) | 110 | 440 | 850 | XB | - | - | - | - | - | - | - | - |
FV-USM [34] (2014) | 123 | 5904 | 850 | XB | X | - | - | - | - | - | - | X |
GUC-FPFV [35] (2014) | 41 | 1500 | 870 | XB | X | X | X | - | - | - | - | X |
GustoDB [11] (2017) | 107 | 11,556 | 730, 808, 850, | XTB | X | - | - | - | X | - | - | X |
860, 875, 880, | ||||||||||||
890, 940, 950 | ||||||||||||
PMMDB [36] (2018) | 47 | 188 | 850, 950 | XT | X | - | - | X | X | - | - | - |
PLUSVein [12] (2018) | 60 | 3600 | 808, 850, 950 | XTB | X | - | - | X | X | - | - | X |
SCUT-SFVD [37] (2018) | 100 | 3600 | 850 | XB | X | - | - | - | - | - | - | - |
MPFVS [38,39] (2018) | 63 | 252 | 808 | XTB | X | - | - | - | X | - | X | X |
3DFM [40] (2020) | 66 | 132 | 850 | XTB | X | X | X | - | X | - | X | X |
3FVFKP [41] (2021) | 203 | 8526 | 850 | XTB | X | - | - | - | - | - | X | - |
Proposed (2022) | - | - | 730, 875, 940 | XT | X | X | - | X | X | X | X | X |
2. Overview
2.1. Hardware
- 940 nm, 140 mW optical power, L514EIR1B (LIRED5B);
- 875 nm, 210 mW optical power, TSHA5205 (VISHAY);
- 730 nm, 240 mW optical power, OSR9XAE3E1E (OPTOSUPPLY).
2.2. Software
2.3. Post-Processing
Algorithm 1: Post-processing algorithm for extraction of final image samples. |
|
3. Preliminary Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Keyser, A.; Bart, Y.; Gu, X.; Liu, S.Q.; Robinson, S.G.; Kannan, P. Opportunities and challenges of using biometrics for business: Developing a research agenda. J. Bus. Res. 2021, 136, 52–62. [Google Scholar] [CrossRef]
- Unar, J.; Seng, W.C.; Abbasi, A. A review of biometric technology along with trends and prospects. Pattern Recognit. 2014, 47, 2673–2688. [Google Scholar] [CrossRef]
- Gayathri, M.; Malathy, C.; Chandrasekar, H.A.; Mathialagan, P. Multimodal Biometric Systems, Its Security Issues, Research Challenges and Countermeasures—Technical Review. In Inventive Communication and Computational Technologies, Proceedings of the ICICCT 2022, Namakkal, India, 12–13 May 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 993–1010. [Google Scholar]
- Abdulrahman, S.A.; Alhayani, B. A comprehensive survey on the biometric systems based on physiological and behavioural characteristics. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Kolda, L.; Krejcar, O.; Selamat, A.; Kuca, K.; Fadeyi, O. Multi-biometric system based on cutting-edge equipment for experimental contactless verification. Sensors 2019, 19, 3709. [Google Scholar] [CrossRef]
- Sidiropoulos, G.K.; Kiratsa, P.; Chatzipetrou, P.; Papakostas, G.A. Feature Extraction for Finger-Vein-Based Identity Recognition. J. Imaging 2021, 7, 89. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, S.; Xue, J.H.; Yang, W.; Liao, Q. The neglected background cues can facilitate finger vein recognition. Pattern Recognit. 2023, 136, 109199. [Google Scholar] [CrossRef]
- Yang, J.; Shi, Y.; Jia, G. Finger-vein image matching based on adaptive curve transformation. Pattern Recognit. 2017, 66, 34–43. [Google Scholar] [CrossRef]
- Xi, X.; Yang, L.; Yin, Y. Learning discriminative binary codes for finger vein recognition. Pattern Recognit. 2017, 66, 26–33. [Google Scholar] [CrossRef]
- Waluś, M.; Bernacki, K.; Konopacki, J.; Nycz, M. NIR finger vascular system imaging in angiology applications. In Proceedings of the 2015 22nd International Conference Mixed Design of Integrated Circuits & Systems (MIXDES), Torun, Poland, 25–27 June 2015; pp. 69–73. [Google Scholar]
- Waluś, M.; Bernacki, K.; Konopacki, J. Impact of NIR wavelength lighting in image acquisition on finger vein biometric system effectiveness. Opto-Electron. Rev. 2017, 25, 263–268. [Google Scholar] [CrossRef]
- Kauba, C.; Prommegger, B.; Uhl, A. OpenVein—An Open-Source Modular Multipurpose Finger Vein Scanner Design. In Handbook of Vascular Biometrics; Springer: Cham, Switzerland, 2020; pp. 77–111. [Google Scholar]
- Moroń, T.; Bernacki, K.; Fiołka, J.; Peng, J.; Popowicz, A. Recognition of the finger vascular system using multi-wavelength imaging. IET Biom. 2022, 11, 249–259. [Google Scholar] [CrossRef]
- Prommegger, B.; Uhl, A. A fully rotation invariant multi-camera finger vein recognition system. IET Biom. 2021, 10, 275–289. [Google Scholar] [CrossRef]
- Zonneveld, T. 3D Finger Vein Patterns: Acquisition, Reconstruction and Recognition. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2021. [Google Scholar]
- Yang, W.; Chen, Z.; Huang, J.; Wang, L.; Kang, W. LFMB-3DFB: A Large-scale Finger Multi-Biometric Database and Benchmark for 3D Finger Biometrics. In Proceedings of the 2021 IEEE International Joint Conference on Biometrics (IJCB), Shenzhen, China, 4–7 August 2021; pp. 1–8. [Google Scholar]
- Ramachandra, R.; Raja, K.B.; Venkatesh, S.K.; Busch, C. Design and development of low-cost sensor to capture ventral and dorsal finger vein for biometric authentication. IEEE Sens. J. 2019, 19, 6102–6111. [Google Scholar] [CrossRef]
- Shaheed, K.; Liu, H.; Yang, G.; Qureshi, I.; Gou, J.; Yin, Y. A systematic review of finger vein recognition techniques. Information 2018, 9, 213. [Google Scholar] [CrossRef]
- Shen, J.; Liu, N.; Xu, C.; Sun, H.; Xiao, Y.; Li, D.; Zhang, Y. Finger Vein Recognition Algorithm Based on Lightweight Deep Convolutional Neural Network. IEEE Trans. Instrum. Meas. 2022, 71, 5000413. [Google Scholar] [CrossRef]
- Huang, J.; Tu, M.; Yang, W.; Kang, W. Joint Attention Network for Finger Vein Authentication. IEEE Trans. Instrum. Meas. 2021, 70, 2513911. [Google Scholar] [CrossRef]
- Xu, H.; Yang, W.; Wu, Q.; Kang, W. Endowing rotation invariance for 3D finger shape and vein verification. Front. Comput. Sci. 2022, 16, 165332. [Google Scholar] [CrossRef]
- Yang, W.; Chen, Z.; Huang, J.; Kang, W. A Novel System and Experimental Study for 3D Finger Multi-Biometrics. IEEE Trans. Biom. Behav. Identity Sci. 2022, 4, 471–485. [Google Scholar] [CrossRef]
- Kauba, C.; Drahanskỳ, M.; Nováková, M.; Uhl, A.; Rydlo, Š. Three-Dimensional Finger Vein Recognition: A Novel Mirror-Based Imaging Device. J. Imaging 2022, 8, 148. [Google Scholar] [CrossRef]
- Krishnan, A.; Thomas, T.; Mishra, D. Finger Vein Pulsation-Based Biometric Recognition. IEEE Trans. Inf. Forensics Secur. 2021, 16, 5034–5044. [Google Scholar] [CrossRef]
- Kim, J.; Kong, H.J.; Park, S.; Noh, S.; Lee, S.R.; Kim, T.; Kim, H.C. Non-contact finger vein acquisition system using NIR laser. In Proceedings Volume 7249, Sensors, Cameras, and Systems for Industrial/Scientific Applications X; International Society for Optics and Photonics: San Jose, CA, USA, 2009; p. 72490Y. [Google Scholar]
- Yang, W.; Yu, X.; Liao, Q. Personal authentication using finger vein pattern and finger-dorsa texture fusion. In Proceedings of the 17th ACM International Conference on Multimedia, Beijing, China, 19–24 October 2009; pp. 905–908. [Google Scholar]
- Huang, B.; Dai, Y.; Li, R.; Tang, D.; Li, W. Finger-vein authentication based on wide line detector and pattern normalization. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 1269–1272. [Google Scholar]
- Yin, Y.; Liu, L.; Sun, X. SDUMLA-HMT: A multimodal biometric database. In Chinese Conference on Biometric Recognition; Springer: Berlin/Heidelberg, Germany, 2011; pp. 260–268. [Google Scholar]
- Kumar, A.; Zhou, Y. Human identification using finger images. IEEE Trans. Image Process. 2011, 21, 2228–2244. [Google Scholar] [CrossRef]
- Ton, B.T.; Veldhuis, R.N. A high quality finger vascular pattern dataset collected using a custom designed capturing device. In Proceedings of the 2013 International Conference on Biometrics (ICB), Madrid, Spain, 4–7 June 2013; pp. 1–5. [Google Scholar]
- Lu, Y.; Xie, S.J.; Yoon, S.; Wang, Z.; Park, D.S. An available database for the research of finger vein recognition. In Proceedings of the 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013; pp. 410–415. [Google Scholar]
- Zhang, C.; Li, X.; Liu, Z.; Zhao, Q.; Xu, H.; Su, F. The CFVD reflection-type finger-vein image database with evaluation baseline. In Chinese Conference on Biometric Recognition; Springer: Berlin/Heidelberg, Germany, 2013; pp. 282–287. [Google Scholar]
- Vanoni, M.; Tome, P.; El Shafey, L.; Marcel, S. Cross-database evaluation using an open finger vein sensor. In Proceedings of the 2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS), Rome, Italy, 17 October 2014; pp. 30–35. [Google Scholar]
- Asaari, M.S.M.; Suandi, S.A.; Rosdi, B.A. Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics. Expert Syst. Appl. 2014, 41, 3367–3382. [Google Scholar] [CrossRef]
- Raghavendra, R.; Raja, K.B.; Surbiryala, J.; Busch, C. A low-cost multimodal biometric sensor to capture finger vein and fingerprint. In Proceedings of the IEEE International Joint Conference on Biometrics, Clearwater, FL, USA, 29 September–2 October 2014; pp. 1–7. [Google Scholar]
- Sequeira, A.F.; Chen, L.; Ferryman, J.; Galdi, C.; Chiesa, V.; Dugelay, J.L.; Maik, P.; Gmitrowicz, P.; Szklarski, L.; Prommegger, B.; et al. PROTECT multimodal DB: Fusion evaluation on a novel multimodal biometrics dataset envisaging border control. In Proceedings of the 2018 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 26–28 September 2018; pp. 1–5. [Google Scholar]
- Qiu, X.; Kang, W.; Tian, S.; Jia, W.; Huang, Z. Finger vein presentation attack detection using total variation decomposition. IEEE Trans. Inf. Forensics Secur. 2017, 13, 465–477. [Google Scholar] [CrossRef]
- Prommegger, B.; Kauba, C.; Uhl, A. Multi-perspective finger-vein biometrics. In Proceedings of the 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), Redondo Beach, CA, USA, 22–25 October 2018; pp. 1–9. [Google Scholar]
- Prommegger, B.; Kauba, C.; Uhl, A. Longitudinal Finger Rotation in Finger-Vein Recognition. In Proceedings of the 2018 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 26–28 September 2018; pp. 1–8. [Google Scholar]
- Kang, W.; Liu, H.; Luo, W.; Deng, F. Study of a full-view 3D finger vein verification technique. IEEE Trans. Inf. Forensics Secur. 2019, 15, 1175–1189. [Google Scholar] [CrossRef]
- Khodadoust, J.; Medina-Pérez, M.A.; Monroy, R.; Khodadoust, A.M.; Mirkamali, S.S. A multibiometric system based on the fusion of fingerprint, finger-vein, and finger-knuckle-print. Expert Syst. Appl. 2021, 176, 114687. [Google Scholar] [CrossRef]
- Thorlabs. FEL0650 Additional Info; Thorlabs: Newton, NJ, USA, 2022; Available online: https://www.thorlabs.com (accessed on 9 February 2023).
- NXP Semiconductors. 16-Channel, 12-bit PWM Fm+ I2C-bus LED Controller; NXP Semiconductors: Eindhoven, The Netherlands, 2015. [Google Scholar]
- Diodes Incorporate. BSS138 N-Channel Enhancement Mode Mosfet; Diodes Incorporated: Plano, TX, USA, 2021. [Google Scholar]
- Microchip Technology Inc. MCP23017 16-Bit IO Expander with Serial Interface; Microchip Technology Inc.: Chandler, AZ, USA, 2016. [Google Scholar]
- Vishay Semiconductors. TSHG5510 High Speed Infrared Emitting Diode, 830 nm, GaAlAs Double Hetero; Vishay Semiconductors: Malvern, PA, USA; Available online: https://www.worldwayelec.com (accessed on 9 February 2023).
- STMicroelectronics. M41T00 Serial Real-Time Clock; STMicroelectronics: Geneva, Switzerland, 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Robbins, H. A Stochastic Approximation Method. Ann. Math. Stat. 2007, 22, 400–407. [Google Scholar] [CrossRef]
- Popowicz, A.; Radlak, K.; Lasota, S.; Szczepankiewicz, K.; Szczepankiewicz, M. Combating Label Noise in Image Data Using MultiNET Flexible Confident Learning. Appl. Sci. 2022, 12, 6842. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiolka, J.; Bernacki, K.; Farah, A.; Popowicz, A. Multi-Wavelength Biometric Acquisition System Utilizing Finger Vasculature NIR Imaging. Sensors 2023, 23, 1981. https://doi.org/10.3390/s23041981
Fiolka J, Bernacki K, Farah A, Popowicz A. Multi-Wavelength Biometric Acquisition System Utilizing Finger Vasculature NIR Imaging. Sensors. 2023; 23(4):1981. https://doi.org/10.3390/s23041981
Chicago/Turabian StyleFiolka, Jerzy, Krzysztof Bernacki, Alejandro Farah, and Adam Popowicz. 2023. "Multi-Wavelength Biometric Acquisition System Utilizing Finger Vasculature NIR Imaging" Sensors 23, no. 4: 1981. https://doi.org/10.3390/s23041981
APA StyleFiolka, J., Bernacki, K., Farah, A., & Popowicz, A. (2023). Multi-Wavelength Biometric Acquisition System Utilizing Finger Vasculature NIR Imaging. Sensors, 23(4), 1981. https://doi.org/10.3390/s23041981