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Abstract: In a world of rapidly changing technologies, reliance on complex engineered systems has
become substantial. Interactions associated with such systems as well as associated manufacturing
processes also continue to evolve and grow in complexity. Consider how the complexity of manu-
facturing processes makes engineered systems vulnerable to cascading and escalating failures;
truly a highly complex and evolving system of systems. Maintaining quality and reliability requires
considerations during product development, manufacturing processes, and more. Monitoring the
health of the complex system while in operation/use is imperative. These considerations have
compelled designers to explore fault-mechanism models and to develop corresponding counter-
measures. Increasingly, there has been a reliance on embedded sensors to aid in prognosticating
failures, to reduce downtime, during manufacture and system operation. However, the accuracy of
estimating the remaining useful life of the system is highly dependent on the quality of the data
obtained. This can be enhanced by increasing the number of sensors used, according to information
theory. However, adding sensors increases total costs with the cost of the sensors and the costs
associated with information-gathering procedures. Determining the optimal number of sensors,
associated operating and data acquisition costs, and sensor-configuration are nontrivial. It is also
imperative to avoid redundant information due to the presence of additional sensors and the
efficient display of information to the decision-maker. Therefore, it is necessary to select a subset of
sensors that not only reduce the cost but are also informative. While progress has been made in the
sensor selection process, it is limited to either the type of the sensor, number of sensors or both.
Such approaches do not address specifications of the required sensors which are integral to the
sensor selection process. This paper addresses these shortcomings through a new method,
OFCCaTSs, to avoid the increased cost associated with health monitoring and to improve its accu-
racy. The proposed method utilizes a scalable multi-objective framework for sensor selection to
maximize fault detection rate while minimizing the total cost of sensors. A wind turbine gearbox is
considered to demonstrate the efficacy of the proposed framework.

Keywords: sensor selection; fuzzy clustering; ordered clustering

1. Introduction

The performance of every system degrades over time due to external factors such as
the environment it operates in or due to its operating condition. Maintenance is the key
to ensuring the safe and reliable operation of a system throughout its operational life.
Depending on the industry, ineffective maintenance could cost the industry up to $60
billion each year [1]. With the development of the concept of the internet of things (IoT)
and the development of wireless sensor network technology, a newer maintenance
strategy termed Prognostics and Health Monitoring (PHM) is growing in usage due to its
cost-effectiveness and the increasing availability of the number of Internet-enabled de-
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vices on the market [2]. The functional architecture of PHM typically consists of six layers
shown in Figure 1, including 1. Data acquisition 2. Data Manipulation 3. Condition
Monitoring 4. Health assessment 5. Prognostics and 6. Decision Making.

Since the data acquisition layer forms the bedrock on which subsequent layers de-
pend, it is imperative to provide high-quality information for effective fault diagnosis
and prognosis to aid in decision making. A primary component of the data acquisition
layer is the sensor units. Sensor units provide a means for measuring, monitoring and
tracking environmental and operational parameters. Considering the recent develop-
ments in sensor technology there are numerous types of sensors available in the market
to measure parameters such as displacement, acceleration, force, temperature, light,
touch, location, gas and biological matter [3]. In light of the increasing type and number
of sensors, for effective deployment of the PHM system, an efficient sensor selection
process needs to be established. (in order to avoid confusion, it should be noted that
sensor selection has two meanings in the field. One refers to the selection of sensors from
the set already deployed into a network; the selection process is used to optimize the
network by choosing which sensors will be active at a given time [4]. The meaning in-
tended in this work refers to the selection of sensors to be integrated into a system dur-
ing the design and build process or after the process; in this case, the selection process is
focused on incorporating the most appropriate sensors for the task at hand [5]).
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Figure 1. Functional Architecture of PHM adapted from [6]. Copyright Springer International
Publishing Switzerland 2017.

The sensor selection process varies from smaller systems or experimental setups to
larger systems that are deployed and being used by the end-user. The sensor selection
process for the experimental systems/setups is empirical in nature and simple, whereas
the selection process for large complex systems is mainly systematic and requires several
additional considerations. Several sensor selection methods have been proposed over the
years, but most methods are not scalable, i.e., the selection method for experimental
setups cannot be used for large complex systems and vice versa. In addition, the task of
sensor selection itself is complicated by the lack of standard vocabulary in characterizing
existing sensors and associated specifications. Most existing sensor selection processes
are quite complicated; some require the use of specialized software and advanced ap-
proaches. This paper aims to establish a sensor selection framework suitable for both
experimental setups and large complex systems.
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In the past, sensor selection relied heavily on the domain knowledge of the deci-
sion-maker thereby making it subjective. Recently, several sensor selection methods have
been proposed based on graphical and semantic approaches, with explicitly stated ob-
jectives and constraints as shown in Figure 2. The objectives are also referred to as per-
formance requirements or figures-of-merits (FOM) in the literature. Some sensor selec-
tion processes have been proposed for experimental setups, but most of them are for
large complex systems. Sensor selection as outlined by Santi, Sowers and Aguilar [7],
forming the basis for the methods proposed in the literature. This process starts with de-
sign engineers creating a detailed and unambiguous list of the operating, environmental,
physical and cost specifications for the system. After building an in-depth understanding
of the physics of the system and its use context, the next step is to identify the measure-
ment principle. Next is the identification of the sensing methods. Note that a multitude of
sensing methods are available for each of the candidate measurement principles in the
list. The final step in the process is to select the sensors that best fit the constraints of the
scenario. In Cheng, Azarian and Pecht [8], the authors discuss criteria such as parameters
to be measured, performance needs, electrical and physical attributes, reliability and cost
for sensor system selection for PHM applications. In the next section, a review of the lit-
erature associated with the study of sensor selection is classified into (a) empirical sensor
selection process for experimental setups and (b) sensor selection through structural
equations for large complex systems.
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Figure 2. Classification of Objectives for Sensor.

1.1. Empirical Sensor Selection Process

A graphical toolset for sensor selection using 2D performance charts has been pro-
posed [9]. This process focuses on collecting and defining the sensor characteristics for
each sensor type from the manufacturers’ datasheets. The collected information is then
plotted on two-dimensional charts, with sensor performance indices as the axes. These
performance charts illustrate various trade-offs; for example, resolution vs. range or



Sensors 2021, 21, 6470

4 of 19

frequency vs. range. Only the common elements corresponding to a type of sensor listed
on the manufacturers’ technical specifications are used for the performance charts. The
strongest sensor candidates are identified from the charts. A subset of the sensor candi-
dates is then selected after accounting for cost, practicality and reliability. According to
the authors, this method gives an overview of sensor performance thus graphically il-
lustrating the sensors best suited for a given task. Although this method acts as a
straightforward visual selection tool, it is not scalable. Unstructured and variable out-
comes result due to the lack of a systematic method to guide the designers in the pairing
of attributes within the performance chart.

Schmidt and Laerhoven [10] proposed a semantic approach to sensor selection in the
context of building a smart appliance. The approach begins with the analysis of the con-
ditions of the informational, physical and social environment in which the appliance is
used or interacted with. Situations that are similar for the device are grouped in a single
context that is labeled. Variables such as time interval, temperature, value, number of
people in the vicinity, etc. that help discriminate the contexts are identified. Based on the
variables identified, sensors are selected while accounting for the accuracy and cost of the
sensors. The selection begins all over if the sensors do not perform well in the lab setting
with a prototype of the device. This is time-consuming and an inefficient approach for
sensor selection. A similar context-aware approach to sensor selection using the dynamic
skyline technique is proposed by Kertiou et al. [11]. The dynamic skyline technique is
utilized to reduce the search space and select the best sensors following user require-
ments. According to the authors, this method can be adopted by different IoT middle-
ware for designing relevant solutions with a high level of accuracy and minimize the
search and selection time. To counter the slow-acting dynamic skyline technique and to
make it scalable the authors propose the use of distributed gateways connected to a
server, each gateway responding to a local request by the user.

A novel sensor selection algorithm utilizing the concept of entropy and information
gain from information theory is proposed by Tjen, Smarra and D’Innocenzo [12] for
structural damage detection. The main idea is to choose a sensor from each pair of sen-
sors such that the information gain is maximized. The authors use a Principal Component
Analysis-based metric to achieve a trade-off between prediction accuracy and computa-
tional complexity. Zhang, Ayoub and Sundaram [13] show that greedy algorithms are
optimal for estimating the states for a certain class of linear dynamical systems. Along
with budget constraints, they consider the objective of minimizing the trace of the
steady-state a priori or a posteriori error covariance produced by a Kalman filter. The
authors also provide proof that even under the assumption of a stable system, a priori
and a posteriori error covariance-based sensor selection problems are NP-hard. The au-
thors also demonstrate that certain objective functions are not submodular or super-
modular in general which makes it difficult to evaluate the performance of greedy algo-
rithms in theory. Through simulations, the performance of the proposed greedy algo-
rithms is illustrated. A similar greedy algorithm approach is proposed by Clark, Brunton
and Kutz [14] to approximate the number of economic and expensive sensors in an en-
vironment or state space. The authors evaluate the composition of both types of sensors
along with their placement to assess their ability to reconstruct a higher dimensional state
space. The preliminary sensor positions are obtained through QR-decomposition. The
sensor noise levels, sensor cost, total budget and the single value spectrum of the data
measured play a significant role in selecting the number of sensors. The sensor recom-
mendations are based on the computational results of asymptomatic regions of parame-
ter space.

A three-sieve sensor selection method is proposed by Jones et al. [15] which takes
into account performance requirements, environmental constraints and economic con-
siderations. This method starts with an analysis of the system. The candidate sensors are
assessed for specific requirements from the operators and the final decision is based on
the cost of the sensors. This method, however, is meant specifically for experimental
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setup and small systems. This method can be used to consider homogenous sensors and
the comparison can be made only with similar sensors.

1.2. Sensor Selection through Linear and Non-Linear Equation

To guide the sensor selection process in highly complex systems with a large num-
ber of interacting parameters, modeling tools and software may be needed. The Drexel
University Intelligent Infrastructure Institute proposed a sensor selection methodology
for bridge health monitoring [16]. The first step in the process is to analyze the bridge and
its surroundings as well as the environment in which the sensors are needed to be de-
ployed. Based on the analysis a candidate set of sensors are selected in consideration of
performance characteristics, environmental constraints and cost. Zhang and
Vachtsevanos [17] proposed a methodology to decide the type, number and location of
sensors. A novel graph-based technique called quantified-directed-model for fault
propagation from subsystems to subsystems in a large complex system is presented. The
authors quantify the fault detectability metric via signal-to-noise ratio, time-to-detection
to the time-to-failure ratio, sensitivity of a sensor and symptom duration to
time-to-failure ratio. These, along with cost as the objectives, are modeled and optimized
using particle swarm optimization. The performance of the proposed method is tested on
a five-tank system.

A knowledge-based selection of sensors and actuators for plant equipment was
proposed by Riedel, Arroyo and Fay [18]. The authors argue that selection decisions are
taken one device at a time, which is time-consuming and results in suboptimal solutions.
To overcome this limitation the proposed method presents a concept based on plant de-
scription and semantic models. The paper states that this function-oriented selection
process is capable of considering a wider solution space as well as seamless integration of
this procedure into plant workflow. L. Santi’s’ [7] a systematic sensor selection (54) policy
for aerospace vehicle design forms the basis for most sensor selection processes. The
proposed method supports the selection of sensors adapted to a system in a particular
situation. After establishing constraints through a computer-assisted analysis, sensor se-
lection is carried out via a process of iterative optimization. The proposed method ad-
dresses a complex situation that needs a large number of interacting sensors. This
method is also utilized for boost stage rocket engines, turbo-fan engine diagnostics, and
aircraft engine health estimation [19-21]. A sensor selection based on the physical model
and sensitivity analysis for a helicopter transmission system is proposed by Lyu et al.
[22]. The first step in the proposed method builds a physical model of the gear tooth
damage and mesh stiffness. In the next step, effective condition indicators (CI) are pre-
sented and the optimal CI set is selected via the Mann-Kendall test. The selected optimal
ClI is used to develop a health indicator through the sen slope estimator. Based on the
monotonic relevance and sensitivity to damage levels sensors are selected. The selected
approach is validated by simulation. The authors state that the proposed approach effec-
tively reduces the test cost and improves the system'’s reliability. The proposed methods
require knowledge of advanced modeling software and algorithms which can time con-
suming and expensive to implement making it viable only for large complex systems.

Based on sensitivity analysis and the capability of the sensors in predicting the
polymer electrolyte membrane (PEM) fuel cell performance sensor selection algorithms
such as the largest gap method and exhaustive brute force search are explored by Mao
and Jackson [23]. A sensitivity matrix related to sensor measurements and fuel cell health
parameters is generated using a fuel cell model. The sensitivity matrix is used as the in-
put for the sensor selection algorithms proposed in the paper. The authors demonstrate
that accurate prediction can be obtained with optimal sensors. A sensor selection algo-
rithm for PEM fuel cells considering sensor sensitivity, fuel cell performance and re-
sistance to noise is proposed by Mao, Davies and Jackson [24]. The sensitivity of the
sensors is calculated via a fuel cell model and the sensitivity to different failure modes is
then ranked. The performance of the selected sensors is evaluated via an adaptive neu-
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ro-fuzzy inference system (ANFIS). The proposed methods are focused mainly on the
health of PEM fuel cells; it is not suitable to be used as a general tool for sensor selection.

A comprehensive evaluation method of sensor selection for PHM based on grey
clustering for an electronic control system of radar was proposed by Guan et al. [25]. The
first step in the proposed approach is to define and quantify three grey indexes based on
the dependency matrix and classify the sensors into grey classes. The next step is to uti-
lize the whitening weight function in consideration of the objective and subjective ten-
dency to improve the effectiveness of the result. The final step in the process is to cluster
the sensors by analyzing the clustering coefficient calculated based on grey clustering
theory.

The most commonly used sensors for predictive maintenance of industrial motors
are listed by Murphy [26]. The report summarizes the advantages and disadvantages of
various sensors and when to use sensors for health monitoring. It also acts as a guide for
parameters that need to be sensed/measured for predictive maintenance. However, be-
yond simple comparison, it does not provide a method for selecting the sensors. Sum-
mary of the literature review is shown in Table 1.

Based on the literature review the following conclusions can be drawn. First, the
sensor selection process regardless of the application technology always begins with the
analysis of the system and its failure modes. Second, the selected sensors need to be
compared with the specific system and environmental constraints. Third, the sensor se-
lection tools developed in the literature for both classes of the sensor selection process are
not interchangeable. Finally, the cost considerations are taken into account after consid-
ering the technical constraints. Additionally, the methods proposed are not usable if the
practitioner is not well versed in semantic processes or complex selection algorithms.

Table 1. Summary of Literature Review.

Authors Title Key Attributes

Provides an overview of sensor
performance thus graphically

J. Shieh, J. E. Huber, N. A. Fleck, and M. F. Ashby The Selection of Sensors . .
illustrating the sensors best
suited for a given task
e Variables that help dis-
criminate the contexts are
How to build smart applianc-  identified.

Schmidt and Laerhoven

es? e Sensors are selected to
account for the accuracy

and cost of the sensors.

Kertiou et al.

This method can be adopted
A dynamic skyline technique by different IoT middleware
for a context-aware selection of for designing relevant solu-
the best sensors in an IoT ar-  tions with a high level of ac-
chitecture curacy and minimize the
search and selection time

Tjen, Smarra, and D’'Innocenzo lection algorithm for structural

PCA is used to achieve
trade-off between prediction
accuracy and computational

An entropy-based sensor se-

damage detection .
complexity

A Straightforward Route to ® It considers performance

Jones et al. Sensor Selection for IoT Sys- requirements, environ-

tems mental constraints, and
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economic considerations.

o This method starts with an
analysis of the system. The
candidate sensors are as-
sessed for specific re-
quirements from the oper-
ators and the final decision
is based on the cost of the

Sensors

P. A Emin, Aktan; F Necati, Catbas; Kirk A, Grim-
melsman; Mesut

Candidate set of sensors are

Development of a model selected in consideration of
health monitoring guide for ~ performance characteristics,
major bridges environmental constraints, and
cost

Fault detectability metric is
A Methodology for Optimum quantified. Cost is the modeled

Zhang and Vachtsevanos Sensor Localization / Selection  objective that is optimized
in Fault Diagnosis using particle swarm optimi-
zation.

Riedel, Arroyo, and Fay and actuators based on stand-

The paper presents a concept
based on plant description and
semantic models. The func-
tion-oriented selection process
is capable of considering a

Knowledge-based selection of
principle solutions for sensors

ardized plant description and

. wider solution space as well as
semantic concepts

seamless integration of this
procedure into plant workflow

Amol Kulkarni, Janis Terpenny, and Vittal Prabhu for Designing Fault Diagnos-

The key step that sets this
sensor selection process apart
is the utilization of constraints
that are general to most engi-

neered systems while also

Sensor Selection Framework

tics System . e
Y catering to the specific needs of

each system with the integra-
tion of the two-sieve method

2. An Ordered Fuzzy Clustering Approach to Sensor Selection

This section introduces the OFCCaTS (Ordered Fuzzy C-means Clustering and Two
Sieve) methodology for sensor selection. This includes an overview of the methodology
as well as details for each of its core components. The proposed sensor selection process
integrates the features of a typical sensor selection process and facilitates making a final
decision based on the system requirements. The selection process starts with the analysis
of the system and assesses the sensor needs for condition monitoring and allows for the
selection of the sensor right down to the specification of the sensor. The few key steps
that set this sensor selection process apart are the utilization of constraints that are gen-
eral to most engineered systems while also catering to the specific needs of each system
with the integration of the two-sieve method. Sensors are considered clustering objects. A
fault-sensor dependency matrix is created. To design an effective PHM system, the fol-
lowing parameters are considered: fault detection probability, fault tolerance, sensor
value and fault detection time. To estimate some of these parameters, a few common
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assumptions are made. The first assumption is that all the sensor data are forward to a
central data processing unit. This is a simple and convenient assumption as it does not
require the use of any distributed computing algorithms for statistical computation. The
second assumption is that the data received by the fusion center are not corrupted by any
communication fault. The final assumption is that the data fusion center indicates
whether the operational condition of the system is healthy or abnormal. The definitions
of the parameters considered are provided below.

2.1. Fault Sensor Dependency Matrix

Fault-sensor mapping matrix is a diagnostic model utilized to catch the fault data
and its causal relationship at the hierarchical system level [27]. It typically consists of the
dependency relationship between observable failure modes and symptoms associated
with a system. The fault dependency matrix is modified to reflect the relationship be-
tween the fault modes and the sensors, as the fault diagnosis here depends largely on the
information collected by the sensors. A matrix D = [di j],i =1,2,3,..,n denotes the
system fault-sensor dependency matrix. If a sensor s; can detect the fault f;, element d;;
=1; otherwise, d;; =0. The fault-sensor mapping matrix is shown below:

The parameters considered below will be used to form the clustering object, which
will be used as the input for the clustering algorithm.

2.1.1. Likelihood Estimation

The fault-sensor mapping matrix approximately describes the simple matched rela-
tionship between fault modes and sensor set. In Table 2, d;;= 1 indicates that the sensor
can detect the fault f; with a probability of 1. Due to sensor reliability and complex en-
vironmental factors, a sensor may not detect a fault with absolute certainty. The fault
detection probability for each sensor is obtained via MCMC (Markov Chain Monte Carlo)
simulation in python-3.

Table 2. Fault Sensor mapping matrix.

sl s2 s3 sn
fi 0 1 0 1
f2 1 1 0
fm 0 0 1 0

2.1.2. Sensor Value Estimation

Cost is always a factor while designing any system; the same holds for PHM systems
as well. To evaluate the cost of sensors usually purchase cost, installation cost, data pro-
cessing cost and the sensor usage cost is considered. However, this does not accurately
reflect the sensor value. To calculate the sensor value, the following parameters are con-
sidered:

Maintenance Cost = Labor Cost + Productivity Loss Cost + Component Replacement Cost, (1)

Sensor Cost = Purchase Cost + Installation Cost + Sensor Communication Cost + Sensor Replacement Cost

@)

+ Disassembly Cost + Inspection Cost,

Maintenance Cost + Sensor Cost

Sensor Value(i) = (3)

Total Number of Sensor(i)
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2.1.3. Fault Tolerance

The reliability of a sensor after a fault has occurred is defined as fault tolerance. It is
difficult to replace the sensors when they operate in extreme environmental conditions or
remote places such as space. Fault tolerance depends on the application in which the
sensors are deployed. Given a set of sensors K, the reliability of the sensors R(K, t) is de-
fined as the probability that no sensor in K fails during the interval (0, t). If sensor failures
are independent, one has:

R(K,t) = Myex Ri(OMex (1 — Rie (1)) 4)

where Ri(f) is the reliability of sensor k. The reliability of the sensors is modeled as a
Poisson distribution:

Ri(t) = e~ Mt ®)

where Ak is the failure rate of sensor k, typically considered to be constant under
steady-state conditions. According to reliability engineering, the sum of reliability and
unreliability of any component or system should be 1. Therefore, the unreliability or the
probability of failure of the sensors is given by

Qx(t) =1 —Ri(t) (6)

2.1.4. The Proportion of Fault Detection

The proportion of fault detection is defined as the ratio of the number of faults a
sensor can detect to all the faults under consideration. This metric considers the propor-
tion of faults that can be detected by the sensors. If a sensor can detect all the faults under
consideration, then the value is 1. However, in reality, no one sensor can detect all the
failures, and therefore the value lies between 0 and 1. The proportion of fault detection is
given by the following equation.

Xfij

PFD = =L @)

where, f;; is the fault ‘7’ that is detected by sensor ‘j’. F is the total number of faults un-
der consideration.

2.1.5. Criticality Term

Criticality is a term that was introduced by Reeves [28]. This method considers the
effect of the failures that can be detected by the sensors on the system. It is based on the
Fussell-Vesely importance measure. The importance measure considers the failure’s
contribution towards the unavailability of the system.

The criticality term is measured by subtracting the probability of system failure
given that the sensor does not detect the critical failure. It is given by the following
equation:

CRg = w (8)
Ssys
where Qsys is the probability of system failure Qsys(gs = 0) is the probability of system
failure given that the sensor does not detect the failure.

The value of the criticality term is 1 if a sensor can detect all the failures and 0 if it
cannot. From the considered set of failures, only a few of the failures are considered crit-
ical failures and are marked as such. The critical failures are identified based on the
method proposed by Konstantinidis, Katsavounis and Botsaris [29].
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2.2. Ordered Fuzzy C-Means Clustering with PROMETHEE Algorithm

The analysis for sensor selection presented in this paper is based on the Ordered
Fuzzy C-means clustering (OFCM) algorithm combined with the preference ranking or-
ganization method for enrichment evaluation (PROMETHEE) proposed by Bai et al. [30].
This method was developed to overcome the shortcoming of traditional clustering algo-
rithms in which the clusters have little to no relation with one another, and the weight of
each criterion is not considered. The classic fuzzy c-means clustering algorithm typically
utilizes Euclidean norm for similarity measure between objects, which does not consider
the relative importance of the criteria under consideration. The PROMETHEE method
considers the difference between the criteria as well as the priority degree for each pair of
objects. It is an efficient method for the pairwise comparison of a given set of alternatives.
However, the algorithm alone does not provide the specifications for each type of sensor
selected. This is achieved by utilizing a method called three-sieve sensor selection, pro-
posed in [15].

Given a set of alternatives A = {a1, a2, ..., an} and a set of criteria G ={g1, g2, ..., gn}, an
ordered partition of A should satisfy the following three conditions:

o A= Uj=12..Ci
o Vi ?‘:] Ci n C] = (Z)
o Cl > CZ > Cn

where Ci denotes the ith order cluster and C1 is considered as the best cluster. Similar to
the classic Fuzzy Clustering Method, the authors define a new objective, shown in (9):
2
I )" |¢(a;) — 4| J1

min [, = =7 ?
" cmin_(1Si,jSC,i¢j||l9i_19j||2 J2 v

where i represents the fuzzy centroid of the ith order cluster, ¢ (4j) is the net outranking
flow and y;; is the fuzzy membership. The following steps need to be taken to imple-
ment the algorithm.

Algorithm: OFFCATS

1: Determine the difference denoted as dx (ai, a) between the evaluation of ai and a; with
respect to the criterion g

(10
dr (@i, a;) = gi(a) — gi(a;) )

2:  Transform the difference dx (4;, aj) into a single criterion using a preference function Pk
(ai, aj) for each criterion gx:

11
Pu(a1,4)) = fic (di(as ) )

where fi (.) is a monotonically non-decreasing function varying between 0 and 1, i.e.,
greater the value higher the preference to ai over gj based on the criterion gx.

3: Compute the preference degree m(a; a;) by aggregating all the single criterion
preference function in the form of a weighted sum:

(12
n(a;, ) = Zi=yWi- Pr(ai, a5) )

4:  Calculate the positive and the negative net outranking flow:
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1
¢*(ay) = mszA{ai}n(ai; x) (13)

1
¢~ (a) = mszA{ai}ﬂ(ah x) (14)

The positive outranking flow ¢*(a;) denotes the extent to which the alternative a;
is preferred to the other alternatives. The larger the value, the better the alternative
and vice versa when it comes to the negative outranking flow ¢~(a;)

5:  Compute the net outranking flow ¢(a;) which represents the total priority of q;

over all the other alternatives.

¢(a) =¢*(a) — ¢~ (a) (15)
If ¢(a;) =1, then a; is the absolute best alternative; if the net outranking flow of
two alternatives is the same, then both alternatives are equal.
Set ¢ =2 and randomly initialize u;; of ¢(a;) belonging to cluster i.

Calculate the fuzzy centroid 9;

_ 271 (1) " ¢(a) 16)
2 ()"

8:  Rank the cluster according to the fuzzy centroid (9;) of each cluster. For example, if
¥; > U; then C; > (;

9:  Update p;; based on (17):

i

m-1 1
[l#(a) — ]|
Wij = (17)
m-1 1
5¢ L
! [ICHEEA|

10: Repeat steps 8 and 9 until the value of J; in (9) has only negligible changes.
11: Calculate J, and Jp,. Then, letc=c+1.If ¢ =y (stop value), stop; otherwise return

to step 6, where the stop value y will reach optimal value at 1/2.

2.3. Two-Sieve Sensor Specification Selection Method

After selecting the type of sensors, to identify the specification of the sensors to be
placed, two-sieve sensor selection is utilized. A three-step analysis method feeds into a
selection tool that can be adapted to nearly any IoT system or situation. The proposed
method is a modified version of the selection process that was proposed by Jones et al.
[15]. Incorporating these two methods together makes it easier for the decision-maker to
identify the specification of the sensor that needs to be purchased. The sensor perfor-
mance data is obtained from the sensor manufacturer’s datasheet, which feeds into the
three-step analysis. The results are used to populate a two-sieve selection tool, repre-
sented as a succession of color-coded matrices. Each sieve provides a simple go/no go
decision for each sensor based on the constraints. The number of candidate sensors is
reduced progressively. After the final matrix is obtained, the sensor with the highest ag-
gregate score is chosen.
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Three-Step Analysis

A relevant set of candidate sensors can be selected only after understanding the
system and its fault as a whole. The three-step analysis aids in the practitioners’ effort in
understanding the system.

1. Define the parameters to be measured: Several parameters can be measured either di-
rectly or indirectly through simple calculations. An example of such a parameter is
provided by Regtien [5], where the author uses the amount of fluid in a tank which
can be measured either through mass or volume of the fluid. Several parameters are
measured typically simultaneously as the complexity of the system increases;

2. Define the performance requirements for the sensors needed for each measurement parameter:
These requirements could be related to any functional attribute of the sensor such as
accuracy, resolution, sensitivity, etc. A detailed list of requirements is provided in
Cheng, Azarian and Pecht [8].

3. Consider the environment in which the system will operate and the availability of the sensors:
The environmental factors affecting the sensor performance acts as a physical con-
straint for the measurement system as a whole. The number of sensors that are
available in the market also needs to be considered.

The three-step analysis not only provides an in-depth understanding of the pro-
cesses occurring within the system but also aids in the identification of parameters for
measurement. The performance requirements, derived from the three-step analysis, are
used in the two-sieve tool show to identify the appropriate set of sensors. A spreadsheet
template utilized for sensor selection for the three-sieve sensor selection method is pro-
vided in [15]. As OFFCATS considers the criteria for sensor selection this negates the
need for a three-sieve selection process. While the first will help us identify the specifica-
tion of the sensor, the second sieve will help us identify the environmental and stock
requirements of the sensor.

3. Results

To demonstrate the effectiveness and the scalability of the framework, a wind tur-
bine gearbox is considered for the following reasons. First, the wind turbine gearbox is
simultaneously the most troublesome and the most critical system in a wind turbine.
Second, the gearbox failures are generic and independent of the manufacturer. Finally,
downtime due to gearbox failures takes an average of 256 h to repair and 20% of the
downtime is due to gearbox failures [31]. The basic faults under consideration and fault
occurring rate for wind turbine gearbox with sensors used to detect the associated faults
are provided in Table 3. The corresponding sensors for each failure mode are identified
and the sensor selection algorithm will provide the type and number of sensors. The
sensors used to detect the failures and the associated parameters are provided in Table 4.

Table 3. Faults under consideration.

Fault Occurrence Sensors to Detect

System Faults Rate (/year) the Faults
Abnormal Filter (f1) 0.0158 S5, S6, S10

Poor quality of lubrication oil (f2) 0.0158 S3, 54, S6, S10

Dirt (f3) 0.0126 S5, S10
Abnormal vibration (f4) 0.0187 S1,S2, S8, S9
Gearbox Corrosion of pins (f5) 0.1051 S2, S5, S6, S8, S10

Abrasive wear (f6) 0.0876 52, S8, 59
Glued (f7) 0.0021 S2, 53, S9

Pitting (gear) (£8) 0.0114 52, S6, S8, S10

Pitting (gear bearing) (f9) 0.0263 52, S6, S8, S10

Excessive pressure (f10) 0.0088 S4
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Excessive temperature (f11) 0.0021 S3
Gear fatigue (f12) 0.0026 S1, 52, S8, S9
Tooth surface defects (f13) 0.0026 510
Gear tooth deterioration (f14) 0.0026 52, S8
Cracks in gears (f15) 0.0135 52,58
Qil leakage (f16) 0.3504 S4, S5, S7

A gearbox is used to convert the slow rotational speed of the rotor blades of around
30 rpm to acceptable rotational speeds of 1000-1800 rpm via a high-speed shaft. It typi-
cally consists of a lubrication system, a combination of planetary gears and parallel gears
held in mesh with axial and radial supporting bearings. The transformation from the
low-speed stage is typically done in several stages for stepwise alteration of speed. Each
of the stages usually has a ratio of about 1:4-1:5. The gears in wind turbines deal with
partial loads, variable speeds, and dynamic torques due to wind speed turbulence. This
puts severe stress on the gears and the bearings inside the system. Due to the friction
between the surfaces, small metal particles drop in the lubricant, which is a wear-out
process known as micro-pitting.

Table 4. Sensors and associated parameters for Sensor Selection.

Proportion of Sensor Value Probability of Criticality

Sensors Failure Rate (/hour) Faults De- .

(cost/sensor) Failure Term
tected

Strain sensor (S1) 3x107 0.043478 192.33 0.051 0.84
Vibration Sensor (52) 422 x107 0.195652 220.44 0.071 0.92
Temperature Sensors (S3) 8.5 x107 0.065217 156.20 0.013 0.76
Pressure (54) 5x107 0.065217 165.08 0.084 0.78
Flow (S5) 1.7 x 105 0.086957 97.14 0.949 0.60
Oil Debris sensor (S6) 1.852 x 10-6 0.108696 130.87 0.277 0.68
Level (57) 43 %107 0.021739 48.34 0.073 0.97
AE sensor (S8) 4.29 x 106 0.173913 209.95 0.528 0.89
Rotary Torque Sensor (S9) 5x10° 0.086957 205.63 0.584 0.87
Oil Particle Counter(S10) 9 x107 0.152174 239.35 0.146 0.84

The early failures and long downtime of a gearbox make the design, construction
and maintenance of wind turbines a challenge to the renewable energy industry. Alt-
hough designed to achieve a lifetime of 20 years, the gearbox falls short of the lifetime by
5-7 years. Due to its massive size, the repair and replacement of gearbox components are
difficult to handle. The involvement of support ships and cranes in repairing offshore
wind turbines creates its own set of issues. Only a few of the wind turbine failures can be
rectified on site. To repair the gearbox failures, the entire sub-system needs to be re-
moved from the turbine with significant cost and downtime. About 38% of the total cost
of replacement of the components is from the gearbox. A typical gearbox replacement
costs about $300K-$775K including the rental equipment and labor costs [32].

OFCCaT$s

This section illustrates how to utilize OFCM for sensor selection. The complete list of
sensors that need to be selected, as well as their associated criteria, are provided in Table
5. The complete list of sensors and the associated criteria for sensor selections is provided
in Table 4. The fault detection likelihood of the sensors for all the faults can be seen in
Appendix A. For sensor selection, the maximum likelihood of each sensor is selected re-
gardless of the number of faults detected by the sensors. Let S = {sjlj=1, 2, .. ., n} be the
set of sensors.
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Table 5. The complete list of sensors and the associated criteria for sensor selection.
Fault Detection The proportion -
Sensors Likelihood Es- of FaEltspDetect- Sensor Value Proba.blllty of Criticality Term
. Failure
timates ed
Strain sensor (51) 0.85 0.043478 192.33 0.051 0.84
Vibration Sensor (52) 0.94 0.195652 220.44 0.071 0.92
Temperature Sensors (S3) 0.826 0.065217 156.20 0.013 0.76
Pressure (54) 0.97 0.065217 165.08 0.084 0.78
Flow (55) 0.92 0.086957 97.14 0.949 0.60
Oil Debris sensor (S6) 0.818 0.108696 130.87 0.277 0.68
Level (S7) 0.94 0.021739 48.34 0.073 0.97
AE sensor (58) 0.94 0.173913 209.95 0.528 0.89
Rotary Torque Sensor (S9) 0.78 0.086957 205.63 0.584 0.87
Qil Particle Counter(S10) 0.93 0.152174 239.35 0.146 0.84

The step-by-step procedure for clustering based on Algorithm is given as follows:

The preference degrees n(s;,s;) are computed between each pair of sensors and then
the net outranking flow ¢(s;) of each sensor is calculated. For each criterion, the
Gaussian preference function shown in Equation (18) is utilized.

0 d<0

fuld) = { - (18)
1—e 2s? d>0

where the equal weights are assigned for each preference criteria and only the parameter
‘s’ needs to be fixed. The value of ‘s’ lies between the threshold of indifference (below
which there is no preference to either of the actions) and the threshold of absolute pref-
erence (above which there is a total preference to one of the two actions) shown in Table

6.

The preference degree of each sensor is then obtained and ¢(s;) is calculated using

Equation (15). The net outranking flow for each sensor is shown in Figure 3 and the net
outranking flow for each criterion is shown in Table 7. Then, set the number of clusters to

be 2. (c=2).

2. I({andz)mly initialize the memberships of y;; of ¢(s;) belonging to cluster ‘7".

3. The fuzzy centroid for each cluster is calculated using equation 16. Let the fuzziness
parameter be set to 2.

4. Rank the clusters according to the fuzzy centroid ;. Thus, we can obtain C1 and C2.

5. Update the value of y;; based on equation 17.
Repeat Steps 3 and 4 until | JE - ]f_1| < €, where ‘t’ denotes the iteration and € =
0.000001 is the absolute difference between [1t and J1t1.

7. Compute Ju. Then, let ¢ = c¢+1, stop when the number of clusters ¢ = 10/2 = 5, oth-
erwise return to step 2.

8.  Select the number of clusters with the minimum value of ‘J»" and defuzzify the

memberships
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Figure 3. Net outranking flow for each alternative.

Table 6. The preference thresholds and the weights of the five criteria.

Threshold of Indifference (g) 0.0409 0.229936 0.0472 0.672 0.81
Threshold of a‘i;()’lme preference 1415 0.840427 0.4652 0.885 0.94
Weights (wi) 1/5 1/5 1/5 1/5 1/5
Table 7. Net outranking flow for each criterion.
Sensors g g $ g S5
Strain Sensor 0.043 0.753835 0.051 0.84 0.85
Vibration Sensor 0.196 0.901 0.071 0.92 0.94
Temperature Sensor 0.065 0.564682 0.013 0.76 0.826
Pressure Transducer 0.065 0.611172 0.084 0.78 0.97
Flow Sensor 0.087 0.255484 0.949 0.6 0.92
Qil Debris Sensor 0.109 0.432072 0.277 0.68 0.818
Level Sensor 0.022 0 0.073 0.97 0.94
AE sensor 0.174 0.846081 0.528 0.89 0.94
Rotary Torque Sensor 0.087 0.823465 0.584 0.87 0.78
Qil Particle Counter 0.152 1 0.146 0.84 0.93

In Table 8 the membership value of each sensor for a given cluster is shown. Con-
sidering C; > C, the sensors belonging to cluster C; are selected. The next step in the
process is to proceed with the two-sieve method to identify the specification for the cho-
sen sensors. At least three different alternatives for each sensor are chosen. The specifi-
cation data for each sensor are obtained through the ‘https://www.digikey.com” website
last accessed on 2 April 2021.

Table 8. The membership value of each sensor for the cluster with minimum value of Ju.

Sensors Cluster 1 Cluster 2
Strain Sensor 0.613501 0.386499
Vibration Sensor 0.861319 0.138681
Temperature Sensor 0.555019 0.444981
Pressure Transducer 0.439907 0.560093
Flow Sensor 0.730557 0.269443

Qil Debris Sensor 0.360895 0.639105
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Level Sensor 0.526111 0.473889

AE sensor 0.418491 0.581509
Rotary Torque Sensor 0.586528 0.413472
Qil Particle Counter 0.752694 0.247306

The two-sieve method provides the specifications of the sensors and provides a
method to compare different sensor specifications with that of the system information.
System information is converted to constraints and entered into the table as shown in
Table 9

An example of oil particle counters from different sensor providers is shown in Ta-
ble 9. In the example shown below, the color codes are keyed to scores: red =0, yellow =1,
and green = 2. The total score in each sieve is calculated by multiplying the scores of each
constraint. In the first sieve, the sensors with scores more than 0 are filtered out. In the
second sieve, the scores are calculated by multiplying the scores of the first sieve with
that of the total score of the second sieve, and the sensor with the maximum score is se-
lected. In this case, the ‘Filtertechnik PC9001’ is selected.

Table 9. Selection of an oil sensor using the two-sieve method.

Si 1P Criteria
;z:;an;r Minimum Detects both
Require Description Detectable Ferrous and Fluid Tem- Fluid Compatibilit Detects  Total
mqents P Particle Size Non-Ferrous perature P y Humidity
(>4 pm) Particles
e
Controls 4212 ; . ’
S1 OIL CONDI- 1 pm No 40 to 150 sem1:y;’;lf1$1c, ([;lolyal— No 8
TION SENSOR phiao el poty
alkyleneglycol
2 SKE Feffo‘:l—‘lo Mineral, synthetic oils
§ S2 CMSS-ONL-1000 H Yes —20 to 85 s . Yes 0
2 - Non-Ferrous and water/oil emulsions
& —135 um
Hydraulic and lubrica-
s3 Filtertechnik 4um Yes 0'to 70 tion oils, mineral, syn- Yes 16
PC9001 K thetic (phosphate ester
compatible) diesel fuels
S4  Pamas S50 4 pm No 0060  neral a;‘lissymhetlc No 1
Total 4 Total Score = Minimum Detectable Particle x Detects both types of particles x Fluid Temperature
x Fluid Compatibility
Sieve 2 Criteria
Physical &
Environ- L. Operating Temperature  Sensor Housing Dimension Vol- Weight  Total
Description
ment Re- 29-50 °C ume (mm?3) (kg)
quirements
Gill Sensors &
w
S Controls 4212
z Yes 727,650 0.84 32
& OIL CONDI-

TION SEN-
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SOR

52

SKF

CMSS-ONL-10 Yes 847,547 0.75

00-2

Filtertechnik
PC9001

Yes

Total

4

Total Score = Total Score Sieve 1 x Operating Temperature x Sensor Housing Dimension x
Weight

64

This process is repeated for all the other types of sensors that are selected. In the
two-sieve method the scores do not reflect the sensor performance in the long run nor do

they indicate the superiority of any sensor over another.

4. Conclusions

In this paper, a sensor selection framework for designing a fault diagnostic system
has been presented. A case study based on the gearbox subsystem of a wind turbine is
provided to demonstrate the OFCCaTS methodology, utilizing a fuzzy clustering method
with preference ranking that has been established based on the wind turbine gearbox
fault history data and expert experience. The constraints and metric proposed in the
graphical method proposed in this paper generate two 2D graphs. No candidates are
discarded between the graphs so that analysis is performed with simultaneous compar-
ison of multiple graphs. Further, while most sensor selection processes become unman-
ageably complex given a large system, the proposed process is scalable and generalizable
to any size system. In contrast to the complex, and sometimes specialized approaches, the
proposed sensor selection process offers a more general and easily adaptable approach.

In the case of an extremely large system, the proposed method is scalable until the
OFCM step, where the two-sieve method becomes time-consuming and extremely inef-
ficient. Future work will investigate extending the process to automate the two-sieve step
of the proposed sensor selection method such that the decision-maker is provided with a

list of sensors with associated specifications.
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Appendix A

Table Al. Sensor and fault mapping with their probability of detection.

Strain V1.bra- Temperature  Pressure Flow 0,11 De- Level AE Rotary Oil Particle
tion bris Sen- Torque
Sensor Sensor Transducer Sensor Sensor sensor Counter
Sensor sor Sensor

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
f1 0 0 0 0 0.641 0.709 0 0 0 0.78
2 0 0 0.52 0.59 0 0.82 0 0 0 0.72
f3 0 0 0 0 0.59 0 0 0 0 0.93
fa 0.72 0.77 0 0 0 0 0 0.84 0.72 0
5 0 0.64 0 0 0.45 0.45 0 0.50 0 0.59
f6 0 0.82 0 0 0 0 0 0.94 0.63 0
f7 0 0.84 0.56 0 0 0 0 0 0.78 0
f8 0 0.64 0 0 0 0.56 0 0.8 0 0.63
f9 0 0.68 0 0 0 0.65 0 0.67 0 0.56
£10 0 0 0 0.97 0 0 0 0 0 0
f11 0 0 0.83 0 0 0 0 0 0 0
f12 0.85 0.83 0 0 0 0 0 0.84 0.54 0
f13 0 0 0 0 0 0 0 0 0 0.73
f14 0 0.94 0 0 0 0 0 0.72 0 0
f15 0 0.76 0 0 0 0 0 0.85 0 0
fle 0 0 0 0.78 0.92 0 0.94 0 0 0
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