MIMO Radio Frequency Identification: A Brief Survey
Abstract
:1. Introduction
- A study of various estimation algorithms being employed in case of multi-antenna RFID interrogators.
- A brief look at various anti-collision algorithms and their viability.
- A brief look at the recent advancements in the domain of security.
2. Estimation Techniques
Paper | Algorithm | Frequency Band | Standard | Bandwidth | Tx Power | MIMO | Gain |
---|---|---|---|---|---|---|---|
Kim et al. [24] | Maximal Ratio Combining | 917–920.6 MHz | - | 600 kHz | 30 dBm | 3 × 3 2 × 2 | 36% 60% |
Grebien et al. [28] | Maximum Likelihood | 865–928 MHz 2.45 GHz | EPCglobal C1 Gen-2 | 25 MHz | - 8 dBm | 4 × 4 | 80% |
Duangsuwan et al. [29] | Minimal Mean Square Error Zero Forcing | 2.4–2.5 GHz | EPCglobal Gen-1 | - | −20 dBm | 2 × 2 | 20% |
Muzamane et al. [30] | Maximum Likelihood | 902–928 MHz | Custom MIMO Tag | - | - | 1 × 2 × 1 | - |
Khelladi et al. [31] | Regularized Least Squares | - | EPCglobal C1 Gen-2 | - | - | 2 × 2 4 × 4 | 340% |
Chen et al. [32] | BABF and Custom Estimator | 915 MHz | EPCglobal C1 Gen-2 | - | 30 dBm | 1 × 2, 2 × 1 2 × 3, 3 × 2 | 90% |
3. Anti-Collision Techniques
4. Security
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinstein, R. Rfid: A Technical Overview and Its Application to the Enterprise. IT Prof. 2005, 7, 27–33. [Google Scholar] [CrossRef]
- Landt, J. The History of Rfid. IEEE Potentials 2005, 24, 8–11. [Google Scholar] [CrossRef]
- Want, R. An Introduction to Rfid Technology. IEEE Pervasive Comput. 2006, 5, 25–33. [Google Scholar] [CrossRef]
- Domdouzis, K.; Kumar, B.; Anumba, C. Radio-Frequency Identification (Rfid) Applications: A Brief Introduction. Adv. Eng. Inform. 2007, 21, 350–355. [Google Scholar] [CrossRef]
- Nath, B.; Reynolds, F.; Want, R. Rfid Technology and Applications. IEEE Pervasive Comput. 2006, 5, 22–24. [Google Scholar] [CrossRef]
- Klaus, F. Rfid Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification; Wiley: Hoboken, NJ, USA, 2003; ISBN 0470844027. [Google Scholar]
- Deak, G.; Curran, K.; Condell, J. A Survey of Active and Passive Indoor Localisation Systems. Comput. Commun. 2012, 35, 1939–1954. [Google Scholar] [CrossRef]
- Chawla, V.; Ha, D.S. An Overview of Passive Rfid. IEEE Commun. Mag. 2007, 45, 11–17. [Google Scholar] [CrossRef]
- Nikitin, P.V.; Rao, K.V.S. Performance Limitations of Passive Uhf Rfid Systems. In Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, USA, 9–14 July 2006. [Google Scholar]
- De Vita, G.; Iannaccone, G. Design Criteria for the Rf Section of Uhf and Microwave Passive Rfid Transponders. IEEE Trans. Microw. Theory 2005, 53, 2978–2990. [Google Scholar] [CrossRef]
- Yeager, D.; Zhang, F.; Zarrasvand, A.; Otis, B.P. A 9.2 µa Gen 2 Compatible Uhf Rfid Sensing Tag with−12dbm Sensitivity and 1.25 µvrms Input-Referred Noise Floor. In Proceedings of the 2010 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 7–11 February 2010. [Google Scholar]
- Nikitin, P.V.; Rao, K.V.S. Gain Measurement of Antennas Using Rfid. In Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 3–8 July 2011. [Google Scholar]
- Jones, A.K.; Dontharaju, S.; Tung, S.; Hawrylak, P.J.; Mats, L.; Hoare, R.; Cain, J.; Mickle, M. Passive Active Radio Frequency Identification Tags. Int. J. Radio Freq. Identif. Technol. 2006, 1, 52–73. [Google Scholar] [CrossRef]
- Griffin, J.D.; Durgin, G.D. Multipath Fading Measurements for Multi-Antenna Backscatter Rfid at 5.8 Ghz. In Proceedings of the 2009 IEEE International Conference on RFID, Orlando, FL, USA, 27–28 April 2009. [Google Scholar]
- Kim, D.; Ingram, M.A.; Smith, W.W. Measurements of Small-Scale Fading and Path Loss for Long Range Rf Tags. IEEE Trans. Antennas 2003, 51, 1740–1749. [Google Scholar]
- Griffin, J.D.; Durgin, G.D. Gains for Rf Tags Using Multiple Antennas. IEEE Trans. Antennas 2008, 56, 563–570. [Google Scholar] [CrossRef]
- Bekkali, A.; Zou, S.; Kadri, A.; Crisp, M.; Penty, R.V. Performance Analysis of Passive Uhf Rfid Systems under Cascaded Fading Channels and Interference Effects. IEEE Trans. Wirel. Commun. 2014, 14, 1421–1433. [Google Scholar] [CrossRef] [Green Version]
- Lasser, G.; Langwieser, R.; Mecklenbräuker, C.F. Automatic Leaking Carrier Canceller Adjustment Techniques. EURASIP J. Embed. Syst. 2013, 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Phillips, T.; Karygiannis, T.; Kuhn, R. Security Standards for the Rfid Market. IEEE Secur. Priv. 2005, 3, 85–89. [Google Scholar] [CrossRef]
- Zhang, J.; Periaswamy, S.C.G.; Mao, S.; Patton, J. Standards for Passive Uhf Rfid. GetMobile Mob. Comput. Commun. 2020, 23, 10–15. [Google Scholar] [CrossRef]
- He, C.; Chen, X.; Wang, Z.J.; Su, W. On the Performance of Mimo Rfid Backscattering Channels. EURASIP J. Wirel. Commun. Netw. 2012, 2012, 357. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Kaiser, T. A Space-Time Coding Approach for Rfid Mimo Systems. EURASIP J. Embed. Syst. 2012, 2012, 9. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.; Jang, B.-J. Link Budget Calculation for Uhf Rfid Systems. Microw. J. 2008, 51, 64–74. [Google Scholar]
- Kim, D.; Jo, H.; Yoon, H.; Mun, C.; Jang, B.; Yook, J. Reverse-Link Interrogation Range of a Uhf Mimo-Rfid System in Nakagami-M Fading Channels. IEEE Trans. Ind. Electron. 2010, 57, 1468–1477. [Google Scholar]
- Langwieser, R.; Angerer, C.; Scholtz, A.L. A Uhf Frontend for Mimo Applications in Rfid. In Proceedings of the 2010 IEEE Radio and Wireless Symposium (RWS), New Orleans, LA, USA, 10–14 January 2010. [Google Scholar]
- Poutanen, J.; Salmi, J.; Haneda, K.; Kolmonen, V.-M.; Vainikainen, P. Angular and Shadowing Characteristics of Dense Multipath Components in Indoor Radio Channels. IEEE Trans. Antennas 2010, 59, 245–253. [Google Scholar] [CrossRef]
- Li, J.; Ai, B.; He, R.; Yang, M.; Zhong, Z. On Modeling of Dense Multipath Component for Indoor Massive Mimo Channels. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 526–530. [Google Scholar] [CrossRef]
- Grebien, S.; Galler, F.; Neunteufel, D.; Mühlmann, U.; Maier, S.J.; Arthaber, H.; Witrisal, K. Experimental Evaluation of a Uhf-Mimo Rfid System for Positioning in Multipath Channels. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019. [Google Scholar]
- Duangsuwan, S.; Promwong, S. Rfid Reader Receiver Using Blind Signal Estimation for Multiuser Detection. Int. J. Inf. Electron. Eng. 2014, 4, 153. [Google Scholar] [CrossRef]
- Muzamane, H.A.; Liu, H.-C. Experimental Results and Performance Analysis of a 1 × 2 × 1 Uhf Mimo Passive Rfid System. Sensors 2021, 21, 6308. [Google Scholar] [CrossRef] [PubMed]
- Khelladi, M.F.; Metref, A.; Fergani, B. Request Efficient Channel Estimation Method for Mimo Passive Rfid Systems. In Proceedings of the 2015 IEEE International Conference on RFID (RFID), San Diego, CA, USA, 15–17 April 2015. [Google Scholar]
- Chen, S.; Zhong, S.; Yang, S.; Wang, X. A Multiantenna Rfid Reader with Blind Adaptive Beamforming. IEEE Internet Things J. 2016, 3, 986–996. [Google Scholar] [CrossRef]
- Boyer, C.; Roy, S. —Invited Paper—Backscatter Communication and Rfid: Coding, Energy, and Mimo Analysis. IEEE Trans. Commun. 2013, 62, 770–785. [Google Scholar] [CrossRef]
- Su, J.; Sheng, Z.; Leung, V.C.M.; Chen, Y. Energy Efficient Tag Identification Algorithms for Rfid: Survey, Motivation and New Design. IEEE Wirel. Commun. Lett. 2019, 26, 118–124. [Google Scholar] [CrossRef]
- Chen, W. An Accurate Tag Estimate Method for Improving the Performance of an Rfid Anticollision Algorithm Based on Dynamic Frame Length Aloha. IEEE Trans. Autom. Sci. Eng. 2009, 6, 9–15. [Google Scholar] [CrossRef]
- Yu, J.; Chen, L. Stability Analysis of Frame Slotted Aloha Protocol. In Tag Counting and Monitoring in Large-Scale Rfid Systems: Theoretical Foundations and Algorithm Design; Yu, J., Chen, L., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 7–42. [Google Scholar]
- Wu, H.; Zeng, Y. Bayesian Tag Estimate and Optimal Frame Length for Anti-Collision Aloha Rfid System. IEEE Trans. Autom. Sci. Eng. 2010, 7, 963–969. [Google Scholar] [CrossRef]
- Bharadia, D.; Katti, S. Full Duplex {Mimo} Radios. In Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), Seattle, WA, USA, 2–4 April 2014. [Google Scholar]
- Zeng, Y.; Ding, H. A Physical-Layer Uhf Rfid Tag Collision Resolution Based on Miller Code. Wirel. Commun. Mob. Comput. 2021, 2021, 6636846. [Google Scholar] [CrossRef]
- Salah, H.; Ahmed, H.A.; Robert, J.; Heuberger, A. Multi-Antenna Uhf Rfid Reader Utilizing Stimulated Rate Tolerance. IEEE J. Radio Freq. Identif. 2017, 1, 124–134. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, C. Research on Rfid Collision Detection Algorithm Based on the Underdetermined Blind Separation. In Proceedings of the 2016 4th International Conference on Machinery, Materials and Computing Technology, Hangzhou, China, 23–24 January 2016. [Google Scholar]
- Su, J.; Sheng, Z.; Xie, L. A Collision-Tolerant-Based Anti-Collision Algorithm for Large Scale Rfid System. IEEE Commun. Lett. 2017, 21, 1517–1520. [Google Scholar] [CrossRef]
- Deng, W.; Li, Z.; Xia, Y.; Wang, K.; Pei, W. A Widely Linear Mmse Anti-Collision Method for Multi-Antenna Rfid Readers. IEEE Commun. Lett. 2019, 23, 644–647. [Google Scholar] [CrossRef]
- Salah, H.; Robert, J.; Ahmed, H.A.; Mahmoud, K.; Heuberger, A. Theoretical Performance Evaluation of Uhf-Rfid Systems with Multi-Antenna Maximum-Likelihood Decoding. IEEE J. Radio Freq. Identif. 2019, 3, 108–117. [Google Scholar] [CrossRef]
- Deng, W.; Xia, Y.; Li, Z.; Pu, R.; Pei, W. A High-Dimensional Collided Tag Quantity Estimation Method for Multi-Antenna Rfid Systems. IEEE Commun. Lett. 2021, 25, 132–136. [Google Scholar] [CrossRef]
- Su, J.; Sheng, Z.; Liu, A.X.; Han, Y.; Chen, Y. A Group-Based Binary Splitting Algorithm for Uhf Rfid Anti-Collision Systems. IEEE Trans. Commun. 2020, 68, 998–1012. [Google Scholar] [CrossRef] [Green Version]
- Abbasian, A.; Safkhani, M. Cncaa: A New Anti-Collision Algorithm Using Both Collided and Non-Collided Parts of Information. Comput. Netw. 2020, 172, 107159. [Google Scholar] [CrossRef]
- Klair, D.K.; Chin, K.-W.; Raad, R. A Survey and Tutorial of Rfid Anti-Collision Protocols. IEEE Commun. Surv. Tutor. 2010, 12, 400–421. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Wang, M.; Yan, J.; Zhu, Y.; Li, Z. Independent Component Analysis Based Tag Anti-Collision Algorithm in Multi-Antenna Radio Frequency Identification. In Proceedings of the 2015 5th International Conference on Information Science and Technology (ICIST), Changsha, China, 24–26 April 2015. [Google Scholar]
- Ullah, S.; Alsalih, W.; Alsehaim, A.; Alsadhan, N. A Review of Tags Anti-Collision and Localization Protocols in Rfid Networks. J. Med. Syst. 2012, 36, 4037–4050. [Google Scholar] [CrossRef]
- Angerer, C.; Langwieser, R.; Rupp, M. Rfid Reader Receivers for Physical Layer Collision Recovery. IEEE Trans. Commun. 2010, 58, 3526–3537. [Google Scholar] [CrossRef]
- Bratuž, I.; Vodopivec, A.; Trost, A. Resolving Collision in Epcglobal Class-1 Gen-2 System by Utilizing the Preamble. IEEE Trans. Wirel. Commun. 2014, 13, 5330–5339. [Google Scholar] [CrossRef]
- Šolić, P.; Maras, J.; Radić, J.; Blažević, Z. Comparing Theoretical and Experimental Results in Gen2 Rfid Throughput. IEEE Trans. Autom. Sci. Eng. 2016, 14, 349–357. [Google Scholar] [CrossRef]
- Eom, J.B.; Yim, S.-B.; Lee, T.J. An Efficient Reader Anticollision Algorithm in Dense Rfid Networks with Mobile Rfid Readers. IEEE Trans. Ind. Electron. 2009, 56, 2326–2336. [Google Scholar]
- Bueno-Delgado, M.V.; Pavón-Mariño, P. A Maximum Likelihood-Based Distributed Protocol for Passive Rfid Dense Reader Environments. J. Supercomput. 2013, 64, 456–476. [Google Scholar] [CrossRef]
- Landaluce, H.; Arjona, L.; Perallos, A.; Falcone, F.; Angulo, I.; Muralter, F. A Review of Iot Sensing Applications and Challenges Using Rfid and Wireless Sensor Networks. Sensors 2020, 20, 2495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, F.; Fan, L.; Lei, X.; Karagiannidis, G.K. Secure Communications for Multi-Tag Backscatter Systems. IEEE Wirel. Commun. Lett. 2019, 8, 1146–1149. [Google Scholar] [CrossRef]
- Saad, W.; Han, Z.; Poor, H.V. On the Physical Layer Security of Backscatter Rfid Systems. In Proceedings of the 2012 International Symposium on Wireless Communication Systems (ISWCS), Paris, France, 28–31 August 2012. [Google Scholar]
- Wyner, A.D. The Wire-Tap Channel. Bell Syst. Tech. J. 1975, 54, 1355–1387. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, H.; Zhang, Y.; Han, Z. Physical Layer Security in Mimo Backscatter Wireless Systems. IEEE Trans. Wirel. Commun. 2016, 15, 7547–7560. [Google Scholar] [CrossRef]
- Luo, Y.; Pu, L.; Wang, G.; Zhao, Y. Rf Energy Harvesting Wireless Communications: Rf Environment, Device Hardware and Practical Issues. Sensors 2019, 19, 3010. [Google Scholar] [CrossRef] [Green Version]
- Francillon, A.; Danev, B.; Capkun, S. Relay Attacks on Passive Keyless Entry and Start Systems in Modern Cars. In Proceedings of the Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 6–9 February 2011. [Google Scholar]
- Wang, J.; Lounis, K.; Zulkernine, M. Cskes: A Context-Based Secure Keyless Entry System. In Proceedings of the 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Milwaukee, WI, USA, 15–19 July 2019. [Google Scholar]
- Jeong, H.; So, J. Channel Correlation-Based Relay Attack Avoidance in Vehicle Keyless-Entry Systems. Electron. Lett. 2018, 54, 395–397. [Google Scholar] [CrossRef]
- Jadoon, A.K.; Wang, L.; Zia, M.A. Hb-Protocol Based Advance Security System for Pkes Using Multiple Antennas. China Commun. 2018, 15, 98–110. [Google Scholar]
- Hopper, N.J.; Blum, M. A Secure Human-Computer Authentication Scheme; Tech. Rep. CMU-CS-00-139; Carnegie Mellon University: Pittsburgh, PA, USA, 2000. [Google Scholar]
- Munilla, J.; Peinado, A. Hb-Mp: A Further Step in the Hb-Family of Lightweight Authentication Protocols. Comput. Netw. 2007, 51, 2262–2267. [Google Scholar] [CrossRef]
- Mangal, V.; Atzeni, G.; Kinget, P.R. Multi-Antenna Directional Backscatter Tags. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Madrid, Spain, 23–27 September 2018. [Google Scholar]
- Pateriya, R.K.; Sharma, S. The Evolution of Rfid Security and Privacy: A Research Survey. In Proceedings of the 2011 International Conference on Communication Systems and Network Technologies, Katra, India, 3–5 June 2011. [Google Scholar]
- Munoz-Ausecha, C.; Ruiz-Rosero, J.; Ramirez-Gonzalez, G. Rfid Applications and Security Review. Computation 2021, 9, 69. [Google Scholar] [CrossRef]
- Juels, A. Rfid Security and Privacy: A Research Survey. IEEE J. Sel. Areas Commun. 2006, 24, 381–394. [Google Scholar] [CrossRef]
Paper | Algorithm | Standard | Channel | Rx Antennas |
---|---|---|---|---|
Salah et al. [40] | NME + MF | EPCglobal C1 Gen-2 | Double Rayleigh | 2, 4 |
Cheng et al. [41] | Two Step Method | - | Noise | 3 |
Jian et al. [42] | CE-DFSA | EPCglobal C1 Gen-2 | Block Fading | - |
Deng et al. [43] | WLMMSE | ISO 18000-6C | Quasi-static Rayleigh | 4 |
Salah et al. [44] | ML | EPCglobal C1 Gen-2 | Double Rayleigh | 2, 4, 8 |
Deng et al. [45] | DBSCAN | EPCglobal C1 Gen-2 | Uncorrelated Rayleigh | 4 |
Su et al. [46] | GBSA | EPCglobal C1 Gen-2 | Noise-less | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, M.; Murad, M.; Alhuthali, S.A.H.; Al-Osaimi, F.R.; Aldosari, F. MIMO Radio Frequency Identification: A Brief Survey. Sensors 2022, 22, 4115. https://doi.org/10.3390/s22114115
Alotaibi M, Murad M, Alhuthali SAH, Al-Osaimi FR, Aldosari F. MIMO Radio Frequency Identification: A Brief Survey. Sensors. 2022; 22(11):4115. https://doi.org/10.3390/s22114115
Chicago/Turabian StyleAlotaibi, Majid, Mohsin Murad, Shakir A. H. Alhuthali, Faisal R. Al-Osaimi, and Fahd Aldosari. 2022. "MIMO Radio Frequency Identification: A Brief Survey" Sensors 22, no. 11: 4115. https://doi.org/10.3390/s22114115
APA StyleAlotaibi, M., Murad, M., Alhuthali, S. A. H., Al-Osaimi, F. R., & Aldosari, F. (2022). MIMO Radio Frequency Identification: A Brief Survey. Sensors, 22(11), 4115. https://doi.org/10.3390/s22114115