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Abstract: Epilepsy is a nervous system disorder. Encephalography (EEG) is a generally utilized
clinical approach for recording electrical activity in the brain. Although there are a number of da-
tasets available, most of them are imbalanced due to the presence of fewer epileptic EEG signals
compared with non-epileptic EEG signals. This research aims to study the possibility of integrating
local EEG signals from an epilepsy center in King Abdulaziz University hospital into the CHB-MIT
dataset by applying a new compatibility framework for data integration. The framework comprises
multiple functions, which include dominant channel selection followed by the implementation of a
novel algorithm for reading XLtek EEG data. The resulting integrated datasets, which contain se-
lective channels, are tested and evaluated using a deep-learning model of 1D-CNN, Bi-LSTM, and
attention. The results achieved up to 96.87% accuracy, 96.98% precision, and 96.85% sensitivity,
outperforming the other latest systems that have a larger number of EEG channels.
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1. Introduction

Epilepsy is a neurological disorder that affects children and adults. It can be char-
acterized by sudden recurrent epileptic seizures [1]. This seizure disorder is basically a
temporary, brief disturbance in the electrical activity of a set of brain cells [2]. The exces-
sive electrical activity inside the networks of neurons in the brain will cause epileptic
seizures [3]. These seizures result in involuntary movements that may include part of the
body (partial movement) or the whole body (generalized movement) and are sometimes
accompanied by disturbances of sensation (involving hearing, vision, and taste), cogni-
tive functions, mood, or may cause loss of consciousness [2]. The frequency of seizures
varies from patient to patient, ranging from less than once a year to several times a day.
Active epilepsy patients have a mortality proportion of 4-5 times greater than sei-
zure-free people [4]. However, effective medical therapy that is individualized for each
individual patient helps to lower the risk of mortality. Reduced mortality can be
achieved by objectively quantifying both seizures and the response to therapy [5].

The seizure detection modality uses an electroencephalogram (EEG) [6]. Signals
monitor the brain’s electrical activity through electrodes. An electrode is a small metal
disc that attaches to the scalp to capture the brainwave activity through the EEG channel,
which, depending upon the EEG recording system, can range from 1 channel to 256
channels. EEG signals are in the form of sinusoidal waves with different frequencies that
neurophysiologists use to identify brain abnormalities. One major challenge that neu-
rologists face is the presence of EEG signal artifacts. EEG signals overlapped with other
internal and external bio-signals cause artifacts that mimic the EEG seizure signal and
thus give false data. Some examples include eye movement, cardiogenic movement,
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muscle movement, or environmental noise [7]. Table 1 illustrates the frequency bands of
EEG signals with normal and abnormal tasks affecting each band. Neurophysiologists
need to collect an extensive amount of long-term EEG signals in order to detect seizures
through visual analysis of these signals in a time-consuming manual process.

Table 1. The frequency bands of EEG signals [8].

Frequency Bandwidth Normal Tasks Abnormal Tasks
0.1-4Hz  Delta (d) sleep, artifacts, hyperventilation structural lesion, seizures, encephalopathy
4-8 Hz Theta (0) drowsiness, idling encephalopathy
8-12Hz  Alpha(x) closing the eyes, inhabitation coma, seizures
12-30 Hz Beta (3) effect of medication, drowsiness drug overdose, seizures
30-70 Hz Gamma (y) voluntary motor movement, learning and memory seizures

There is a current, urgent need to develop a generalized automatic seizure detection
system that provides precise seizure quantification, allowing neurophysiologists to ob-
jectively tailor treatment. Developing such a system is challenging because the available
datasets are mostly imbalanced; the number of non-seizure EEG signals is larger than the
number of EEG seizure signals in the datasets [9]. This imbalanced dataset issue can have
a major negative impact on classification performance [10].

This research proposes a compatibility framework to integrate local EEG data from
an epilepsy center at King Abdulaziz University hospital (KAU) with the CHB-MIT da-
taset [11] to solve the problem of limited resources and imbalanced data. It also proposes
an algorithm for reading XLtek EEG data, incorporated into the proposed framework,
thus allowing researchers to analyze this type of EEG signal for which no auxiliary ana-
lytical tools are available in the dedicated packages. Finally, a deep-learning sei-
zure-detection model based on selected EEG channels has been developed. The results
show that the proposed method outperforms other models that rely on using a larger
number of EEG channels to detect epileptic seizures.

The CHB-MIT dataset was chosen as it has the same type of scalp EEG recordings
and annotations as the KAU local dataset. Additionally, the CHB-MIT has recordings
from all parts of the brain that contain similar seizure types as those in the KAU dataset,
such as clonic, tonic, and atonic seizures.

The rest of the paper is organized as follows: Section 2 presents the state-of-the-art
seizure detection systems. In Section 3, the datasets that were used in the research are
described. Section 4 explains the proposed approaches. The evaluation of each approach
over the CHB-MIT benchmark EEG dataset with the KAU dataset, along with the results
of classification and effectiveness are presented in Section 5. Section 6 concludes the pa-
per and suggests topics for future work.

2. Related Works

Many studies concentrate on intracranial brain signals, in which electrodes are
placed inside the skull directly on the brain. Antoniades et al. [12] used convolutional
neural networks (CNN) applied with two convolutional layers on intracranial EEG data
to extract the features of interictal epileptic discharge (IED) waveforms. The system di-
vided the data into several 80 ms segments with 40 ms of overlap, and achieved a detec-
tion rate of 87.51%.

Birjandtalab et al. [9] employed Fourier transform with deep neural networks
(DNN) to classify the signals by applying the transform first on the obtained alpha, beta,
gamma, delta, and theta as well as on the individual windows in order to calculate the
power spectrum density that measures the signal power as a function of frequency. Then,
DNN based on multilayer perceptrons with only two hidden layers was used to classify
the signals. To avoid the overfitting problem, a few hidden layers were applied. The
system achieved an accuracy of 95%.
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Seizure detection systems rely on the type of EEG data. Some of these systems detect
epileptic seizures coming from only one channel, while others can detect epileptic sei-
zures from multiple channels. ChannelAtt [13] is a novel channel-aware attention
framework that adopts fully connected multi-view learning to soft-select critical views
from multivariate bio signals. This model implements a new technique that relies on
global attention in the view domain rather than the time domain. The system achieved a
96.61% accuracy rate.

Some studies performed feature learning by training the deep-learning model di-
rectly on EEG signals. Ihsan Ullah et al. [14] used a pyramidal 1D-CNN framework to
reduce the amount of memory and the detection time. The final result used the voting
approach for post-processing. To overcome the bottleneck of the requirement of training
a huge amount of data, they performed data augmentation using overlapping windows.
The system reached 99% accuracy.

Zabihi et al. [15] developed a system that combines non-linear dynamics (NLD) and
linear discriminant analysis (LDA) for extracting the features and introduced the concept
of nullclines to extract the discriminant features. The system employs artificial neural
network (ANN) for classification. The yielded accuracy for the model was 95.11%. To
mimic the real-world clinical situation, only 25% of the dataset was used for training. The
results showed that the false negative rate was relatively high as a result of using a lim-
ited dataset for training. The sensitivity rates are considered too low for practical clinical
use.

Likewise, Avcu et al. [16] used a deep CNN algorithm on the EEG signals of 29 pe-
diatric patients from KK Women’s and Children’s Hospital, Singapore. The researchers
tried to minimize the number of channels in recorded EEG data to two channels only, Fp1
and Fp2. This data consists of 1037 min, of which only 25 min contain epileptic signals
distributed over 120 seizure onsets. As seen, the data is not balanced. To overcome this
problem, the researchers attempted to use various overlapping proportion techniques
according to the seizures’ presence or absence by applying two shifting processes. The
first one takes 5 s to create an interictal class (without overlapping). The second one takes
0.075 s to create an ictal class. These shifting processes were applied to balance the input
data to the CNN. The system achieved an accuracy of 93.3%. However, the outcome of
the data augmentation technique was not mentioned in this research.

Hu et al. [17] used long-short-term memory (LSTM) as it is efficient on both
long-term and short-term dependencies in time series data. The authors developed the
model using Bi-LSTM. The authors extracted and fed the network with seven linear fea-
tures. The system was trained and tested on the Bonn University dataset, and it had a
98.56% accuracy. However, this reflects the accuracy of testing results, whereas the
evaluation results were not mentioned in this research.

Chandel et al. [18] proposed a patient-specific algorithm that is based on wave-
let-based features in order to detect onset-offset latency. The model operates by calcu-
lating statistical features such as mean, entropy, and energy over the wavelet sub-bands
and then classifying the EEG signals using a linear classifier. The developed algorithm
achieved an average accuracy of 98.60%. The algorithm was tested on 14 out of 23 pa-
tients in the dataset. Although the algorithm is patient-specific, its performance degraded
significantly for patient 7, who had a very short seizure duration compared with the re-
maining patients; the number of seizures for this patient was 10, with a total duration of
94 s. This means that the algorithm performs well if the duration of the seizure is long,
but falls significantly if the seizure is short.

Kaziha et al. [19] suggested using a model proposed in a previous study applied to
the CHB-MIT dataset and tweaked to enhance performance. The model is based on five
CNN layers, each of which is followed by a batch normalization and an average pooling
layer, respectively. Finally, the model has three dense layers to detect the signal class.
However, the performance chart of training and testing accuracy is an obvious indicator
of the overfitting of a network, which can be seen from the sensitivity score. This is due to
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the imbalance of the dataset, as the number of epileptic signals is significantly lower than
the number of non-epileptic signals, and therefore requires the use of a data augmenta-
tion scheme.

Huang et al. [20] suggested a three-part hybrid framework. The first part extracts the
hand-crafted features and converts them into sparse categorical features, while the sec-
ond part is based on a neural network architecture with the original signals as input to
extract the deep features. Both types of extracted features are combined in the third and
final part of the model for classifying the EEG signals into seizure and non-seizure. The
model achieved a sensitivity score of 90.97%. It should be noted that the idea of the hy-
brid framework may achieve higher results if it enhances the output of the first part of the
model, which are the features manually extracted from the signals. This is accomplished
by using one of the feature-importance methods. A tree-based model is implemented to
infer the importance score of each feature based on the decision rules (or ensembles of
trees such as random forest) of the model.

Jeong et al. [21] implemented an attention-based deep-neural network to detect
seizures. The model is divided into three modules; the first module extracts the spatial
features, while the second module extracts the spatio-temporal features. The third mod-
ule is the attention mechanism for capturing the representations that take into account
the interactions among several variables at each point in time. The accuracy of the model
is 89% and the sensitivity is 94%. However, based on the performance metrics of the
model, the percentage of false negatives (FN), that is, the number of seizure signals that
were detected as non-seizure, was low, which is reflected in the high sensitivity score. In
contrast, the overall accuracy of the model was significantly lower compared with the
sensitivity score, which means that the number of false positives (FP) was high. FP counts
the number of non-seizure signals that were detected as seizures. Consequently, the
model focused on extracting the features that would clearly distinguish the seizure class
while not taking into consideration extracting the discriminative features for the
non-seizure class as well. The overall performance of the model was affected. Table 2
summarizes all the above-mentioned studies in this section.

Table 2. EEG-based epileptic seizure detection systems using deep-learning approaches.

., Published Window
Cite Year Approach Layers Dataset Channels  Accuracy Size
[12] 2016 CNN ,  King'sCollegeLondon ) o 1s 8751%  80ms

Hospital dataset
23 epileptic patients from
[9] 2017 Deep Neural Networks 4 Boston Children’s Ranges from 18 95% 10s
. to 23 channels
Hospital
23 channels (in
[13] 2018 Channel-aware Attention Framework 23 CHB-MIT dataset few cases 24 or  96.61% NA
26)
[14] 2018 Pyramidal one-dimensional CNN models 3 Bonn university dataset 1 channel 99% 10s
Nonlinear dynamics (NLD) with Linear Dis-
[15] 2019 criminant Analysis (LDA) and Artificial 5 CHB-MIT dataset 23 95.11% 1s
Neural Network (ANN)
29 pediatric patients from
KK'W ’s and Chil-
[16] 2019 Deep CNN 4 omen’s and Chi 2channels  933% 55
dren’s
Hospital, Singapore
[17] 2019 Deep Bi-LSTM Network 5 Bonn university dataset 1 channel 98.56% NA
. . 23 channels (in
(18] 2019 Discrete Wavelet Transform (DWT) +linear CHB-MIT dataset ~ few cases24or 98.60%  1s
classifier
26)
[19] 2020 CNN 18 CHB-MIT dataset 23 channels (in  96.74%  100s
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few cases 24 or
26)

[20]

2021

Gradient-Boosted Decision Trees (GBDT)
with Deep Neural Network (DNN)

23 channels (in
NA CHB-MIT dataset few cases 24 or NA 20s
26)

(21]

2021

23 channels (in
CNN 20 CHB-MIT dataset few cases24 or  89% NA
26)

Most of the mentioned studies use augmentation to solve the issue of an imbalanced
dataset. This research integrates two datasets using the intersection dominant channels
between those datasets, followed by a deep-learning model to test the performance of the
method.

3. Datasets

This section explains both the datasets that were used in the study. The first is the
CHB-MIT dataset [11] that was collected from 22 subjects: 5 males aged 3-22 and 17 fe-
males aged 1.5-19. The dataset contains 969 h of EEG recordings, while the number of
seizures is 198. The number of no-seizure signals exceeds the number of seizure signals.
The second dataset is the KAU dataset that was collected from 2 male subjects aged 28
with scalp EEG recordings where the sampling frequency is the same as the CHB-MIT
dataset, at 256 Hz. The age factor of the subjects was taken into consideration. The age of
these two patients approximates the age of subjects in the CHB-MIT dataset. Hence, the
range that was selected from both datasets was from 1-28. This is crucial as clinical and
electroencephalographic characteristics of seizures depend greatly on age [22]. Both
subjects have EEG recordings with 38 channels. One of them exhibited two seizures with
a total duration of 495 s, while the other subject exhibited four seizures with a total du-
ration of 417 s.

4. The Proposed System

This section is divided into two parts. The first part presents the compatibility
framework, while the second part presents the seizure detection system.

4.1. Compatibility Framework for Data Integration

The proposed system has a number of phases, including annotating the KAU da-
taset, selecting channels, and adjusting the channel montage, followed by a data prepa-
ration phase, which includes constructing metadata and reading EEG data. The third
data preprocessing phase includes removing missing values, signal decomposition using
the discrete wavelet transform (DWT), and scaling. Finally, the feature learning and
classification phase, which is accomplished by a deep-learning (DL) model that classifies
the EEG signals into seizure and non-seizure classes. Figure 1 illustrates the block dia-
gram of the proposed system. The system is programmed by Colab, which is a Python
development environment running on Google Cloud using the TensorFlow and Keras
frameworks.
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Figure 1. The proposed compatibility framework architecture.

Data Annotation of KAU Dataset: The data were annotated in collaboration with
the neurophysiologists and divided into categories: normal with open eyes, normal with
closed eyes, pre-ictal, ictal, post-ictal, inter-ictal, and artifacts. Table 3 describes these
categories.

Table 3. Description Of EEG Categories For Annotated Local Dataset.

Category Description

Open eyes EEG recording for a relaxed patient in awake state with eyes open
Closed eyes EEG recording of a relaxed or sleeping patient with eyes closed

Pre-ictal EEG recording for a patient in a state prior to epileptic seizure

Ictal EEG recording for a patient during epileptic seizures

Post-ictal EEG recording for a patient in a state posterior to epileptic seizure

Inter-ictal EEG recording for a patient in seizure-free interval between seizures

Artifacts Signals recorded by EEG that might mimic seizures but generated from outside the brain

Channels Selection: In the CHB-MIT dataset, eighteen channels are selected out of
twenty-three as these eighteen channels are the common channels among all the record-
ings. According to the distribution of electrode positions shown in Figure 2a, the adopted
eighteen channels are: (‘C3-P3’, ‘C4-P4’, ‘CZ-PZ’, 'F3-C3’, ‘F4-C4’, ‘F7-T7’, ‘F8-T§’,
‘FP1-F3’, ‘FP1-F7’, ‘FP2-F4’, 'FP2-F8', ‘FZ-CZ’, ‘P3-0O1’, ‘P4-O2’, ‘P7-0O1’, ‘P8-O2’, “T7-P7’,
‘T8-P8’). By comparing the KAU dataset with the CHB-MIT dataset in terms of the elec-
trode positions, as shown in Figure 2, it is clear that the electrode locations in the two
datasets are different. The majority of the electrodes in the CHB-MIT dataset are not
present in the KAU dataset. Consequently, work was undertaken to replace the electrode
that was not present with the nearest electrode in position as an alternative. The two da-
tasets agree in the following electrodes:
(‘C3-P3',/C4-P4’,/Cz-Pz’ /F3-C3’,'F4-C4’,'FP1-F3','FP1-F7’'FP2-F4’'/FP2-F8','Fz-Cz’,'P3-O
1’,/P4-02’). They differ in the rest of the electrodes. To demonstrate, the proposed system
replaces the following electrodes: (‘F7-T7" by ‘F7-T3’, ‘F8-T8 by ‘F8-T4’, 'P7-O1" by
‘T5-01’, ‘P8-02’ by “T6-02’, “T7-P7" by “T3-T5’, “T8-P8’ by "T4-T¢’).
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Figure 2. Schematic presentation of EEG electrode positions for: (a) CHB-MIT electrode positions
where the adopted electrodes are highlighted with the blue color; (b) KAU electrode positions.

Channels Montage: Montage refers to the arrangement of channels where the
channel is a pair of electrodes. The KAU dataset channels are arranged in a common
reference montage while the CHB-MIT dataset is bi-polar. The difference between these
two types of montage is that the common reference montage compares the signal at every
electrode position on the head to a single common reference electrode, whereas in the
bi-polar montage, the signal consists of the difference between two adjacent electrodes
[23]. To integrate both datasets, the proposed system changes the montage of the KAU
dataset to the bipolar montage.

Constructing Metadata: The CSV files that contain the metadata are created for each
patient. The metadata contains the file name, the recording start time, and the label given
to the recording, where a label of 1 indicates seizure and a label of 0 indicates no-seizure.
The EEG signal is divided for each seizure signal in each patient using a sliding window
technique. This technique is a standard technique that has been adopted in other studies
[24,25]. The sliding window technique with a fixed size was chosen to avoid the network
parameter bias that may occur if the input signals to the network have a different length.
The window size is n =10 s with an overlap of k = 1 s. This technique was used in the in-
cidence of a seizure EEG signal. In the case of the no-seizure EEG signal, there was no
need for the overlapping. The CHB-MIT dataset constitutes about 24,000 windows of
normal EEG records (no-seizure class) and about 434 windows of epilepsy EEG records
(seizure class) for training data before the overlapping. It also constitutes about 6000
windows of normal EEG records (no-seizure class) and about 108 windows of EEG rec-
ords (seizure class) for validation data prior to the overlapping. After the overlapping,
the training data was about 24,000 windows for the no-seizure class and 4344 windows
for the seizure class, whereas the validation data became 6000 windows for the
no-seizure class and about 1086 windows for the seizure class. The window size was
specifically chosen to be 10 s based on several factors. First, Table 4 shows the average
duration of one seizure for some subjects in the dataset. It shows that subject 7 has a short
average duration of a seizure compared with the remaining subjects in the dataset, as the
minimum exposure time for seizures is 10 s on average depending on the dataset. Sec-
ond, the model architecture is based on the use of the LSTM layer, with which the longer
the window length, the more difficult the training becomes. To avoid data leakage, two
points must be considered: (1) the dataset must be divided into training, validation, and
testing sets before applying the overlapping technique; and (2) the overlapping technique
must be applied to the data used for training only.
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Table 4. Seizure duration for a sample of subjects in the CHB-MIT dataset.

Subject No.  Total Number of Seizures Total Seizures Duration (Seconds) Average Seizure Duration (Seconds)
1 7 449 64.14
3 7 409 58.43
5 4 280 70
7 10 94 9.4
9 6 323 53.83

Reading EEG Data: The raw data and the metadata in CHB-MIT dataset are con-
nected and analyzed using the wonambi library. The collected KAU dataset contains
XLtek EEG data recorded using Natus Neuroworks. This type of EEG data consists of a
set of files with different formats, comprised of: eeg, ent, epo, erd, etc, sng, stc, vt2, and vtc.
The wonambi.ioeeg.ktlx module is used to ensure proper reading of the EEG signals. Algo-
rithm 1 illustrates how to read XLtek EEG data. Note that the duration of each epoch in the
proposed system is 10 s, comprising 46,080 samples.

Algorithm 1. READING XLTEK EEG DATA ALGORITHM.
Input: An EEG signal and the size of window in seconds
Output: Array of EEG data samples that constitute the epochs
1 FUNCTION get_epoch(s, min_secs = 10)
2 // Extracting signal start time, sample rate, channel names, and number of samples
3 start_time, s_rate, ch_names, n_samples < s.return_hdx()
4 s_rate < int(round(s_rate))
5 // Extracting the creation time for the erd file that holds the raw data
6
7
8
9

erd_time < s.return_hdr() [-1][’creation_time’]

// Excluding samples between the start time of recording and the actual acquisition
stc_erd_diff <«  (erd_time-start_time). total_seconds()

// Computing the number of samples required from each channel

10 stride <« min_secs * s_rate

11 start_index < int(stc_erd_diff) * s_rate

12 end_index <«  start_index + stride

13 findings < []

14 WHILE end_index <n_samples DO

15 t < s.return_dat ([1], start_index, end_index)

16 /] Excluding the epochs that may contain NaN values

17 IF ! np.any(np.isnan(t), axis =1) THEN

18 data <« s.return_dat(range(len(ch_names)), start_index, end_index)
19 IF s_rate > 256 THEN

20 data < decimate(data, q=2)

21 ENDIF

22 /] Converting numpy array to a pandas data frame

23 df < pd.DataFrame(data = data.T, columns = ch_names)
24 findings.append(montage(df, model_modified_channels))
25 ENDIF

26 start_index < start_index + stride

27 end_index <« end_index + stride

28 ENDWHILE

29 return findings
30 ENDFUNCTION

Removing Missing Values: The Not-a-Number or NaN values were found and
dropped in the proposed system because they were infrequent.

Wavelet Decomposition: The proposed system utilizes a discrete wavelet transform
(DWT) to decompose the signals. The signals are passed through high-pass and low-pass
filters. The high-pass filter will generate all the high-frequency components, which are
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known as detailed coefficients. Similarly, the low-pass filter generates the wavelet coef-
ficients, which are of low frequency and are known as approximation coefficients.

The proposed system has a multi-level decomposition db4 which divides the
wavelet into four levels. Each level represents a specific frequency band for the EEG
signals that were previously referred to in Table 1, except for the first two frequency
bands where the first DWT level in the proposed system represents both bands. Figure 3
shows the decomposition process of the original signal into two parts at the first level,
where Al refers to the approximation coefficients of the first level, while D1 refers to the
detailed coefficients of the first level. The decomposition process continues after the first
level until the fourth level in the same manner as the approximation coefficients only.
The accepted coefficients in the proposed system from the DWT tree in Figure 3 are A4,
D4, D3, and D2. A4 represents the delta and theta frequency bands, D4 represents the
alpha frequency band, D3 represents the beta frequency band, and D2 represents the
gamma frequency band. These accepted coefficients include the signals that are within
the frequency range of 0.5 to 60 Hz because seizures are more distinguished in that range
[26]. Furthermore, it ensures that many noises are removed, including power line noise,
distinguished by a chronic sinusoidal component at 60 Hz that can be seen in raw bio-
medical data recordings. The sinusoidal element usually results from using devices that
depend on alternating current as a power source [27].

Original EEG frequency band [0.5-128] ‘
[ . 1
Level 1 Al [ [0.5 — 64] ‘ [ [64 — 128] ‘Dl
————
Level 2 A2 { [0.5-32] ‘ { [32 - 64] ‘ D2
Level 3 A3 ‘[0.5—16] ‘ ‘ [16 — 32] ‘ D3
Level 4 Ad I [0.5-8] ‘ I [8-16] ‘ Da

Figure 3. Proposed wavelet decomposition tree (db4).

Figure 4 shows the graphical representation of the EEG signal for each coefficient in
the DWT tree shown in Figure 3. As seen after four decomposition levels, the width of the
noisy signal (the approximation signal in the first level) is almost filtered compared with
the last approximation signal in the last level because all high-frequency components at
each level are taken out. So, the remaining approximation signal in the last level is a sine
wave in filtered form.
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Scaling: To speed up the model training process, the proposed model utilizes a
scalar which is a z-score (standard score). The z-score is a statistical measurement which
calculates the space between a data point and the mean [28]. In the proposed system, the
z-score is performed on the batches. In this case, all the features will be transformed in
such a way that they will have the properties of a standard normal distribution. In this
scenario, the features will usually be in a bell curve. It was used because the model is
based on deep-learning architecture, where it basically involves gradient descent, which
in turn helps the TensorFlow and Keras libraries that are used when working with neural
networks to learn the weights in a faster manner.

Deep Learning Model: A deep-learning model (DL model) that consists of several
layers was used. In addition to these layers, auxiliary layers such as the activation and
max-pooling 1D layers were used. The first helps in learning the non-linearity of the data,
while the latter contributes to down-sampling the output of the convolutional layer (re-
ducing dimensions) by selecting the maximum value on the filter.

The DL model takes the EEG signals as an input. These signals are stored within one
of the built-in data types in Python, which is a tuple. The dimensions of the tuple are
(None * 18), which indicates variable-length sequences of 18-dimensional vectors. It
should be noted that the ‘None’ dimension means the network will be able to accept in-
puts from any dimension. Note that the window length is 10 s, the sample rate is 256, and
the number of channels is 18. Therefore, the number of digital samples in each channel is
2560 samples, so the dimensions of any signal are (2560 * 18), and after analyzing the
signal using DWT, its dimensions will become (x * 18), where x is the concatenation of the
signal components after the decomposition procedure. Therefore, the dimensions of the
signal become (A4 + D4 + D3 + D2, 18). In contrast, the model classifies these input EEG
signals into two classes, seizure or non-seizure as an output. Figure 5 shows the order
and the configurations of the layers in the model.

Input layer
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Figure 5. The deep-learning model architecture.

The loss function that is used in the proposed model is categorical cross-entropy.
The adopted optimization algorithm for the model is the Adam algorithm [29]. One of the
hyperparameters of the algorithm is the learning rate. The authors of Adam recommend
setting the learning rate differently based on the system. It is better to use a decaying
learning rate than a fixed one, which is a learning rate whose value decreases as the
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epoch number increases. This means it allows one to start with a relatively high learning
rate while benefiting from lower learning rates in the final stages of training. This is
useful where a relatively high learning rate is necessary to set huge steps, whereas in-
creasingly smaller steps are necessary when approaching a minimum loss. The proposed
model uses a learning rate with an initial value of 0.00001, taking into account the use of a
common decay scheme, which allows learning rates to be dropped in smaller steps ex-
ponentially every few epochs.

4.2. Seizure Detection Model

The proposed system is trained, validated, and tested on the CHB-MIT Scalp EEG
dataset. It depends on the eighteen common channels that have been previously men-
tioned. The model suggested in Figure 5 is used, except each dropout layer is replaced by
a batch normalization layer. The EEG signals are inputted to the system and passed
through three CNN layers, each with different configurations as shown in Figure 5. Next
are the Bi-LSTM and attention layers, respectively. Finally, the signals pass through two
dense layers that classify the signal as seizure or non-seizure.

Convolutional Neural Network: The EEG signals are one-dimensional time series
data; hence, for its analysis, a one-dimensional CNN is proposed (1D-CNN). The 1-D
CNN automatically learns the discriminative features that represent the structure of EEG
signals [30].

The activation function for the proposed model is the Swish Rectified Linear Unit
(Swish Relu) [31]. The activation function’s purpose is to classify and learn the
non-linearity in the data. The formula for Swish Relu is as follows:

f(x) = x * sigmoid((3x) (1)
where:
sigmoid(px) =1/(1 + e (—x) 2)

where {3 is a constant; if {3 is close to 0, the function will work linearly. If (3 is a large value,
greater than or equal to 10, the function works similarly to Relu. After performing some
experimental work, it is considered (3 =1 in this study.

Max Pooling: Max-pooling 1D [32] is an operation which is usually appended to
CNN:ss after the individual convolutional layers to down-sample the output. Max pooling
is applied to reduce the resolution of the output of the convolutional layer, which de-
creases the network parameters and subsequently decreases the computational load as
well as the overfitting. It is also helpful in selecting the higher valued frequencies as be-
ing the most activated frequencies. The filter (window) of size 3 is applied in the pro-
posed system.

Batch Normalization: Throughout training, the distribution of the input data varies
due to the update of the parameters. This will slow down the learning, so the learning
becomes harder with nonlinearities. This phenomenon is called internal covariate shift
[33]. To solve this issue, batch normalization is used. This makes the optimization sig-
nificantly smoother, speeds up the training process, and slightly regularizes the model.

Bidirectional Long Short-Term Memory: Bidirectional LSTM (Bi-LSTM) [34] di-
vides the standard LSTM’s hidden neuron layer into two propagation directions: forward
and backward. Therefore, this structure of Bi-LSTM will make it capable of processing
the input in two ways: modeling from the front to the back and from the back to the front.
The Bi-LSTM has the ability to detect the contextual information in long sequences of
data and learn the importance of different events. For this purpose, the proposed system
uses Bi-LSTM. In fact, the Bi-LSTM in the proposed model will make full use of the in-
formation before and after the states of epileptic seizure, enabling seizure events to be
properly detected. The number of units of Bi-LSTM represents the dimensionality of the
output space.
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Attention: Attention [35] is the ability to highlight and use the salient parts of in-
formation dynamically in a similar way to the human brain. This type of mechanism
works through iterative re-weighting to allow the model to utilize the most relevant
components of the input sequence, which is the EEG signal, in a flexible manner in order
to give these relevant components the highest weights. This type of mechanism was ini-
tially proposed and is usually used to process sequences such as EEG signals. For this
reason, it was used in the proposed model. The Bi-LSTM with attention is a way to sig-
nificantly enhance the model performance.

Fully Connected Layer: The fully connected layer [36] works as a classifier and
predicts the input signal class. The proposed system has two dense layers. The first layer
consists of thirty-two units (neurons), which represent the dimensionality of the output
space. The second dense layer in the model has two units because the proposed model
classifies the EEG signals into two classes: seizure or non-seizure. The reason for using
two dense layers instead of one is that the convolution layers, in conjunction with the
Bi-LSTM and attention layers, extract the features from the EEG signals. Depending on
these features, the deep-neural network layers classify the signals. The first dense layer
acts as a feature selector to decide whether or not a feature is relevant to a class, whereas
the second dense layer acts as a classifier. Thus, the presence of two dense layers en-
hances the network’s ability to better classify the extracted features.

5. The Experimental Result

This section will be divided into two parts. The first one is to evaluate the compati-
bility framework for integrating local EEG data with the CHB-MIT dataset. The second
one is to evaluate the seizure detection model.

5.1. Evaluating the Compatibility Framework

To assess the possibility of data integration, the DL model uses a set of well-known
performance metrics to measure the model’s performance: sensitivity, precision, and
accuracy. The formulas for these metrics are shown below:

Sensitivity (Recall or Sen.) = TP/(FN + TP) ©)]
Precision (PRC) = TP/(TP + FP) 4)
Accuracy (ACC) = (TP + TN)/(Total Samples) (5)

where TP (True Positive) is the number of seizure signals that are detected as seizure, FN
(False Negative) is the number of seizure signals that are detected as non-seizure, TN
(True Negative) is the number of non-seizure signals that are detected as non-seizure,
and FP (False Positive) is the number of non-seizure signals that are detected as seizure.

A set of experiments were performed to demonstrate the feasibility and usefulness
of the deep-learning model for proving the concept of data integration and effectiveness
of the compatibility framework with CHB-MIT dataset standards.

Initially, a random sample of EEG signals was taken from the CHB-MIT dataset for
each experiment. Considering that the number of random EEG signals in the sample is
proportional to the number of EEG signals extracted from the KAU dataset, the impact of
KAU EEG signals can be studied by integrating them with the random sample. To clarify,
the number of EEG signals extracted from the KAU dataset was 185 signals for both
classes, and the number of random EEG signals in each sample was 750 signals. There-
fore, the number of EEG signals from the KAU dataset constituted approximately 25% of
the random sample size, which allows measuring the effectiveness of data integration. To
illustrate, the number of EEG signals in each random sample from the CHB-MIT dataset
was proportional to the number of EEG signals extracted from the KAU dataset in order
to ensure that the impact of data integration from the KAU dataset with the CHB-MIT
dataset was studied. The selection of signals in the sample was random to ensure that the
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effect of integration was properly studied. Therefore, multiple experiments were con-
ducted with multiple random samples.

Six different experiments were performed as displayed in Table 5. Each experiment
aims to measure the DL model performance on the sample extracted from the CHB-MIT
dataset, and to merge the KAU EEG signals with a random sample also from the
CHB-MIT dataset to study the effect of the data that is attached to the CHB-MIT dataset.

Table 5. The performance of the DL model with and without data integration.

EXP DB Avg. Epoch Avg. Epoch Sen. for Avg. Epoch Sen. for Avg. Epoch PRC for Avg. Epoch PRC for
No. ACC Seizure No-Seizure Seizure No-Seizure
1 CHB-MIT 79.25 64.16 93.14 89.2 75.29
2 CHB-MIT 81.93 68.43 94.41 91.54 78.03
3 CHB-MIT 75.38 54.95 94.02 89.26 70.53
Avg. CHB-MIT 78.85 62.51 93.86 20 74.62
CHB-MIT +
4 KAU 77.81 66.76 88.01 84.01 76.99
CHB-MIT +
5 KAU 80.90 75.34 84.66 78.09 86.03
CHB-MIT +
6 KAU 81.73 62.29 94.8 87.71 79.78
CHB-MIT +
Avg. KAU 80.15 68.13 89.16 83.27 80.93

For further illustration, each random sample taken from the CHB-MIT dataset con-
tained 750 random signals, which were then divided into training, validation, and testing
at 50%, 20%, and 30%, respectively, so that the number of training signals was 375 and
the number of testing signals was 225. It should be noted that the number of seizure
signals was equal to the number of non-seizure signals in the first three experiments car-
ried out on the CHB-MIT dataset only. The KAU EEG datasets were then randomly sub-
divided into training, validation, and testing groups. After that, these samples from KAU
EEG data were merged with three random samples from the CHB-MIT dataset.

As noted in Table 5, the values of the performance metrics for each experiment be-
fore and after merging the random sample with the KAU EEG data are enhanced or
within the same range, proving that the integration of data with the KAU dataset using
the proposed framework is effective to combat the problem of data imbalance.

As seen, the proposed compatibility framework for creating a large and balanced
dataset by integrating the EEG signals from the KAU dataset with the CHB-MIT dataset
showed an improvement in the ability of the model to identify seizure signals with
higher accuracy. The system suggested increasing the number of epilepsy signals and
measuring the impact of integration on the performance of the model in terms of the
overall accuracy of detecting epileptic seizures before and after the integration process.
The overall accuracy of 78.85% increased to 80.15%. In particular, the performance im-
proved through the sensitivity rate to epileptic seizures specifically; it was initially
62.51% and became 68.13%, meaning that the number of seizure signals that were de-
tected as non-seizure was low, as reflected in the high sensitivity rate.

The model was trained on Google Colab using an Nvidia Tesla K80 GPU. Figure 6
shows the average values by epoch of the metrics that were previously mentioned in Table 5
for both classes of seizure and no-seizure. Through it, we note the high level of sensitivity
after data integration which measures the percentage of seizure signals that were classi-
fied as seizure. However, we also observe from the chart that the level of precision
slightly decreased after data integration which measures the proportion of no-seizure
signals that were classified as no-seizure. The reason for this is the presence of artifact
signals in the KAU dataset, which in turn were classified as seizure signals. This problem
can be solved in future work by incorporating a tool into the model that deals with arti-
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fact signals. Finally, we notice an increase in overall accuracy after the data integration
process, despite the decrease in precision, and the reason for this is the high sensitivity.

83%
82%
81%
80%
79%
78% -
7% -
76% -

Percentage

Accuracy Sensitivity Precision
Average value by epoch for each metric

m Before integration m After integration

Figure 6. Average values of experiments before and after data integration for performance metrics.

5.2. Evaluating the Seizure Detection Model

For evaluation and testing, 20% and 30% of the CHB-MIT dataset were used, re-
spectively. The testing data constitutes about 12,000 windows of normal EEG records
(no-seizure class) and about 3004 windows of epilepsy EEG records (seizure class). The
performance was evaluated using the same performance metrics that are used to evaluate
the compatibility framework, which are sensitivity, precision, and accuracy.

A comparison of the proposed model with state-of-the-art methods trained and
tested on CHB-MIT is given in Table 6. As seen, the proposed system outperforms the
previous systems, except for one [18] study. However, when we compare the proposed
system with that study, we find that the study was only tested on 14 of the 23 patients in
the dataset, but the proposed system was evaluated on all 23 patients. In addition, we
find that although the algorithm for that study is patient-specific, its performance dete-
riorated significantly for patient 7, where the sensitivity rate reached 50%, because the
duration of epileptic seizures for this patient was very short. This means that the algo-
rithm works well if the duration of the seizure is long. However, if the seizure is brief, the
accuracy drops dramatically. The proposed system provides good performance in both
cases, whether the duration of the seizure is long or short, as seen through the sensitivity
ratio of the proposed system, which was tested on all patients and overcame the sensi-
tivity of the previous model.

Table 6. Performance comparison of the proposed model with other systems on the CHB-MIT da-
taset.

Cite No. of Channels No. of Subjects Sen. PRC ACC Speed of Con-
vergence
[13] 23 channels (in few cases 24 or 26) 23 - 96.51  96.61 NA
[15] 23 25% of the dataset 91.15 - 95.11 NA
[18] 23 14 specific patients 96.43 - 98.60 NA
[19] 23 channels (in few cases 24 or 26) 23 82.35 - 96.74 Around 60
epochs
[21] 23 channels (in few cases 24 or 26) 23 90.97 - - NA
[20] 23 channels (in few cases 24 or 26) 23 94 - 89 NA
The proposed model 18 channel 23 9685 9698 96gy  ‘round 130

epochs
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The uniqueness of the proposed deep-learning model lies in its design topology that
suggests specific types of layers with specific configuration parameters, as in Figure 5,
where the configuration of this model makes it capable of outperforming state-of-the-art
models by combining several advantages in the network design. First, it visually extracts
the signal abnormalities from the 1D-EEG through the Conv1D, which is a visual neural
network. Second, it learns the non-linearity in the EEG signals through swish Relu. Third,
it identifies some distinct features from the higher valued frequencies as being the most
activated frequencies through max-pooling. Fourth, it learns the seizure and no-seizure
events from the contextual information before and after the states of epileptic or
non-epileptic signals in forward and backward propagation directions through Bi-LSTM.
Fifth, it improves the performance of the model significantly by combining attention with
Bi-LSTM to give the relevant components the highest weights during the iterative
re-weighting process.

Since the EEG patterns are highly subject-dependent, the main contribution of the
proposed model is to deal with dual-detection problems (seizure versus non-seizure)
based on using a small number of channels that are common for all patients, not for each
patient separately, to achieve better performances than those of systems of full channels.

A limitation of the proposed model could be the inability to detect the seizure or
no-seizure from the EEG signals with a sample rate of 512 Hz. For further improvement,
the model can be trained using the decimate() method to down-sample the signal that has
a sample rate of 512 Hz, which would enable the model to detect epileptic seizures from
signals with a sampling rate of 256 or 512 Hz.

The model was trained on Google Colab using an Nvidia Tesla K80 GPU. Figure 7
shows the performance of the model by epoch for testing according to the metrics that
were previously used in Table 6 for each class, seizure or no-seizure. We observe that the
convergence of the model occurred at the 130th epoch. Comparing Kaziha et al. [19] with
our model, our method shows a better sensitivity of 96.85% while theirs was 82.35%. One
of the main reasons is that their window size was 100 s, whereas our window size was 10
s, which in turn takes only the exact seizure intervals.

/
/_ — Accuracy

/ No-seizure Sensitivity

Seizure Sensitivity

No-seizure Precision

—— Seizure Precision

25 50 75 100 125
Number of Epochs (iterations)

Figure 7. The performance metric charts of testing against the epochs.

6. Conclusions

In this research, a compatibility framework for integrating local EEG signals into the
CHB-MIT dataset is proposed. The proposed approach has multiple benefits. First, it
overcomes the problem of data imbalance faced by most of the datasets in the field due to
the low incidence of epileptic signals compared to non-epileptic signals. Second, it allows
the establishment of large datasets by integrating local EEG signals with the available
datasets required by the deep-learning models used to develop seizure detection and
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prediction systems. The approach presented in this paper can also be used as a support
tool for researchers in the field to process and read local EEG signals that are of the XLtek
type for which there were no reading functions available in the analysis software pack-
ages for such EEG types. In the end, a set of experiments carried out to examine the data
integration using the proposed framework proved its feasibility and usefulness.

In addition, an automated epilepsy detection system that is based on some channels
was proposed. This system deals with dual-detection problems (seizure versus
non-seizure). The proposed system uses a wavelet decomposition technique and a simple
one-dimensional convolutional neural network, along with bidirectional long-short-term
memory and attention, to receive EEG signals as input data, pass them to various layers,
and finally make a decision via a dense layer. This model can assist neurophysiologists to
detect the seizures and significantly decrease the burden, while also increasing the effi-
ciency.

There are several future suggestions regarding the proposed model. One such sug-
gestion is that it could be incorporated into a wearable device for patients, considering
the storage and memory requirements. Another suggestion is the possibility of deploying
the system in a central cloud environment for rapid access via mobile devices without
using specific wear-and-tear devices. The EEG signal that is considered as the input data
is small in size and the proposed model is portable, which makes it appropriate for cloud
deployment. The EEG signals are easily transferred to the cloud for processing in re-
al-time as it can issue a warning alarm to notify the doctors/patients if needed. The pro-
posed system can be used to implement expert systems for similar disorders that include
EEG brain signals.
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