Affective Impressions Recognition under Different Colored Lights Based on Physiological Signals and Subjective Evaluation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Setup
2.2. Stimulus
2.3. Participants
2.4. Data Acquisition
2.5. Procedure
3. Results
3.1. GSR Data Analysis and Results
3.2. ECG Data Analysis and Results
3.3. Self-Reported Data Analysis and Results
3.3.1. Colored Lights and Mood
3.3.2. Colored Light and Impressions
3.4. Pearson Correlations between GSR Data, ECG Data, and Self-Reported Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, N.; Azaria, A.; Paradiso, J.A. Mediated atmospheres: A multimodal mediated work environment. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 1–23. [Google Scholar] [CrossRef]
- Ru, T.; Smolders, K.C.; Chen, Q.; Zhou, G.; de Kort, Y.A. Diurnal effects of illuminance on performance: Exploring the moderating role of cognitive domain and task difficulty. Light. Res. Technol. 2021, 53, 727–747. [Google Scholar] [CrossRef]
- Kuijsters, A.; Redi, J.; de Ruyter, B.; Heynderickx, I. Lighting to make you feel better: Improving the mood of elderly people with affective ambiences. PLoS ONE 2015, 10, e0132732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Ru, T.; Chen, Q.; Qian, L.; Luo, X.; Zhou, G. Effects of illuminance and correlated color temperature of indoor light on emotion perception. Sci. Rep. 2021, 11, 14351. [Google Scholar] [CrossRef] [PubMed]
- Siraji, M.A.; Kalavally, V.; Schaefer, A.; Haque, S. Effects of daytime electric light exposure on human alertness and higher cognitive functions: A systematic review. Front. Psychol. 2022, 12, 6079. [Google Scholar] [CrossRef]
- Lee, H.; Lee, E. Effects of coloured lighting on pleasure and arousal in relation to cultural differences. Light. Res. Technol. 2022, 54, 145–162. [Google Scholar] [CrossRef]
- Durak, A.; Olguntürk, N.C.; Yener, C.; Güvenç, D.; Gürçınar, Y. Impact of lighting arrangements and illuminances on different impressions of a room. Build. Environ. 2007, 42, 3476–3482. [Google Scholar] [CrossRef] [Green Version]
- Schielke, T. Interpreting art with light: Museum lighting between objectivity and hyperrealism. Leukos 2020, 16, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Pridmore, R.W. Preferred illumination for paintings: Cool–warm balanced colour temperature predicted from radiometry and colorimetry. Light. Res. Technol. 2017, 49, 618–631. [Google Scholar] [CrossRef]
- Pelowski, M.; Graser, A.; Specker, E.; Forster, M.; von Hinüber, J.; Leder, H. Does gallery lighting really have an impact on appreciation of art? An ecologically valid study of lighting changes and the assessment and emotional experience with representational and abstract paintings. Front. Psychol. 2019, 10, 2148. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Pal, S. Effect of color temperature on appearance of paintings exhibited under LED lighting. Color Res. Appl. 2019, 44, 762–771. [Google Scholar] [CrossRef]
- Feltrin, F.; Leccese, F.; Hanselaer, P.; Smet, K.A. Impact of illumination correlated color temperature, background lightness, and painting color content on color appearance and appreciation of paintings. Leukos 2020, 16, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Nagai, Y.; Liu, J.; Zou, N.; Liang, J. Artificial lighting environment evaluation of the japan museum of art based on the emotional response of observers. Appl. Sci. 2020, 10, 1121. [Google Scholar] [CrossRef] [Green Version]
- de Kort, Y.A. Tutorial: Theoretical considerations when planning research on human factors in lighting. Leukos 2019, 15, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Allan, A.C.; Garcia-Hansen, V.; Isoardi, G.; Smith, S.S. Subjective assessments of lighting quality: A measurement review. Leukos 2019, 15, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Shu, L.; Xie, J.; Yang, M.; Li, Z.; Li, Z.; Liao, D.; Xu, X.; Yang, X. A review of emotion recognition using physiological signals. Sensors 2018, 18, 2074. [Google Scholar] [CrossRef] [Green Version]
- Raheel, A.; Majid, M.; Alnowami, M.; Anwar, S.M. Physiological sensors based emotion recognition while experiencing tactile enhanced multimedia. Sensors 2020, 20, 4037. [Google Scholar] [CrossRef]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap: A database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 2011, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Sato, W.; Kochiyama, T. Exploration of Emotion Dynamics Sensing Using Trapezius EMG and Fingertip Temperature. Sensors 2022, 22, 6553. [Google Scholar] [CrossRef]
- Sharma, K.; Castellini, C.; van den Broek, E.L.; Albu-Schaeffer, A.; Schwenker, F. A dataset of continuous affect annotations and physiological signals for emotion analysis. Sci. Data 2019, 6, 196. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Khasnobish, A.; Tibarewala, D.N. Emotion recognition employing ECG and GSR signals as markers of ANS. In Proceedings of the 2016 Conference on Advances in Signal Processing (CASP) 2016, Pune, India, 9–11 June 2016. [Google Scholar] [CrossRef]
- Goshvarpour, A.; Abbasi, A.; Goshvarpour, A. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method. Biomed. J. 2017, 40, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Kołakowska, A.; Szwoch, W.; Szwoch, M. A review of emotion recognition methods based on data acquired via smartphone sensors. Sensors 2020, 20, 6367. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Cai, J.; Fang, H.; Tang, X.; Yamanaka, T. Effects of colored lights on an individual’s affective impressions in the observation process. Front. Psychol. 2022, 13, 938636. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiang, K.; Hu, H.; Kuang, H.; Yang, J.; Luo, J.; Chen, X.; Li, Y. Emotion recognition based on skin potential signals with a portable wireless device. Sensors 2021, 21, 1018. [Google Scholar] [CrossRef] [PubMed]
- Herring, N.; Kalla, M.; Paterson, D.J. The autonomic nervous system and cardiac arrhythmias: Current concepts and emerging therapies. Nat. Rev. Cardiol. 2019, 16, 707–726. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 1985, 230–236. [Google Scholar] [CrossRef]
- Fariha, M.A.Z.; Ikeura, R.; Hayakawa, S.; Tsutsumi, S. Analysis of Pan-Tompkins algorithm performance with noisy ECG signals. J. Phys. Conf. Ser. 2020, 1532, 012022. [Google Scholar] [CrossRef]
- MacPherson, M.K.; Abur, D.; Stepp, C.E. Acoustic measures of voice and physiologic measures of autonomic arousal during speech as a function of cognitive load. J. Voice 2017, 31, 504.e1–504.e9. [Google Scholar] [CrossRef]
- Monajati, M.; Abbasi, S.H.; Shabaninia, F.; Shamekhi, S. Emotions states recognition based on physiological parameters by employing of fuzzy-adaptive resonance theory. Int. J. Intell. Sci. 2012, 2, 166–175. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J.; Canazza, S.; Chmiel, A.; De Poli, G.; Houbert, E.; Murari, M.; Rodà, A.; Schubert, E.; Zhang, J.D. Illuminating music: Impact of color hue for background lighting on emotional arousal in piano performance videos. Front. Psychol. 2022, 13, 828699. [Google Scholar] [CrossRef]
- Babin, B.J.; Hardesty, D.M.; Suter, T.A. Color and shopping intentions: The intervening effect of price fairness and perceived affect. J. Bus. Res. 2003, 56, 541–551. [Google Scholar] [CrossRef]
- Yildirim, K.E.M.A.L.; Akalin-Baskaya, A.; Hidayetoglu, M.L. Effects of indoor color on mood and cognitive performance. Build. Environ. 2007, 42, 3233–3240. [Google Scholar] [CrossRef]
- Odabaşioğlu, S.; Olguntürk, N. Effects of coloured lighting on the perception of interior spaces. Percept. Mot. Ski. 2015, 120, 183–201. [Google Scholar] [CrossRef]
- Iigaya, K.; Yi, S.; Wahle, I.A.; Tanwisuth, K.; O’Doherty, J.P. Aesthetic preference for art can be predicted from a mixture of low-and high-level visual features. Nat. Hum. Behav. 2021, 5, 743–755. [Google Scholar] [CrossRef]
- Berlyne, D.E. Uncertainty and conflict: A point of contact between information-theory and behavior-theory concepts. Psychol. Rev. 1957, 64, 329. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.E.; Schloss, K.B.; Sammartino, J. Visual aesthetics and human preference. Annu. Rev. Psychol. 2013, 64, 77–107. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, A.R.; Sefranek, M.; Fellows, L.K. Ventromedial frontal lobe damage alters how specific attributes are weighed in subjective valuation. Cereb. Cortex 2018, 28, 3857–3867. [Google Scholar] [CrossRef]
- Poh, M.Z.; Swenson, N.C.; Picard, R.W. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Eng. 2010, 57, 1243–1252. [Google Scholar]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef] [Green Version]
Eight Mood States of the Two-Dimensional Mood Scale (TDMS) | |||
---|---|---|---|
M1 | calm | M2 | irritated |
M3 | lethargic | M4 | energetic |
M5 | relaxed | M6 | nervous |
M7 | listless | M8 | lively |
Four Levels Based on TDMS ScoresCalculation Results | |||
V | vitality | V = M4 + M8 − M3 − M7 | |
S | stability | S = M1 + M5 − M2 − M6 | |
P | pleasure | P = V + S | |
A | arousal | A = V − S |
Five Questions of the Impressions Evaluation Scale | ||
---|---|---|
Q1 | preference | How much do you like this image? |
Q2 | interest | How interesting is this image? |
Q3 | understanding | How well do you understand this image? |
Q4 | imagination | Is this work arousing more imagination for you? |
Q5 | feelings | Does this image arouse more feelings for you? |
Red Light | Blue Light | Green Light | Yellow Light | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | ↑ or ↓ | Pre | Post | ↑ or ↓ | Pre | Post | ↑ or ↓ | Pre | Post | ↑ or ↓ | ||
M1 | M | 2.79 | 2.21 | ↓ * p = 0.046 | 3.93 | 3.5 | 3.62 | 2.93 | 3.07 | 3 | |||
SD | 1.188 | 1.051 | 0.829 | 1.092 | 1.193 | 1.439 | 1.269 | 1.24 | |||||
M2 | M | 0.79 | 2.5 | ↑ ** p = 0.002 | 0.86 | 1.21 | 0.77 | 1.71 | 1.07 | 1.43 | |||
SD | 0.975 | 1.345 | 1.231 | 1.188 | 1.166 | 1.49 | 1.492 | 1.399 | |||||
M3 | M | 0.93 | 1.71 | 0.71 | 0.86 | 1 | 1.79 | ↑ * p = 0.032 | 0.57 | 1.43 | |||
SD | 0.917 | 1.267 | 1.326 | 0.663 | 1.155 | 1.578 | 0.938 | 1.399 | |||||
M4 | M | 2.64 | 1.57 | ↓ ** p = 0.009 | 2.57 | 1.5 | ↓ * p = 0.043 | 2.77 | 1.5 | ↓ ** p = 0.008 | 2.93 | 3.546 | ↑ * p = 0.018 |
SD | 1.151 | 0.938 | 1.222 | 1.092 | 1.013 | 1.286 | 1.269 | 1.437 | |||||
M5 | M | 3.21 | 1.5 | ↓ ** p = 0.006 | 3.57 | 2.07 | ↓ * p = 0.011 | 3.46 | 1.71 | ↓ ** p = 0.004 | 3.43 | 2.57 | |
SD | 0.893 | 1.16 | 1.016 | 1.141 | 0.967 | 1.267 | 1.089 | 1.399 | |||||
M6 | M | 0.71 | 2.5 | ↑ ** p = 0.003 | 0.64 | 2.21 | ↑ ** p = 0.005 | 0.77 | 2.29 | ↑ * p = 0.021 | 0.93 | 1.79 | |
SD | 0.726 | 1.225 | 1.016 | 1.141 | 0.725 | 1.49 | 0.997 | 1.528 | |||||
M8 | M | 2.86 | 1.43 | ↓ ** p = 0.004 | 2.07 | 0.93 | ↓ * p = 0.011 | 2 | 1.36 | 2.21 | 1.5 | ||
SD | 1.406 | 0.852 | 1.016 | 1.141 | 1.155 | 1.008 | 1.626 | 1.286 | |||||
V | M | 3.36 | −0.43 | ↓ ** p = 0.003 | 3.07 | 0.36 | 2.21 | −0.64 | 3.5 | 0.21 | ↓ * p = 0.042 | ||
SD | 3.296 | 3.131 | 3.689 | 2.24 | 3.332 | 4.325 | 3.546 | 3.423 | |||||
S | M | 4.5 | −1.29 | ↓ ** p = 0.002 | 6 | 2.5 | ↓ * p = 0.018 | 5.14 | 0.64 | ↓ * p = 0.013 | 4.5 | 2.36 | |
SD | 2.504 | 3.496 | 2.219 | 3.92 | 3.278 | 5.032 | 2.902 | 4.798 | |||||
p | M | 7.86 | −0.43 | ↓ ** p = 0.002 | 9.07 | 2.5 | ↓ * p = 0.020 | 7.36 | 0 | ↓ * p = 0.035 | 8 | 2.57 | |
SD | 4.622 | 5.413 | 5.298 | 4.637 | 5.611 | 8.357 | 5.477 | 6.618 |
GSR-Max | ΔGSR | |
---|---|---|
HF | −0.292 *** | - |
LF | −0.276 *** | - |
LF/HF | - | −0.194 *** |
GSR-Max | ΔGSR | LF/HF | ΔHF | ΔLF | |
---|---|---|---|---|---|
interest | - | - | −0.145 * | - | - |
understanding | - | - | - | −0.159 ** | −0.142 * |
imagination | 0.205 *** | - | - | - | - |
feelings | 0.173 ** | −0.132 ** | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Cai, J.; Fang, H.; Wang, B.; He, H.; Zhou, Y.; Xiao, Y.; Yamanaka, T.; Li, X. Affective Impressions Recognition under Different Colored Lights Based on Physiological Signals and Subjective Evaluation Method. Sensors 2023, 23, 5322. https://doi.org/10.3390/s23115322
Xie X, Cai J, Fang H, Wang B, He H, Zhou Y, Xiao Y, Yamanaka T, Li X. Affective Impressions Recognition under Different Colored Lights Based on Physiological Signals and Subjective Evaluation Method. Sensors. 2023; 23(11):5322. https://doi.org/10.3390/s23115322
Chicago/Turabian StyleXie, Xing, Jun Cai, Hai Fang, Beibei Wang, Huan He, Yuanzhi Zhou, Yang Xiao, Toshimasa Yamanaka, and Xinming Li. 2023. "Affective Impressions Recognition under Different Colored Lights Based on Physiological Signals and Subjective Evaluation Method" Sensors 23, no. 11: 5322. https://doi.org/10.3390/s23115322
APA StyleXie, X., Cai, J., Fang, H., Wang, B., He, H., Zhou, Y., Xiao, Y., Yamanaka, T., & Li, X. (2023). Affective Impressions Recognition under Different Colored Lights Based on Physiological Signals and Subjective Evaluation Method. Sensors, 23(11), 5322. https://doi.org/10.3390/s23115322