The Solution for the Thermographic Measurement of the Temperature of a Small Object
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Measurement Stand
2.2. Components
2.3. Measurement Systems
2.4. The Research Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuwalek, P. Estimation of Parameters Associated with Individual Sources of Voltage Fluctuations. IEEE Trans. Power Deliv. 2021, 36, 351–361. [Google Scholar] [CrossRef]
- Abueed, M.; Athamenh, R.; Hamasha, S.; Suhling, J.; Lall, P. Effect of Fatigue on Individual SAC305 Solder Joints Reliability at Elevated Temperature. In Proceedings of the 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 21–23 July 2020; pp. 1043–1050. [Google Scholar] [CrossRef]
- Dziarki, K.; Hulewicz, A.; Krawiecki, Z. Selection of the size of field of view in thermal imaging observations of small areas. ITM Web Conf. 2019, 28, 01040. [Google Scholar] [CrossRef] [Green Version]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared Thermography for Temperature Measurement and Non-Destructive Testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.S.; Yang, S.C.; Kim, J.Y.; Kook, M.H.; Ryu, S.Y.; Choi, H.Y.; Kim, G.H. Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography. Sensors 2012, 12, 4648–4660. [Google Scholar] [CrossRef] [PubMed]
- Minkina, W.; Klecha, D. Modeling of Athmospheric Transmission Coefficient in Infrared for Thermography Measurements. In Proceedings of the Sensor 2015 and IRS2 2015 AMA Conferences, Nürnberg, Germany, 19–21 May 2015. [Google Scholar] [CrossRef]
- Litwa, M. Influence of Angle of View on Temperature Measurements Using Thermovision Camera. IEEE Sens. J. 2010, 10, 1552–1554. [Google Scholar] [CrossRef]
- User’s Manual Flir Tools/Tools+. Available online: http://91.143.108.245/Downloads/Flir/Dokumentation/t810209-en-us_a4.pdf/ (accessed on 15 June 2021).
- Zaccara, M.; Edelman, J.B.; Cardone, G. A general procedure for infrared thermography heat transfer measurements in hypersonic wind tunnels. Int. J. Heat Mass Transf. 2020, 163, 120419–120435. [Google Scholar] [CrossRef]
- Altenburg, S.J.; Straße, A.; Gumenyuk, A.; Maierhofer, C. In-situ monitoring of a laser metal deposition (LMD) process: Comparison of MWIR, SWIR and high-speed NIR thermography. Quant. InfraRed Thermogr. J. 2020, 1–18. [Google Scholar] [CrossRef]
- Yoon, S.T.; Park, J.C. An experimental study on the evaluation of temperature uniformity on the surface of a blackbody using infrared cameras. Quant. InfraRed Thermogr. J. 2021, 1–15. [Google Scholar] [CrossRef]
- Schuss, C.; Remes, K.; Leppänen, K.; Saarela, J.; Fabritius, T.; Eichberger, B.; Rahkonen, T. Detecting Defects in Photovoltaic Cells and Panels with the Help of Time-Resolved Thermography under Outdoor Environmental Conditions. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Chakraborty, B.; Sinha, B.K. Process-integrated steel ladle monitoring, based on infrared imagin—A robust approach to avoid ladle breakout. Quant. InfraRed Thermogr. J. 2020, 17, 169–191. [Google Scholar] [CrossRef]
- Tomoyuki, T. Coaxiality Evaluation of Coaxial Imaging System with Concentric Silicon–Glass Hybrid Lens for Thermal and Color Imaging. Sensors 2020, 20, 5753. [Google Scholar] [CrossRef]
- Wollack, J.E.; Cataldo, G.; Miller, K.H.; Quijada, A.M. Infrared properties of high-purity silicon. Opt. Lett. 2020, 45, 4935–4938. [Google Scholar] [CrossRef]
- Singh, J.; Arora, A.S. Effectiveness of active dynamic and passive thermography in the detection of maxillary sinusitis. Quant. InfraRed Thermogr. J. 2020, 1–13. [Google Scholar] [CrossRef]
- Dziarski, K.; Hulewicz, A.; Dombek, G.; Frąckowiak, R.; Wiczyński, G. Unsharpness of Thermograms in Thermography Diagnostics of Electronic Elements. Electronics 2020, 9, 897. [Google Scholar] [CrossRef]
- Dziarski, K.; Hulewicz, A. Effect of unsharpness on the result of thermovision diagnostics of electronic components. In Proceedings of the 15th Quantitative InfraRed Thermography Conference, Porto, Portugal, 6–10 July 2020. [Google Scholar] [CrossRef]
- Dziarski, K.; Hulewicz, A.; Dombek, G. Lack of Thermogram Sharpness as Component of Thermographic Temperature Measurement Uncertainty Budget. Sensors 2021, 21, 4013. [Google Scholar] [CrossRef]
- Wen, C. Investigation of steel emissivity behaviors: Examination of Multispectral Radiation Thermometry (MRT) emissivity model. Int. J. Heat Mass Transf. 2010, 53, 2035–2043. [Google Scholar] [CrossRef]
- Sarawade, A.A.; Charniya, N.N. Infrared Thermography and its Applications: A Review. In Proceedings of the 3rd International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 15–16 October 2018; pp. 280–285. [Google Scholar] [CrossRef]
- Zhuo, G.-Y.; Su, H.-C.; Wang, H.-Y.; Chan, M.-C. In situ high-resolution thermal microscopy on integrated circuits. Opt. Express 2017, 25, 21548. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.Y.; Lee, K.-S.; Hur, H.; Nam, K.-H.; Hong, S.-J.; Lee, A.-Y.; Chang, K.S.; Kim, G.-H.; Kim, G. 3D Defect Localization on Exothermic Faults within Multi-Layered Structures Using Lock-In Thermography: An Experimental and Numerical Approach. Sensors 2017, 17, 2331. [Google Scholar] [CrossRef] [Green Version]
- Brand, S.; Altman, F. Lock-In-Thermography, Photoemission, and Time-Resolved GHz Acoustic MicroscopyTechniques for Nondestructive Defect Localization in TSV. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 735. [Google Scholar] [CrossRef]
- Thermal Imaging Microscopy Station 1. Available online: https://www.merazet.pl/produkt/kamera-termowizyjna-flir-ets320/ (accessed on 15 June 2021).
- Thermal Imaging Microscopy Station 2. Available online: https://automatykab2b.pl/produkty/pomiary/kamery-termowizyjne/12390-wobit-kamera-termowizyjna-z-obiektywem-mikroskopowym-thermoimager-microscope-lens (accessed on 15 June 2021).
- Thermal Imaging Microscopy Station 3. Available online: https://stacjonarne.pl/blog/aktualnosci/kamery-termowizyjne-wysokiej-rozdzielczosci-z-optyka-mikroskopowa (accessed on 15 June 2021).
- Hulewicz, A.; Krawiecki, Z.; Dziarski, K. Distributed control system DCS using a PLC controller. ITM Web Conf. 2019, 28, 01041. [Google Scholar] [CrossRef] [Green Version]
- Alphonsus, E.R.; Abdullah, M.O. A review on the applications of programmable logic controllers (PLCs). Renew. Sustain. Energy Rev. 2016, 60, 1185–1205. [Google Scholar] [CrossRef]
- Serhane, A.; Raad, M.; Raad, R.; Susilo, W. Programmable logic controllers based systems (PLC-BS): Vulnerabilities and threats. SN Appl. Sci. 2019, 1, 924. [Google Scholar] [CrossRef] [Green Version]
- Hudedmani, M.G.; Umayal, R.M.; Kabberalli, S.K.; Hittalamani, R. Programmable Logic Controller (PLC) in Automation. Adv. J. Grad. Res. 2017, 2, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Flir E-Series. Available online: https://www.globaltestsupply.com/pdfs/cache/www.globaltestsupply.com/flir_systems/thermal_imager/e50/datasheet/flir_systems_e50_thermal_imager_datasheet.pdf (accessed on 15 June 2021).
- Close-Up 2x Lens. Available online: https://www.flircameras.com/t197214-close-up-2x-lens.htm (accessed on 15 June 2021).
- Linear Motion Rail. Available online: https://www.ebay.com/itm/144058129406?nma=true&si=zDq%252FAdKaAs9Fgk6cIp8AHgHHQbI%253D&orig_cvip=true&nordt=true&rt=nc&_trksid=p2047675.l2557 (accessed on 15 June 2021).
- PLC Controller. Available online: https://docs.rs-online.com/4ed5/0900766b81397276.pdf (accessed on 15 June 2021).
- HMI Panel. Available online: https://static.rapidonline.com/pdf/543842_v1.pdf (accessed on 15 June 2021).
- WinCC Basic. Available online: https://support.industry.siemens.com/cs/document/65601780/tia-portal-an-overview-of-the-most-important-documents-and-links-controller?dti=0&lc=en-WW (accessed on 15 June 2021).
- Data Sheet for Linear Sensors. Available online: http://www.czujniki.org/download/ds_mm_dt.pdf (accessed on 3 April 2021).
- Howland Current Pump. Available online: https://www.ti.com/lit/an/snoa474a/snoa474a.pdf?ts=1623885504453 (accessed on 15 June 2021).
- Specification of Pt Thermal Sensor. Available online: https://www.tme.eu/Document/120d55a752e43ed7c5252cdb645d394a/PT106053.pdf (accessed on 30 March 2021).
- Instrumentation Amplifier. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/ad620.pdf (accessed on 15 June 2021).
- Krawiec, P.; Rózański, L.; Czarnecka-Komorowska, D.; Warguła, Ł. Evaluation of the Thermal Stability and Surface Characteristics of Thermoplastic Polyurethane V-Belt. Materials 2020, 7, 1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamber Software. Available online: https://sin.put.poznan.pl/reports/details/r1880_2021 (accessed on 15 June 2021).
- Cysewska-Sobusiak, A. Podstawy Metrologii i Inżynierii Pomiarowej; Wydawnictwo Politechniki Poznańskiej: Poznan, Poland, 2010. [Google Scholar]
- Distance Sensor. Available online: https://www.dubai-sensor.com/content/574-41014.pdf (accessed on 15 June 2021).
- Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.430.99&rep=rep1&type=pdf (accessed on 18 June 2021).
- Dziarski, K.; Hulewicz, A. Components of the Uncertainty of Thermography Temperature Measurements with the Use of a Macro Lens. In Proceedings of the 13th International Conference on Measurement, Smolenice, Slovakia, 17–19 May 2021. [Google Scholar] [CrossRef]
- Dziarski, K. Selection of the Observation Angle in Thermography Temperature Measuirements with the Use of a Macro Lens. In Proceedings of the 13th International Conference on Measurement, Smolenice, Slovakia, 17–19 May 2021. [Google Scholar] [CrossRef]
- Nunak, T.; Rakrueangde, K.; Nunak, N.; Suesut, T. Thermal Image Resolutionon Angular Emissivity Measurementsusing Infrared Thermography. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 18–20 March 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hulewicz, A.; Dziarski, K.; Dombek, G. The Solution for the Thermographic Measurement of the Temperature of a Small Object. Sensors 2021, 21, 5000. https://doi.org/10.3390/s21155000
Hulewicz A, Dziarski K, Dombek G. The Solution for the Thermographic Measurement of the Temperature of a Small Object. Sensors. 2021; 21(15):5000. https://doi.org/10.3390/s21155000
Chicago/Turabian StyleHulewicz, Arkadiusz, Krzysztof Dziarski, and Grzegorz Dombek. 2021. "The Solution for the Thermographic Measurement of the Temperature of a Small Object" Sensors 21, no. 15: 5000. https://doi.org/10.3390/s21155000
APA StyleHulewicz, A., Dziarski, K., & Dombek, G. (2021). The Solution for the Thermographic Measurement of the Temperature of a Small Object. Sensors, 21(15), 5000. https://doi.org/10.3390/s21155000