Towards an Automatic Pollen Detection System in Ambient Air Using Scattering Functions in the Visible Domain
Abstract
:1. Introduction
2. Data and Methods
2.1. Laboratory Experimental Set-Up for the Scattering Curves of Pollens
2.2. Samples
3. Results
3.1. Polarization Curves
3.2. Intensity Curves
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; van Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar] [CrossRef]
- Sofiev, M.; Bergmann, K. Allergenic Pollen, a Review of the Production, Release, Distribution, and Health Impacts; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Traidl-Hoffmann, C.; Kasche, A.; Menzel, A.; Jakob, T.; Thiel, M.; Ring, J.; Behrendt, H. Impact of Pollen on Human Health; More Than Allergen Carriers? Int. Arch. Allergy Immunol. 2003, 131, 1–13. [Google Scholar] [CrossRef]
- Pawankar, R. Allergic diseases and asthma; a global public health concern and a call to action. World Allergy Org. J. 2014, 7, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lake, I.R.; Jones, N.R.; Agnew, M.; Goodess, C.M.; Giorgi, F.; Hamaoui-Laguel, L.; Semenov, M.A.; Solomon, F.; Storkey, J.; Vautard, R.; et al. Climate Change and Future Pollen Allergy in Europe. Environ. Health Persp. 2017, 125, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Sedghy, F.; Varasteh, A.R.; Sankian, M.; Moghadam, M. Interaction Between Air Pollutants and Pollen Grains, the Role on the Rising Trend in Allergy. Rep. Biochem. Mol. Biol. 2018, 6, 219–224. [Google Scholar]
- Blackley, C.H. Experimental Researches on the Causes and Nature of Catarrhus Aestivus (Hay Fever or Hay Asthma); Baillière Tindall &Cox: London, UK, 1873. [Google Scholar]
- Giesecke, T.; Fontana, S.L.; van der Knaap, W.O.; Pardoe, H.S.; Pidek, I.A. From early pollen trapping experiments to the Pollen Monitoring Programme. Veget. Hist. Archaeobot. 2010, 19, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Dell’Anna, R.; Lazzeri, P.; Frisanco, M.; Monti, F.; Malvezzi Campeggi, F.; Gottardini, E.; Bersani, M. Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Anal. Bioanal. Chem. 2009, 394, 1443–1452. [Google Scholar] [CrossRef]
- Schulte, F.; Lingott, J.; Panne, U.; Kneipp, J. Chemical characterization and classification of Pollen. Anal. Chem. 2008, 80, 9551–9556. [Google Scholar] [CrossRef] [PubMed]
- Šaulienė, I.; Šukienė, L.; Daunys, G.; Valiulis, G.; Vaitkevičius, L.; Matavulj, P.; Brdar, S.; Panic, M.; Sikoparija, B.; Clot, B.; et al. Automatic pollen recognition with the Rapid-E particle counter; the first-level procedure; experience and next steps. Atmos. Meas. Tech. 2019, 12, 3435–3452. [Google Scholar] [CrossRef] [Green Version]
- Sauvageat, E.; Zeder, Y.; Tummon, F.; Clot, B.; Crouzy, B.; Konzelmann, T.; Lieberherr, G.; Tummon, F.; Vasilatou, K. Online pollen monitoring using digital holography. Atmos. Meas. Tech. 2020, 13, 1539–1550. [Google Scholar] [CrossRef] [Green Version]
- Cholleton, D.; Bialic, E.; Dumas, A.; Kaluzny, P.; Rairoux, P.; Miffre, A. Laboratory Evaluation of the Scattering Matrix of Ragweed; Ash; Birch and Pine Pollens towards Pollen Classification. Atmos. Meas. Tech. 2021, 15, 1021–1032. [Google Scholar] [CrossRef]
- Matsuda, S.; Kawashima, S. Relationship between laser light scattering and physical properties of airborne pollen. J. Aerosol Sci. 2018, 124, 122–132. [Google Scholar] [CrossRef]
- Miki, K.; Kawashima, S. Estimation of pollen counts from light scattering intensity when sampling multiple pollen taxa—establishment of an automated multi-taxa pollen counting estimation system (AME system). Atmos. Meas. Tech. 2021, 14, 685–693. [Google Scholar] [CrossRef]
- Kawashima, S.; Thibaudon, M.; Matsuda, S.; Fujita, T.; Lemonis, N.; Clot, B.; Oliver, G. Automated pollen monitoring system using laser optics for observing seasonal changes in the concentration of total airborne pollen. Aerobiologia 2017, 33, 351–362. [Google Scholar] [CrossRef]
- Renard, J.-B.; Michoud, V.; Giacomoni, J. Vertical profiles of pollution particle concentrations in the boundary layer above Paris (France) from the optical aerosol counter LOAC onboard a touristic balloon. Sensors 2020, 20, 1111. [Google Scholar] [CrossRef] [Green Version]
- Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Jeannot, M.; Couté, B.; Akiki, R.; et al. LOAC: A light aerosols counter for ground-based and balloon measurements of the size distribution and of the main nature of atmospheric particles, 1. Principle of measurements and instrument evaluation. Atmos. Meas. Tech. 2016, 9, 1721–1742. [Google Scholar] [CrossRef] [Green Version]
- Skjøth, C.A.; Kurganskiy, A.; Grundström, M.; Werner, M.; Adams-Groom, B. Air Pollution Affecting Pollen Concentrations through Radiative Feedback in the Atmosphere. Atmosphere 2021, 12, 1376. [Google Scholar] [CrossRef]
- Worms, J.-C.; Renard, J.-B.; Hadamcik, E.; Levasseur-Regourd, A.C.; Gayet, J.-F. Results of the PROGRA2 experiment; an experimental study in microgravity of scattered polarised light by dust particles with large size parameter. Icarus 1999, 142, 281–297. [Google Scholar] [CrossRef]
- Renard, J.-B.; Worms, J.-C.; Lemaire, T.; Hadamcik, E.; Huret, N. Light scattering by dust particles in microgravity; polarization and brightness imaging with the new version of the PROGRA2 instrument. Appl. Opt. 2002, 41, 609–618. [Google Scholar] [CrossRef]
- Hadamcik, E.; Renard, J.-B.; Worms, J.-C.; Levasseur-Regourd, A.C.; Masson, M. Polarization of light scattered by fluffy particles (PROGRA2 experiment). Icarus 2002, 155, 497–508. [Google Scholar] [CrossRef]
- Renard, J.-B.; Duée, C.; Bourrat, X.; Haas, H.; Surcin, J.; Couté, B. Brightness and polarization scattering functions of different natures of asbestos in the visible and near infrared domain. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107159. [Google Scholar] [CrossRef]
- Lurton, T.; Renard, J.-B.; Vignelles, D.; Jeannot, M.; Akiki, R.; Mineau, J.-L.; Tonnelier, T. Light scattering at small angles by atmospheric irregular particles; modelling and laboratory measurements. Atmos. Meas. Tech. 2014, 7, 931–939. [Google Scholar] [CrossRef] [Green Version]
- Renard, J.-B.; Geffrin, J.-M.; Tobon Valencia, V.; Tortel, H.; Ménard, F.; Rannou, P.; Milli, J.; Berthet, G. Number of independent measurements required to obtain reliable mean scattering properties of irregular particles having a small size parameter, using microwave analogy measurements. J. Quant. Spectrosc. Radiat. Transf. 2021, 272, 107718. [Google Scholar] [CrossRef]
- Liu, C.; Yin, Y. Inherent optical properties of pollen particles: A case study for the morning glory pollen. Opt. Express 2016, 24, A104–A113. [Google Scholar] [CrossRef] [PubMed]
- Gómez Martín, J.C.; Guirado, D.; Frattin, E.; Bermudez-Edo, M.; Cariñanos Gonzalez, P.; Olmo Reyes, F.J.; Nousiainen, T.; Gutiérrez, P.J.; Moreno, F.; Muñoz, O. On the application of scattering matrix measurements to detection and identification of major types of airborne aerosol particles; Volcanic ash, desert dust and pollen. J. Quant. Spect. Rad. Trans. 2021, 271, 107761. [Google Scholar] [CrossRef]
- Renard, J.-B.; Hadamcik, E.; Couté, B.; Jeannot, M.; Levasseur-Regourd, A.C. Wavelength dependence of linear polarization in the visible and near infrared domain for large levitating grains (PROGRA2 instruments). J. Quant. Spectrosc. Radiat. Transf. 2014, 146, 424–430. [Google Scholar] [CrossRef]
- Volten, H.; Muňoz, O.; Rol, E.; de Haan, J.F.; Vassen, W.; Hovenier, J.W. Scattering matrices of mineral aerosol particles at 441.6 and 632.8 nm. J. Geophys. Res. 2001, 106, 17375–17401. [Google Scholar] [CrossRef] [Green Version]
- Hadamcik, E.; Renard, J.-B.; Levasseur-Regourd, A.C.; Lasue, J.; Alcoufffe, G.; Francis, M. Light scattering by agglomerates; Interconnecting size and absorption effects (PROGRA2 experiment). J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1755–1770. [Google Scholar] [CrossRef]
- Renard, J.-B.; Francis, M.; Hadamcik, E.; Daugeron, D.; Couté, B.; Gaubicher, B.; Jeannot, M. Scattering properties of sands. 2. Result for sands from different origins. Appl. Opt. 2010, 49, 3552–3559. [Google Scholar] [CrossRef]
- Society for the Promotion of Palynological Research in Austria (AutPal). Available online: https://www.paldat.org/ (accessed on 1 April 2022).
Family | Common Name | Size (µm) |
---|---|---|
Grass | Barley | 50 |
Corn | 100 | |
Couch grass | 45 | |
Fescue | 40 | |
Orchard grass | 35 | |
Timothy grass | 40 | |
Velvet grass | 30 | |
Vernal grass | 50 | |
Wheat | 60 | |
Weed | Mugwort | 25 |
Plantain | 30 | |
Ragweed | 20 | |
Wall pellitory | 15 | |
Tree | Alder | 25 |
Ash | 20 | |
Birch | 25 | |
Cypress | 25 | |
Fir | 75 | |
Hazel | 25 | |
Olive tree | 25 | |
Plane tree | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renard, J.-B.; El Azari, H.; Richard, J.; Lauthier, J.; Surcin, J. Towards an Automatic Pollen Detection System in Ambient Air Using Scattering Functions in the Visible Domain. Sensors 2022, 22, 4984. https://doi.org/10.3390/s22134984
Renard J-B, El Azari H, Richard J, Lauthier J, Surcin J. Towards an Automatic Pollen Detection System in Ambient Air Using Scattering Functions in the Visible Domain. Sensors. 2022; 22(13):4984. https://doi.org/10.3390/s22134984
Chicago/Turabian StyleRenard, Jean-Baptiste, Houssam El Azari, Jérôme Richard, Johann Lauthier, and Jérémy Surcin. 2022. "Towards an Automatic Pollen Detection System in Ambient Air Using Scattering Functions in the Visible Domain" Sensors 22, no. 13: 4984. https://doi.org/10.3390/s22134984
APA StyleRenard, J.-B., El Azari, H., Richard, J., Lauthier, J., & Surcin, J. (2022). Towards an Automatic Pollen Detection System in Ambient Air Using Scattering Functions in the Visible Domain. Sensors, 22(13), 4984. https://doi.org/10.3390/s22134984