FlyDetector—Automated Monitoring Platform for the Visual–Motor Coordination of Honeybees in a Dynamic Obstacle Scene Using Digital Paradigm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Visual Disturbance Stimulation System
2.2. Automatic Trigger Image Recording System
2.3. Insect Attitude and Obstacle Position Analysis System
2.4. The Virtual Mapping System
2.5. Operation Process Using the Platform
3. Experiments
3.1. Accuracy and Applicability Experiments of the Platform
3.2. Field Record Experiments of Honeybees
3.3. Data Analysis
4. Discussion
4.1. Accuracy and Applicability of the Platform
4.2. Field Record Experiments of Honeybees
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, G.-Z.; Bellingham, J.; Dupont, P.E.; Fischer, P.; Floridi, L.; Full, R.; Jacobstein, N.; Kumar, V.; McNutt, M.; Merrifield, R.; et al. The Grand Challenges of Science Robotics. Sci. Robot. 2018, 3, eaar7650. [Google Scholar] [CrossRef]
- van Breugel, F.; Dickinson, M.H. The Visual Control of Landing and Obstacle Avoidance in the Fruit Fly Drosophila Melanogaster. J. Exp. Biol. 2012, 215 Pt 11, 1783–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olberg, R.M.; Worthington, A.H.; Venator, K.R. Prey Pursuit and Interception in Dragonflies. J. Comp. Physiol. A 2000, 186, 155–162. [Google Scholar] [CrossRef] [PubMed]
- BRADY, J. Flying Mate Detection and Chasing by Tsetse Flies (Glossina). Physiol. Entomol. 2008, 16, 153–161. [Google Scholar] [CrossRef]
- Makarova, A.A.; Polilov, A.A.; Chklovskii, D.B. Small Brains for Big Science. Curr. Opin. Neurobiol. 2021, 71, 77–83. [Google Scholar] [CrossRef]
- Egelhaaf, M.; Kern, R.; Lindemann, J.P.; Braun, E.; Geurten, B. Active Vision in Blowflies: Strategies and Mechanisms of Spatial Orientation; Floreano, D., Zufferey, J.-C., Srinivasan, M.V., Ellington, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 51–61. [Google Scholar] [CrossRef]
- Brebner, J.; Chittka, L. Animal cognition: The self-image of a bumblebee. Curr. Biol. 2021, 31, R207–R209. [Google Scholar] [CrossRef]
- Egelhaaf, M.; Boeddeker, N.; Kern, R.; Kurtz, R.; Lindemann, J. Spatial Vision in Insects Is Facilitated by Shaping the Dynamics of Visual Input through Behavioral Action. Front. Front. Neural Circuits 2012, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Croon, G.; Dupeyroux, J.; Fuller, S.; Marshall, J. Insect-Inspired AI for Autonomous Robots. Sci. Robot. 2022, 7, eabl6334. [Google Scholar] [CrossRef]
- Naik, H.; Bastien, R.; Navab, N.; Couzin, I.D. Animals in virtual environments. IEEE Trans. Vis. Comput. Graph. 2020, 26, 2073–2083. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, S. Assessing Insect Flight Behavior in the Laboratory: A Primer on Flight Mill Methodology and What Can Be Learned. Ann. Entomol. Soc. Am. 2019, 112, 182–199. [Google Scholar] [CrossRef] [Green Version]
- Kócsi, Z.; Murray, T.; Dahmen, H.; Narendra, A.; Zeil, J. The Antarium: A Reconstructed Visual Reality Device for Ant Navigation Research. Front. Behav. Neurosci. 2020, 14, 599374. [Google Scholar] [CrossRef] [PubMed]
- Lawson, K.K.K.; Srinivasan, M.V. A Robust Dual-Axis Virtual Reality Platform for Closed-Loop Analysis of Insect Flight. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 262–267. [Google Scholar] [CrossRef]
- Dill, M.; Wolf, R.; Heisenberg, M. Visual pattern recognition in Drosophila involves retinotopic matching. Nature 1993, 365, 751–753. [Google Scholar] [CrossRef]
- Ravi, S.; Bertrand, O.; Siesenop, T.; Manz, L.-S.; Doussot, C.; Fisher, A.; Egelhaaf, M. Gap Perception in Bumblebees. J. Exp. Biol. 2019, 222, jeb184135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertrand, O.; Doussot, C.; Siesenop, T.; Ravi, S.; Egelhaaf, M. Visual and Movement Memories Steer Foraging Bumblebees along Habitual Routes. J. Exp. Biol. 2021, 224, jeb237867. [Google Scholar] [CrossRef]
- Liu, Y.; Lozano, A.D. Investigate the Wake Flow on Houseflies with Particle-Tracking-Velocimetry and Schlieren Photography. J. Bionic Eng. 2023, 20, 656–667. [Google Scholar] [CrossRef]
- Sledević, T.; Plonis, D. Toward Bee Behavioral Pattern Recognition on Hive Entrance using YOLOv8. In Proceedings of the 2023 IEEE 10th Jubilee Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 27–29 April 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Baird, E.; Dacke, M. Finding the Gap: A Brightness-Based Strategy for Guidance in Cluttered Environments. Proc. R. Soc. B Biol. Sci. 2016, 283, 20152988. [Google Scholar] [CrossRef]
- Ravi, S.; Siesenop, T.; Bertrand, O.; Li, L.; Doussot, C.; Warren, W.; Combes, S.; Egelhaaf, M. Bumblebees Perceive the Spatial Layout of Their Environment in Relation to Their Body Size and Form to Minimize Inflight Collisions. Proc. Natl. Acad. Sci. USA 2020, 117, 31494–31499. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital Twin Paradigm: A Systematic Literature Review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- Dyer, A.G.; Spaethe, J.; Prack, S. Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J. Comp. Physiol. A 2008, 194, 617. [Google Scholar] [CrossRef]
- Brutzer, S.; Hoferlin, B.; Heidemann, G. Evaluation of Background Subtraction Techniques for Video Surveillance. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1937–1944. [Google Scholar] [CrossRef]
- Ribak, G.; Barkan, S.; Soroker, V. The Aerodynamics of Flight in an Insect Flight-Mill. PLoS ONE 2017, 12, e0186441. [Google Scholar] [CrossRef] [Green Version]
- Baird, E.; Srinivasan, M.; Zhang, S.; Cowling, A. Visual Control of Flight Speed in Honeybees. J. Exp. Biol. 2005, 208, 3895–3905. [Google Scholar] [CrossRef] [Green Version]
- Crall, J.; Ravi, S.; Mountcastle, A.; Combes, S. Bumblebee Flight Performance in Cluttered Environments: Effects of Obstacle Orientation, Body Size and Acceleration. J. Exp. Biol. 2015, 218, 2728–2737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Moël, F.; Wystrach, A. Opponent Processes in Visual Memories: A Model of Attraction and Repulsion in Navigating Insects’ Mushroom Bodies. PLoS Comput. Biol. 2020, 16, e1007631. [Google Scholar] [CrossRef] [Green Version]
- Fotowat, H.; Gabbiani, F. Collision Detection as a Model for Sensory-Motor Integration. Annu. Rev. Neurosci. 2011, 34, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ong, M.; Bulmer, M.; Groening, J.; Srinivasan, M. Obstacle Traversal and Route Choice in Flying Honeybees: Evidence for Individual Handedness. PLoS ONE 2017, 12, e0184343. [Google Scholar] [CrossRef] [Green Version]
- Lecoeur, J.; Dacke, M.; Floreano, D.; Baird, E. The Role of Optic Flow Pooling in Insect Flight Control in Cluttered Environments. Sci. Rep. 2019, 9, 7707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Lu, G.; Zhao, W.; Zhang, X.; Jiang, J.; Xing, Q. FlyDetector—Automated Monitoring Platform for the Visual–Motor Coordination of Honeybees in a Dynamic Obstacle Scene Using Digital Paradigm. Sensors 2023, 23, 7073. https://doi.org/10.3390/s23167073
Huang Y, Lu G, Zhao W, Zhang X, Jiang J, Xing Q. FlyDetector—Automated Monitoring Platform for the Visual–Motor Coordination of Honeybees in a Dynamic Obstacle Scene Using Digital Paradigm. Sensors. 2023; 23(16):7073. https://doi.org/10.3390/s23167073
Chicago/Turabian StyleHuang, Yuanyuan, Guyue Lu, Wei Zhao, Xinyao Zhang, Jiawen Jiang, and Qiang Xing. 2023. "FlyDetector—Automated Monitoring Platform for the Visual–Motor Coordination of Honeybees in a Dynamic Obstacle Scene Using Digital Paradigm" Sensors 23, no. 16: 7073. https://doi.org/10.3390/s23167073