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Abstract: Head-mounted display (HMD) virtual reality devices can facilitate positive experiences 

such as co-presence and deep immersion; however, motion sickness (MS) due to these experiences 

hinders the development of the VR industry. This paper proposes a method for assessing MS caused 

by watching VR content on an HMD using cardiac features. Twenty-eight undergraduate volunteers 

participated in the experiment by watching VR content on a 2D screen and HMD for 12 min each, 

and their electrocardiogram signals were measured. Cardiac features were statistically analyzed us-

ing analysis of covariance (ANCOVA). The proposed model for classifying MS was implemented in 

various classifiers using significant cardiac features. The results of ANCOVA reveal a significant 

difference between 2D and VR viewing conditions, and the correlation coefficients between the sub-

jective ratings and cardiac features have significant results in the range of −0.377 to −0.711 (for 

SDNN, pNN50, and ln HF) and 0.653 to 0.677 (for ln VLF and ln VLF/ln HF ratio). Among the MS 

classification models, the linear support vector machine achieves the highest average accuracy of 

91.1% (10-fold cross validation) and has a significant permutation test outcome. The proposed 

method can contribute to quantifying MS and establishing viewer-friendly VR by determining its 

qualities. 

Keywords: visually induced motion sickness; normalized heart rate variability; cardiac activity; 

head-mounted display; cognitive load 

 

1. Introduction 

Virtual reality (VR) using head-mounted displays (HMDs) has become increasingly pop-

ular for professional and entertainment purposes and contributed to technological advance-

ment and increased economic activity [1,2]. VR technology has been used in many areas, such 

as military training simulations [3], training or education in medical procedures [4], architec-

ture [5], manufacturing [6], entertainment [7], and gaming [8]. VR technology can provide an 

experience that is impossible in the real world and deep immersion [9]. However, the devices 

trigger motion sickness (MS), including visual fatigue, nausea, anxiety, and disorientation, in 

some users [10]. Visually induced motion sickness (VIMS), motion sickness disorder (MSD), 

and VIMS disorder are defined as vestibular disorders; however, MS can be experienced by 

anyone [11]. Approximately 33% of the population is highly susceptible [12], and at least 59% 

of the population has reported experiencing MS [13]. Many developers have attempted to im-

prove software and hardware; however, the issue of MS remains [14]. Consequently, MS is a 

major obstacle in the popularization and development of the VR industry [15]. Thus, studies 

on minimizing MS are necessary, which can contribute to improving the VR user experience 

and friendliness. To solve the problem of MS, reliable measurement methods for quantita-

tively assessing MS should be established [2,16]. 
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Many previous studies have attempted to understand and interpret MS from the per-

spectives of postural instability [17]; vestibular function [18]; eye movement [19]; the auto-

nomic nervous system, such as cardiac activity, electrodermal activity, and skin temperature 

[1,20]; the central nervous system, such as electroencephalogram (EEG) oscillations [21] and 

functional magnetic resonance imaging [22]; and pupillary rhythms [23]. However, when us-

ing machine learning, most studies do not distinguish MS patients from healthy controls. 

Some studies have attempted to classify the level of MS severity, as shown in Table 1, using 

the following criteria: EEG oscillations [24–31], heart–brain connectivity [2], vision technology 

[16], and multimodal data fusion [32–37]. Most studies attempting to classify MS are based on 

brain activity and multimodal data fusion. These approaches have significant disadvantages, 

such as the measurement burden of sensor attachment and low usability compared to cardiac 

activity. Despite these limitations, the method developed in a previous study has the ad-

vantage of acquiring significant and important data. Thus, fields that require precise measure-

ment of phenomena related MS can be at an advantage. However, a simple method should be 

developed to assess the sensitivity of MS, because there are fields that require rapid and easy 

MS measurement or monitoring. Thus, we propose developing a method that enables the sim-

ple and convenient assessment of MS based on a single measurement of cardiac activity. 

Table 1. Summary of MS measurement literature. 

Measurement Platform Content Participants Classification Performance Paper 

EEG 

alpha (8–13 Hz) and 

theta (4–7 Hz) 

bands 

360-degree VR-based 

dynamic 3D 

environment 

driving simulation 7 subjects 
95% 

(5-fold cross-validation) 
[24] 

alpha (8–12 Hz) 

band 
360-degree projection driving simulation 6 subjects 

86.92% 

(leave-one-out cross-validation) 
[25] 

delta (0.1–3 Hz), 

theta (4–7 Hz), 

alpha (8–13 Hz), 

beta (13–20 Hz), and 

gamma (21–50 Hz) 

bands 

360-degree projection driving simulation 6 subjects 

80.7% 

(cross-validation) 

72.1% 

(test data set) 

[26] 

alpha and beta 

bands 
HMD mirror edge game 9 subjects 

83.8% 

(cross-validation) 
[27] 

theta (4–8 Hz), beta 

(12–30 Hz), and 

alpha (8–12 Hz) 

bands 

HMD mirror edge game 9 subjects 
88.9% 

(3-fold cross-validation) 
[28] 

theta (4–8 Hz), 

alpha (8–12 Hz), 

low-beta (12–16 

Hz), high-beta 

(16–25 Hz), and 

gamma (25–45 Hz) 

bands 

360-degree video VR video 11 subjects 
99.12% 

(5-fold cross-validation) 
[29] 

delta, theta, alpha, 

and beta bands (1–

30 Hz) 

HMD VR scene of road 18 subjects 
79.25% 

(10-fold cross-validation) 
[30] 

parallel-feature 

extraction and 

feature attention 

modules 

VR vehicle-driving 

simulator 
driving simulation 8 subjects 

96.7% 

(leave-one-out cross-validation) 
[31] 

HEP 
first and second 

components 
HMD 

No Limits 2 Roller 

Coaster Simulation 

48 subjects (train: 

28 and test: 20) 

96.4% 

(10-fold cross-validation) 

87.5% 

(test data set, 20 subjects) 

[2] 

Vision pupil size change HMD 
ultimate booster 

experience 

47 subjects (train: 

24 and test: 23) 

90% 

(10-fold cross-validation) 

80% 

(test data set, 23 subjects) 

[16] 
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Multi-

modal 

EEG, ECG, RSP, 

EGG, and postural 

sway  

HMD 
virtual space station 

environment 
20 subjects 

95% 

(10-fold cross-validation) 
[32] 

EEG, center of 

pressure, head and 

waist motion 

trajectories  

projection screen 
visual streaming and car 

driving video 
20 subjects 

91.1% 

(10-fold cross-validation) 
[33] 

ECG and RSP HMD roller coaster video 20 subjects 
96.48% 

(cross-validation) 
[34] 

EEG, EMG, and 

ECG 
BioVRSea (VR goggles) rough sea scenario 28 subjects 

74.7% 

(10-fold cross-validation) 
[35] 

stomach activity, 

EOG, and RSP 
HMD 

virtual environment 

game 
20 subjects 

77.8% 

(cross-validation) 
[36] 

ECG, EOG, RSP, 

and EDA 
HMD VR contents 66 subjects 

82% 

(cross-validation) 
[37] 

Physiologically, heart rate variability (HRV) indicates the interaction of autonomic, in-

trinsic, and humoral influences on heart rate [38]. The HRV spectrum for assessing autonomic 

balance is divided into very low frequency (VLF, 0.0033–0.04 Hz), low frequency (LF, 0.04–

0.15 Hz), and high frequency (HF, 0.15–0.4 Hz), which correspond to sympathetic activity, a 

mixture of sympathetic and parasympathetic activities, and parasympathetic activity, respec-

tively [39,40]. Previous studies have reported that the development of MS is strongly corre-

lated with sympathetic and parasympathetic activities [41,42]. In addition, the time domain 

indices of cardiac activity, such as heart rate, the standard deviation of normal to normal 

(SDNN), and the proportion of successive RR intervals (pNN50), have been reported to be 

associated with MS [43,44]. In multimodal data fusion (see Table 1), a few studies have con-

sidered the heart response intended to be used in this study to measure the MS symptom. 

These studies used heart rate [32,34,35,37], R-peak amplitude [32], SDNN [35], and HRV index 

(i.e., HRV amplitude, LF, HF and LF/HF ratio) [34] as indicators of cardiac activity. This study 

intends to consider a new indicator, normalized HRV, which includes cardiac features used 

in previous studies. 

To this end, this study proposes a novel method for classifying MS caused by VR content 

from HMDs based on cardiac features. The cardiac features measured in both before and after 

VR viewing conditions are compared with 2D conditions using a statistical analysis method 

called analysis of covariance (ANCOVA); moreover, these features are analyzed using a par-

tial correlation with a simulator sickness questionnaire (SSQ). Herein, MS (VR condition) is 

distinguished from the normal state (2D condition) using statistically significant cardiac fea-

tures based on various classifiers, such as linear discriminant analysis (LDA), K-nearest neigh-

bors (KNN), decision tree (DT), and linear support vector machine (LSVM). In addition, a real-

time system is developed to monitor MS. 

2. Methods 

2.1. Participants 

Thirty participants volunteered to participate in this study. Two participants were ex-

cluded from the experiment due to premature termination caused by severe levels of VIMS, 

resulting in a final sample of 28 participants (14 females and 14 males). Participants’ ages 

ranged from 21 to 34 years (Mean = 26.9 years, Standard deviation = 3.5 years). All participants 

had normal or corrected-to-normal vision and no family or medical history of cardiovascular 

disease. Informed written consent was obtained from each subject prior to the experiment, 

and they were instructed to get a full night’s rest and to abstain from cigarettes, alcohol, and 

caffeine for 24 h prior to the experiment. This research complied with the tenets of the Decla-

ration of Helsinki and was approved by the Institutional Review Board of Sangmyung Uni-

versity (No. BE2018-46). 

2.2. Experimental Stimuli and Procedure 
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VR content “Ultimate Booster Experience” (GexagonVR, Saint Petersburg, Russia, 

2016) was used in this experiment to cause VIMS through the Oculus Rift S VR HMD 

device (Oculus VR Inc., Menlo Park, CA, USA). This study aimed to choose VR stimuli 

that can sufficiently cause the MS state, and the VR content “Ultimate Booster Experience” 

with the highest SSQ score among the five VR contents was chosen through a pre-test of 

20 subjects. None of the participants had previously experienced viewing VR content (i.e., 

Ultimate Booster Experience) by using an HMD. The VR stimulus in the experiment con-

tained content including a giant swing, bungee jump, air balloon, eagle flight, and rocket 

mode. 

This study employed a “within-subject” design to compare the viewer’s cardiac ac-

tivity in response to the VR contents under the 2D (non-VIMS) and VR conditions (VIMS). 

The participants sat on a comfortable armchair in an electrically shielded room. They were 

instructed to experience the VR content in 2D (viewing distance of 1 m) and VR versions 

using a 27-inch LED monitor (LG Electronics Inc., Seoul, Korea) and the HMD device. The 

scenes in the two versions were identical. Participants experienced the VR content using 

either the 2D or the HMD version of the VR content for 12 min. The experiment was con-

ducted simultaneously for two days. The order of tasks (i.e., 2D and VR versions) was 

count-balanced randomly to minimize sequence/order effects by repeated measures de-

sign (that is, VR and 2D versions on the first and second days, respectively, or vice versa). 

A resting-state was provided for 5 min before and after viewing tasks, and electrocardio-

gram (ECG) signals were measured. The ECG signals were measured using the lead-1 

method using three electrodes placed on the left collarbone (ground, black lead), left 

(VIN+, red lead), and right arms (VIN-, white lead), see Figure 1B. To obtain optimal elec-

trode response, the surface of the skin where the electrode was to be placed was abraded 

with a clean, dry cloth. The ECG wireless sensor (ECG BioNomadix) to measure and trans-

mit signals was placed on the stomach using a band. The experiment was conducted in an 

electrically shielded room to minimize the risk of external interference, which can affect 

ECG measurements. Except for the necessary user interface, all equipment was located 

outside the room using a connection cable. In addition, the participants were asked to self-

report (a four-point scale, 0 to 3) subjective MS using an SSQ [45] before and after the 

viewing tasks. Subsequently, cardiac activity and subjective ratings before and after the 

viewing tasks were compared. The experimental procedure and environment are illus-

trated in Figure 1. 
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Figure 1. (A) Experimental procedure and (B) environment. 

The SSQ employed is widely used to describe and assess users’ levels of MS symp-

toms and useful in VR studies. This SSQ comprises 16 items related to the symptoms of 

MS and is categorized into three non-mutually exclusive factors: (1) nausea (N), which 

comprises general discomfort, increased salivation, sweating, nausea, difficulty concen-

trating, stomach awareness, and burping; (2) oculomotor responses (O), which include 

general discomfort, fatigue, headache, eyestrain, difficulty focusing, difficulty concentrat-

ing, and blurred vision; and (3) disorientation (D), which comprises difficulty focusing, 

nausea, fullness of the head, blurred vision, dizziness (eyes open), dizziness (eyes closed), 

and vertigo. The total SSQ score is calculated using Equation (1) based on the three factors, 

where the values of N, O, and D are defined by summing the subjective rating values (4-

point scale, 0–3) of each questionnaire for nausea, oculomotor responses, and disorienta-

tion, respectively. In general, a five-point scale is used for the single stimulus subjective 

tests as recommended in ITU-T REC. P.913 [46], but this work performed a subjective rat-

ing using the 4-point scale (0, 1, 2, 3) according to guidelines in a previous study [45]. 

Examples of SSQ are shown in Appendix A. 

Total SSQ score = (� + � + �) ×  3.74 

� score = � ×  9.54, O score = � × 7.58, � score = � × 13.92 (1)

2.3. Data Acquisition and Signal Processing 

ECG signals were recorded at a sampling rate of 500 Hz using Bionomadix BN-ECG2 

units and an MP160 amplifier system (Biopac Systems Inc., Goleta, CA, USA). The ECG 

signals were recorded using circular disposable Ag/AgCl electrodes (11 mm diameter, 



Sensors 2022, 22, 6213 6 of 19 
 

 

pregelled, 40 mm foam electrode-EL501, Biopac Systems, Goleta, CA, USA) laced using 

the Lead-I method. ECG signals were then processed to extract features related to cardiac 

activity in the following steps: (1) Acquired ECG signals are preprocessed using a band-

pass filter with a pass band of 5 Hz to 15 Hz [47] to minimize the effect of muscle artifact, 

60 Hz interference, baseline wander, and T-wave interference [48]. (2) R-peak was de-

tected from the preprocessed ECG signals using the “QRS detection algorithm” [48], and 

the R-peak to R-peak intervals (RRIs) were calculated using the interval between R-peak 

to R-peak. The detected R-peaks were filtered as normal to normal (NN) intervals, and the 

criterion for NN intervals was defined as 600–1200 ms based on previous work [49]. Data 

from RRI that did not meet this criterion were excluded from the analysis. (3) The standard 

deviation of SDNN was obtained by calculating the standard deviation across normal 

RRIs [50]. (4) The pNN50 (%) was calculated from the percentage of adjacent RR intervals 

that differ by more than 50 ms [51]. (5) Successive RRIs were resampled at 4 Hz to convert 

to time series data and are then analyzed in the HRV spectrum using the fast Fourier 

transform (FFT, Hanning window technique). (6) The HRV spectrum was categorized into 

frequency bands for a VLF band ranging from 0.0033–0.04 Hz (sympathetic activity) and 

an HF band ranging from 0.15–0.4 Hz (parasympathetic activity); moreover, the power 

for each frequency band was extracted [40,52]. (7) ln VLF and ln HF (that is, normalized 

HRV) were calculated using the natural log (assuming ln) from the power spectrum val-

ues (VLF and HF powers). (8) The normalized HRV plot was categorized into nine zones 

(that is, Zones 1 to 8 and a reference zone) to assess the autonomic balance of the sympa-

thetic and parasympathetic nervous systems (SNS and PNS) [40,53], as shown in Figure 

2. All signal processing and data analyses were performed using MATLAB (2020b, Math-

works Inc., Natick, MA, USA). 

 

Figure 2. Zone definitions of normalized HRV. (A) Zone 1: High parasympathetic/low sympathetic. 

(B) Zone 2: High parasympathetic/normal sympathetic. (C) Zone 3: High dual autonomic tone. (D) 

Zone 4: High sympathetic/normal parasympathetic. (E) Zone 5: High sympathetic/low parasympa-

thetic. (F) Zone 6: Normal sympathetic/low parasympathetic. (G) Zone 7: Low sympathetic and par-

asympathetic. (H) Zone 8: Low sympathetic/normal parasympathetic. 

2.4. Statistical Analysis 

This study follows a “within-subject” design for 2D and VR viewing conditions. 

Moreover, ANCOVA was applied in this study because a paired t-test between after-view-

ing conditions is not able to consider the viewers before the state. ANCOVA can assess 

dependent variables of post-viewing states between the two conditions by considering the 

pre-viewing state baseline as a covariate [2,54]. Statistical significance at the 95% signifi-

cance level (p > 0.05) was controlled by the Bonferroni correction as a conservative test to 
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protect against Type 1 errors caused by multiple comparisons based on the number of 

each hypothesis (i.e., α = 0.05/n) [55,56]. For this study, the statistically significant levels 

of SSQ and cardiac features were set to 0.0125 (N, O, D, and total SSQ scores resulting in 

α = 0.05/4) and 0.0083 (heart rate, SDNN, pNN50, ln VLF, ln HF, and ln VLF/ln HF ratio 

resulting in α = 0.05/6), respectively. The effect size to verify the practical significance was 

analyzed using the partial eta-squared value (ηp2) corresponding to an F-test. The stand-

ard values for the practical significance of 0.01, 0.06, and 0.14 are generally regarded as a 

small, medium, and large, respectively [57]. A partial correlation was used to analyze the 

correlation between the SSQ scores and cardiac features (post-viewing condition), consid-

ering the pre-viewing condition as a covariate [29]. Correlation coefficients of 0.00–0.09, 

0.10–0.39, 0.40–0.69, 0.70–0.89, and 0.90–1.00 represent negligible, weak, moderate (good), 

strong, and very strong correlations, respectively [58]. All statistical data analyses were 

conducted using IBM SPSS Statistics 21.0 for Windows (SPSS Inc., Chicago, IL, USA). 

2.5. Classification 

This study used four basic machine-learning algorithms (LDA, KNN, DT, and LSVM) 

to verify the features. Optimization results for each classification method were obtained 

with 10-fold cross-validation by using parameter optimization for classifiers in the classi-

fication learner, a MATLAB toolbox. The options for the optimizer are as follows: opti-

mizer, Bayesian optimization; acquisition function, expected improvement per second 

plus; iterations, 100; training time limit, no; and validation, tenfold cross-validation. The 

accuracy, recall, precision, F1 score, and receiver operating characteristic (ROC) curve, 

with the area under the ROC curve (AUC) as the metric, were analyzed to determine the 

performance of each classification. Additionally, a permutation test was conducted to de-

termine the confidence of the classifiers. The permutation data were repeatedly classified 

for 10,000 iterations for each classifier (2020b, MathWorks Inc., Natick, MA, USA). 

3. Results 

3.1. SSQ Scores 

All SSQ scores (i.e., N, O, D, and total SSQ) in the VR viewing condition are higher 

than those in the 2D viewing condition. As seen in Figure 3, the ANCOVA analysis reveals 

a significant difference in post-viewing condition for N, O, D, and total SSQ scores with 

the pre-viewing condition as a covariate (N score: F1,53 = 75.948, p < 0.001, with a large effect 

size (ηp2 = 0.589); O score: F1,53 = 94.215, p < 0.001, with a large effect size (ηp2 = 0.640); D 

score: F1,53 = 91.157, p < 0.001, with a large effect size (ηp2 = 0.632); total SSQ score: F1,53 = 

192.424, p < 0.001, with a large effect size (ηp2 = 0.784)). 

 

Figure 3. Representation of SSQ scores for MS between the 2D and VR conditions based on the 

ANCOVA test (*** p < 0.001). (A) SSQ items of nausea, oculomotor responses, and disorientation. 

(B) Total SSQ score. 
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3.2. Cardiac Activity 

For the VR viewing condition, the heart rate, SDNN, pNN50, and ln HF are lower 

than those in the 2D viewing condition. Moreover, the ln VLF and ln VLF/ln HF ratios are 

larger than those under the 2D viewing conditions. As seen in Figure 4, the ANCOVA 

analysis reveals a significant difference in post-viewing condition for SDNN, pNN50, ln 

VLF, ln HF, and ln VLF/ln HF ratio with the pre-viewing condition as a covariate (SDNN: 

F1,53 = 15.244, p < 0.001, with a large effect size (ηp2 = 0.223); pNN50: F1,53 = 11.212, p < 0.0083, 

with a large effect size (ηp2 = 0.175); ln VLF: F1,53 = 37.031, p < 0.001, with a large effect size 

(ηp2 = 0.411); ln HF: F1,53 = 56.352, p < 0.001, with a large effect size (ηp2 = 0.515); ln VLF/ln 

HF ratio: F1,53 = 50.513, p < 0.001, with a large effect size (ηp2 = 0.488)]. Additionally, the 

heart rate shows no significant result [F1,53 = 2.456, p < 0.001, with a small effect size (ηp2 = 

0.044)). 

 

Figure 4. Representation of cardiac activity for MS between the 2D and VR conditions based on the 

ANCOVA test (*** p < 0.001 and ** p < 0.0083). (A) RRI (heart rate). (B) SDNN. (C) pNN50. (D) ln 

VLF. (E) ln HF. (F) ln VLF/ln HF ratio. 

3.3. Normalized HRV (Autonomic Balance) 

The autonomic balance was plotted in nine zones of two dimensions using ln VLF (x-

axis) and ln HF (y-axis) values for each 2D and VR viewing condition. Considering the 

results, the 2D condition pattern is stabilized before and after viewing, and the 3D condi-

tion pattern can be observed to be significantly changed. As seen in Figure 5, the auto-

nomic balance is mainly located within the reference zone prior to the 2D viewing condi-

tion and almost remains within that reference zone without significant changes after view-

ing. However, in the VR viewing condition, the autonomic balance moves consistently 

from within the reference zone before viewing to almost into Zone 5 after viewing. From 

these results, VR viewing destabilizes the autonomic balance and shifts it to a generally 

activating sympathetic and deactivating parasympathetic nerve. 
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Figure 5. Comparison of the autonomic balance (normalized HRV) before and after the (A) 2D and 

(B) VR viewing conditions, structured by predefined zones of distribution. 

3.4. Correlation Analysis 

Partial correlation is present between the total SSQ score and significant cardiac fea-

tures in the post-viewing condition, with residual covariates in the pre-viewing condition. 

Figure 6 shows the plot of residuals for the total SSQ score and cardiac features with linear 

regression lines. The correlation coefficients between the total SSQ scores and cardiac fea-

tures (i.e., heart rate, SDNN, pNN50, ln VLF, ln HF, and ln VLF/ln HF ratio) in the post-

viewing condition are significantly different (SDNN: r = −0.381, p < 0.01; pNN50: r = −0.377, 

p < 0.01; ln VLF: r = 0.653, p < 0.001; ln HF: r = −0.711, p < 0.001; ln VLF/ln HF ratio: r = 0.677, 

p < 0.001). Additionally, note that the heart rate is not significantly different (r = −0.160, p 

> 0.05). 
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Figure 6. Results of the partial correlation analysis between the total SSQ score and cardiac features 

(red dotted line, p < 0.001). (A) Heart rate. (B) SDNN. (C) pNN50. (D) ln VLF. (E) ln HF. (F) ln VLF/ln 

HF ratio. 

3.5. Classification Performance and Permutation Test 

In this study, the 2D and VR viewing conditions are classified. The features for the 

classification are only five statistically significant indicators (SDNN, pNN50, ln VLF, ln 

HF, and ln VLF/ln HF ratio). The heart rate is not included in the classification features. 

The optimized hyperparameters are as follows: the data for all methods are standardized; 

the number of neighbors for KNN is 28, and Euclidean distance is applied; the split crite-

rion for DT is maximum deviance reduction, and the maximum number of splits is 2; the 

box constraint level for LSVM is 0.0706. The accuracies, recalls, precisions, f1 scores, and 

AUCs of the four classifiers (LDA, KNN, DT, and LSVM) are listed in Table 2. The ROC 

curves for all classifiers are shown in Figure 7. All the classifiers are significant (p < 0.0001) 

in the permutation test. Figure 8 shows the permutation test’s accuracy distributions for 

all the classifiers (10,000 iterations). 

Table 2. Performance of the different types of classifiers for the 2D and VR viewing conditions. 

 Accuracy Recall Precision F-1 Score AUC 

LDA 85.7 89.3 83.3 86.2 0.94 

KNN 87.5 92.9 83.9 88.2 0.93 

DT 87.5 78.6 95.7 86.3 0.83 

LSVM 91.1 96.4 87.1 91.5 0.96 
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Figure 7. ROC curves for 10-fold cross validation according to the four classifiers (LDA, KNN, DT, 

and LSVM). 

 

Figure 8. Results of the distributions for the four classifiers for the permutation test (p < 0.0001). (A) 

LDA. (B) KNN. (C) DT. (D) LSVM. 

3.6. Real-Time System to Monitor MS 

The developed real-time system for assessing MS comprises a Wireless ECG Ampli-

fier (Bionomadix BN-ECG2 units), a power supply (MP160), and a personal computer for 

analysis. It can classify an MS or normal state in a VR environment using an HMD device. 

This system monitors user behavior via webcam and VR scenes and confirms the results 

of cardiac features in both the time and frequency domains. In addition, the results de-

pending on time for assessing MS can be confirmed using a sliding bar for each time log. 

The system was developed using MATLAB App designer (2020b, Mathworks Inc., Natick, 



Sensors 2022, 22, 6213 12 of 19 
 

 

MA, USA), and signal processing is performed using the MATLAB toolbox (2020b, Math-

works Inc., Natick, MA, USA), as shown in Figure 9. A real-time system was constructed 

to record the onset-trigger for the start of the HMD device using user datagram protocol 

communication to synchronize with the computer for MATLAB. As shown in Figure 10, 

the proposed method for classifying the MS state involves the processes of signal meas-

urement and synchronization, pre-processing, feature extraction, and classification. 

 

Figure 9. Real-time system for assessing MS using cardiac activity. (A) User monitor cam. (B) VR 

scene. (C) ECG raw signals and detecting the R-peaks. (D) HRV by FFT. (E) Results of the cardiac 

time domain indices (i.e., SDNN and pNN50). (F) Results of the cardiac frequency domain indices 

(i.e., ln HF, ln VLF, and ln VLF/ln HF ratio). (G) Results of the nine zone in autonomic balance by 

the normalized HRV. (H) Sliding bar in each time log. (I) The binary decision for MS. 

 

Figure 10. Flowchart for the proposed method of classifying motion sickness state (two-class). 
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4. Discussion 

This paper proposes a quantitative method for measuring MS based on cardiac ac-

tivity and a real-time system for assessing the same. This study confirms whether 2D and 

VR viewing conditions cause MS in subjects based on SSQ scores. The subjects in the VR 

viewing condition demonstrably experience MS but not in the 2D viewing condition, be-

cause the SSQ scores show a statistically significant difference between the 2D and VR 

viewing conditions. This study yields four significant findings: (1) The cardiac features, 

such as SDNN, pNN50, ln VLF, ln HF, and ln VLF/ln HF ratio, show a significant differ-

ence between the 2D and VR viewing conditions based on the ANCOVA analysis. (2) 

Considering the normalized HRV, the autonomic balance is located within the reference 

zone in the normal state. However, it moves almost into Zone 5 in MS. (3) The correlation 

coefficients between the total SSQ score and significant cardiac features are in the range 

of −0.377 to −0.711 (for SDNN, pNN50, and ln HF) or 0.653 to 0.677 (for ln VLF and ln 

VLF/ln HF ratio), indicating significant negative or positive correlations, respectively, in 

the range of weak to strong. (4) Among the algorithms for classifying MS, the highest 

average accuracy, recall, precision, F1 score, and AUC of MS classification results using 

the LSVM achieved 91.1, 96.4, 87.1, 91.5, and 0.96 (10-fold cross validation), respectively. 

The ROC curve is a useful tool when predicting the probability of a binary classification. 

In general, skillful models reveal curves that bow up to the top left of the plot. When the 

curve is close to the point (0,1), it is evaluated to be the perfect model. In addition, recall 

and precision are defined as the ratio of correctly classified positive samples to a total 

number of classified positive samples (either correctly or incorrectly) and the ratio be-

tween the numbers of positive samples correctly classified as positive to the total number 

of positive samples. Recall and precision are metrics used to assess the performance of 

classification algorithms since accuracy alone is not sufficient to understand, and improv-

ing precision typically reduces recall and vice versa. A good classification model needs to 

strike the right balance between precision and recall [59]. F1 score is used by combining 

precision and recall to obtain a balanced classification model. The proposed LSVM-based 

classification model was confirmed to have good performance. The permutation test gen-

erates a null distribution by calculating the accuracy of the classifier on 10,000 different 

permutations from the experimental data set, and the permutation-based p-values are 

used to assess the competence of a classifier. This study confirmed that the classification 

model for the MS reveals a significant result in the permutation test (10,000 iterations, p < 

0.0001). 

A significant difference can be observed in the cardiac activity results of individuals 

with subjective symptoms of MS. In this study, both the SNS’s activation and the PNS’s 

deactivation are determined from the normalized HRV indices in subjects that experience 

MS. The normalized HRV features have been demonstrated to best reflect the SNS and 

PNS activities [60,61]. The findings of this study are consistent with those of previous 

studies in the following aspects: (1) SNS activation (i.e., increasing VLF or LF power) 

[1,62–64] and (2) PNS deactivation (i.e., decreasing HF power) [1,58,61]. Physiological and 

morphological connections exist between the vestibular and autonomic nervous systems 

(i.e., the SNS and PNS) [65,66]. Conflicting inputs of afferent signals from visual, vestibu-

lar, and somatosensory signals cause MS, and MS typically transmits vestibuloautonomic 

responses in humans [67]. The activation of SNS can be interpreted as a defensive reaction 

against the sensation of nausea [68] and is closely related to physiological stress [69]. In a 

study combining HRV and functional magnetic resonance imaging, brain regions of the 

medial prefrontal cortex (MPFC) were reported to correlate significantly with the PNS 

activation during moderate and strong nausea. The MPFC, known to reflect automatic 

modulatory regions, may have an excitatory influence on the autonomic control regions. 

MS is closely associated with the switch from the inhibitory to excitatory influences on the 

cardiovagal outflow [70]. In addition, SDNN reflects both the sympathetic and parasym-

pathetic influences, and pNN50 corresponds to the parasympathetic neural regulation 

from heart activity [71]. This study verifiably demonstrates that the SDNN and pNN50 
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show a significant difference between the MS and normal states, and the results of this 

study agree with those of previous studies [44,72]. Moreover, cardiac-related features are 

verified to be closely related to the phenomenon of MS and are significant indicators for 

quantitative assessment of MS. 

In addition, many previous studies have reported that MS is strongly associated with 

the cognitive load caused by inconsistencies or conflicts among different types of sensory 

information (i.e., visual and motor) [2,16,73–75]. Sensory conflict is a well-known theory 

that explains MS, and it can be caused by a mismatch or inconsistency between the visual 

and vestibular senses during HMD usage [76]. MS can lead to distortions and delays in 

visual information processing by the brain due to a mismatch between sensory infor-

mation; moreover, it can be interpreted as consuming excessive neural resources for pro-

cessing the massive visual information in VR compared to that in 2D [2,16]. Cardiac activ-

ity is strongly associated with cognitive load. The heart transmits sensory information 

related to its activities to the brain based on afferent pathways, and this phenomenon is 

known as heartbeat-evoked potentials (HEPs) [1,77]. Cognitive processing in the brain is 

influenced by the changes in heart rhythm via the afferent and efferent pathways between 

the heart and brain [77–79]. Our previous work demonstrated that increasing cognitive 

load is correlated with an irregular pattern of heart rhythms (that is, increasing SDNN 

and pNN50), increasing the activation of SNS, and decreasing the activation of PNS [40]. 

In previous studies, significant results of cardiac activity have also been confirmed as an 

indicator of cognitive load [80–83]. Thus, the findings in this study related to changes in 

cardiac activity can suggest that the cognitive load can be interpreted as conflict among 

sensory inputs and processing large amounts of visual information. In addition, a quanti-

tative method and real-time system for monitoring MS are developed in this study. Many 

previous studies have attempted to perform quantitative measurements using EEG, HEP, 

vision responses, and multi-modal fusion. These studies reported that MS can be classified 

with 74.7% to 99.1% accuracy [2,16,24–35]. In this study, a competitive classification accu-

racy (91.1%) of MS compared to previous studies was achieved using a single measure-

ment. In addition, the approach used in previous studies has high complexity and disad-

vantages for measuring or evaluating MS, such as the measurements requiring sensor at-

tachments, as well as low usability compared to cardiac activity. The proposed method 

also has the advantage of minimizing limitations such as complex and expensive equip-

ment, inconvenience, and the burden of sensor attachment, which can be further mini-

mized by replacing the implemented ECG sensor with photoplethysmography, compared 

to approaches using EEG or multimodal fusion, as in past studies. The method proposed 

in this study cannot be judged to have improved performance or contribution compared 

previous studies, but there will be differences in potential fields of application based on 

the advantages and disadvantages of each measurement method. For example, EEG or 

other features can be used primarily for precise measurements of MS because they have 

the advantage of measuring more important and significant data. We believe that the pro-

posed method will have a contribution that can be applied to fields requiring fast and 

convenient measurement of MS based on usability, which is simple to measure. In addi-

tion, the symptoms of MS are known to be caused by various factors, such as user charac-

teristics (i.e., viewing time, age, gender), viewing environment (i.e., gaze angle, fixation, 

field of view), device, and VR content (i.e., resolution). The relationship between the MS 

state and these causal factors should be verified to minimize the sensitivity of the MS. To 

verify each condition’s effect on the MS, the development of a methodology for quantita-

tively evaluating the MS state should be preceded. Thus, the proposed method can con-

tribute to improving the VR experience for viewers by minimizing MS. 

This study has several limitations. (1) This study selected an SSQ questionnaire to 

perform the subjective measurement of MS, because the SSQ questionnaire is the best-

known test for the subjective measurement for MS. However, traditional SSQ question-

naires were developed for measuring cybersickness and may differ significantly from to-
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day’s VR experience. In future studies, recently revised questionnaires need to be consid-

ered (e.g., virtual reality sickness questionnaire [84]), including the traditional SSQ ques-

tionnaire. (2) Previous studies related to MS have often reported conflicting results. For 

example, after experiencing the phenomena of MS, one study reported an increase in HR 

[36], whereas another identified a decrease in HR [37]. This study confirmed a decrease in 

HR consistent with the previous study [37], but it showed no statistically significant dif-

ference between 2D and HMD. These discrepancies in study conclusions may be at-

tributed in part to experimental and procedural differences [85]. Alternatively, they could 

be attributable to differences in VR content or HMD device. Thus, it cannot be determined 

that the proposed method can measure all of the MS symptoms caused by various condi-

tions. This limitation needs to be validated via future studies. 

5. Conclusions 

This paper proposes a method for assessing MS caused by watching VR content on 

an HMD using cardiac features. This study demonstrates a significant difference in car-

diac features between the MS and normal states, and the classification performance 

achieves an average accuracy of 91.1%. In addition, a real-time system was developed for 

continuously monitoring MS using significant cardiac features. The proposed method can 

quantify the level of MS severity and determine the optimal viewing factors of a VR envi-

ronment (i.e., viewer characteristics, viewing condition, VR content factors, and HMD de-

vice factors) to minimize the symptoms of MS. This research will consequently help im-

prove the viewing environment and lead to the establishment of viewer-friendly VR. 

However, since MS is strongly correlated with various factors, such as age and gender 

[86], further research should be conducted to increase the generality of the classifiers in 

subjects of different ages and genders.  
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Appendix A 

Table A1. Simulator sickness questionnaire [45]. Instruction: Circle how much each symptom below 

is affecting you right now. 

SSQ Item None: 0, Slight: 1, Moderate: 2, Severe: 3 

General discomfort None□ Slight□ Moderate□ Severe□ 

Fatigue None□ Slight□ Moderate□ Severe□ 

Headache None□ Slight□ Moderate□ Severe□ 

Eyestrain None□ Slight□ Moderate□ Severe□ 

Difficulty focusing None□ Slight□ Moderate□ Severe□ 

Increased salivation None□ Slight□ Moderate□ Severe□ 
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Sweating None□ Slight□ Moderate□ Severe□ 

Nausea None□ Slight□ Moderate□ Severe□ 

Difficulty concentrating None□ Slight□ Moderate□ Severe□ 

Fullness of Head None□ Slight□ Moderate□ Severe□ 

Blurred vision None□ Slight□ Moderate□ Severe□ 

Dizziness with eye open None□ Slight□ Moderate□ Severe□ 

Dizziness with eye closed None□ Slight□ Moderate□ Severe□ 

Vertigo None□ Slight□ Moderate□ Severe□ 

Stomach awareness None□ Slight□ Moderate□ Severe□ 

Burping None□ Slight□ Moderate□ Severe□ 
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