Development of Novel Real-Time Radiation Systems Using 4-Channel Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. 4-Channel Real-Time Dosimeter System
2.2. Dosimeter Response Characteristics
2.3. Angular Dependence and Fluoroscopic Image
3. Results
3.1. Basic Characteristics
3.2. Angular Dependence and Fluoroscopic Image
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Commission on Radiological Protection (ICRP). Avoidance of Radiation Injuries from Medical Interventional Procedures. ICRP Publication 85. Ann. ICRP 2000, 30, 1–67. [Google Scholar]
- International Commission on Radiological Protection (ICRP). The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 2007, 3, 1–332. [Google Scholar]
- International Commission on Radiological Protection (ICRP). Radiological Protection in Cardiology. ICRP Publication 120. Ann. ICRP 2013, 4, 1–125. [Google Scholar]
- Vano, E.; Goicolea, J.; Galvan, C.; Gonzalez, L.; Meiggs, L.; Ten, J.I.; Macaya, C. Skin Radiation Injuries in Patients Following Repeated Coronary Angioplasty Procedures. Br. J. Radiol. 2001, 74, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Chida, K.; Zuguchi, M.; Saito, H.; Otani, H.; Shirotori, K.; Kumagai, S.; Nakayama, H.; Matsubara, K.; Kohzuki, M. Does Digital Acquisition Reduce Patients’ Skin Dose in Cardiac Interventional Procedure? An Experimental Study. Am. J. Roentgenol. 2004, 183, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Chida, K.; Saito, H.; Otani, H.; Kohzuki, M.; Takahashi, S.; Yamada, S.; Shirato, K.; Zuguchi, M. Relationship between Fluoroscopic Time, Dose-Area Product, Body Weight, and Maximum Radiation Skin Dose in Cardiac Interventional Procedure. Am. J. Roentgenol. 2006, 186, 774–778. [Google Scholar] [CrossRef]
- Chida, K.; Kagaya, Y.; Saito, H.; Chiba, H.; Takai, Y.; Takahashi, S.; Yamada, S.; Kohzuki, M.; Zuguchi, M. Total Entrance Skin Dose: An Effective Indicator of the Maximum Radiation Dose to a Patient’s Skin during Percutaneous Coronary Intervention. Am. J. Roentgenol. 2007, 189, W224–W227. [Google Scholar] [CrossRef]
- Chida, K.; Inaba, Y.; Saito, H.; Ishibashi, T.; Takahashi, S.; Kohzuki, M.; Zuguchi, M. Radiation Dose of Interventional Radiology System Using a Flat-Panel Detector. Am. J. Roentgenol. 2009, 193, 1680–1685. [Google Scholar] [CrossRef]
- Tsapaki, V.; Ahmed, N.A.; Alsuwaidi, J.S.; Beganovic, A.; Benider, A.; BenOmarane, L.; Borisova, R.; Economides, S.; EI-Nachel, L.; Faj, D.; et al. Radiation Exposure to Patients During Interventional Procedures in 20 Countries: Initial IAEA Project Results. Am. J. Roentgenol. 2009, 193, 559–569. [Google Scholar] [CrossRef]
- Chida, K.; Ohno, T.; Kakizaki, S.; Takegawa, M.; Yuuki, H.; Nakada, M.; Takahashi, S.; Zuguchi, M. Radiation Dose to the Pediatric Cardiac Catheterization and Intervention Patient. Am. J. Roentgenol. 2010, 195, 1175–1179. [Google Scholar] [CrossRef]
- Kato, M.; Chida, K.; Sato, T.; Osaka, H.; Tosa, T.; Munehisa, M.; Kadowaki, K. Evaluating the Maximum Patient Radiation Dose in Cardiac Interventional Procedures. Radiat. Prot. Dosim. 2011, 143, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Chida, K.; Sato, T.; Osaka, H.; Tosa, T.; Kadowaki, K. The Necessity of Follow-Up for Radiation Skin Injuries in Patients After Percutaneous Coronary Interventions: Radiation Skin Injuries Will Often Be Overlooked Clinically. Acta Radiol. 2012, 53, 1040–1044. [Google Scholar] [CrossRef] [PubMed]
- Chida, K.; Kaga, Y.; Haga, Y.; Kataoka, N.; Kumasaka, E.; Meguro, T.; Zuguchi, M. Occupational Eye Dose in Interventional Cadiology Procedures. Am. J. Roentgenol. 2013, 200, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Haga, Y.; Chida, K.; Kaga, Y.; Sota, M.; Meguro, T.; Zuguchi, M. Occupational Dose in Interventional Radiology Procedures. Sci. Rep. 2017, 7, 569. [Google Scholar] [CrossRef] [Green Version]
- Chida, K.; Inaba, Y.; Masuyama, H.; Yanagawa, I.; Mori, I.; Saito, H.; Maruoka, S.; Zuguchi, M. Evaluating the Performance of a MOSFET Dosimeter at Diagnostic X-ray Energies for Interventional Radiology. Radiol. Phys. Technol. 2009, 2, 58–61. [Google Scholar] [CrossRef]
- Chida, K.; Inaba, Y.; Masuyama, H.; Yanagawa, I.; Mori, I.; Saito, H.; Maruoka, S.; Zuguchi, M. Comparison of Dose at an Interventional Reference Point Between the Displayed Estimated Value and Measured Value. Radiol. Phys. Technol. 2011, 4, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Inaba, Y.; Chida, K.; Shirotori, K.; Shimura, H.; Yanagawa, I.; Zuguchi, M.; Takahashi, S. Comparison of the Radiation Dose in a Cardiac IVR X-ray Rystem. Radiat. Prot. Dosim. 2011, 143, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Inaba, Y.; Chida, K.; Kobayashi, R.; Zuguchi, M. Radiation Dose of Cardiac IVR X-ray Systems: A Comparison of Present and Past. Acta Cardiol. 2015, 70, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Inaba, Y.; Chida, K.; Kobayashi, R.; Hage, Y.; Zuguchi, M. A Cross-Sectional Study of the Radiation Dose and Image Quality of X-ray Equipment Used in IVR. J. Appl. Clin. Med. Phys. 2016, 17, 391–401. [Google Scholar] [CrossRef]
- Morishima, Y.; Chida, K.; Watanabe, H. Estimation of the Dose of Radiation Received by Patient and Physician During a Videofluoroscopic Swallowing Study. Dysphagia 2016, 31, 574–578. [Google Scholar] [CrossRef]
- Damulira, E.; Yusoff, M.N.S.; Omar, A.F.; Mohd Taib, N.H. A Review: Photonic Devices Used for Dosimetry in Medical Radiation. Sensors 2019, 19, 2226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chida, K.; Kagaya, Y.; Saito, H.; Ishibashi, T.; Takahashi, S.; Zuguchi, M. Evaluation of Patient Radiation Dose During Cardiac Interventional Irocedures: What is the Most Effective Method? Acta Radiol. 2009, 50, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Chida, K.; Zuguchi, M. Novel Dosimeter Using a Nontoxic Phosphor for Real-Time Monitoring of Patient Radiation Dose in Interventional Radiology. Am. J. Roentgenol. 2015, 205, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Chida, K.; Kato, M.; Inaba, Y.; Kobayashi, R.; Nakamura, M.; Abe, Y.; Zuguchi, M. Real-Time Patient Radiation Dosimeter for Use in Interventional Radiology. Phys. Med. 2016, 32, 1475–1478. [Google Scholar] [CrossRef] [PubMed]
- Inaba, Y.; Kobayashi, R.; Chida, K.; Zuguchi, M. Effectiveness of a Novel Real-Time Dosimeter in Interventional Radiology: A Comparison of New and Old Radiation Sensors. Radiol. Phys. Technol. 2018, 11, 445–450. [Google Scholar] [CrossRef]
- Kato, M.; Chida, K.; Nakamura, M.; Toyoshima, H.; Terata, K.; Abe, Y. New Real-Time Patient Radiation Dosimeter for Use in Radiofrequency Catheter Ablation. J. Radiat. Res. 2019, 60, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Bogaert, E.; Bacher, K.; Thierens, H. A Large-Scale Multicenter Study of Patient Skin Doses in Interventional Cardiology: Dose-Area Product Action Levels and Dose Reference Levels. Radiat. Prot. Dosim. 2008, 128, 312–323. [Google Scholar] [CrossRef]
- Johnson, P.B.; Borrego, D.; Balter, S.; Johnson, K.; Siragusa, D.; Bolch, W.E. Skin Dose Mapping for Fluoroscopically Guided Interventions. Med. Phys. 2011, 38, 5490–5499. [Google Scholar] [CrossRef]
- Vano, E.; Escaned, J.; Vano-Galvan, S.; Fernandez, J.M.; Galvan, C. Importance of a Patient Dosimetry and Clinical Follow Up Program in the Detection of Radiodermatitis After Long Percutaneous Coronary Interventions. Cardiovasc. Interv. Radiol. 2013, 36, 330–337. [Google Scholar] [CrossRef]
- Inaba, Y.; Chida, K.; Kobayashi, R.; Kaga, Y.; Zuguchi, M. Fundamental Study of a Real-Time Occupational Dosimetry System for Interventional Radiology Staff. J. Radiol.Prot. 2014, 34, N65–N71. [Google Scholar] [CrossRef]
- Yoo, W.J.; Shin, S.H.; Jeon, D.; Hong, S.; Sim, H.I.; Kim, S.G.; Jang, K.W.; Cho, S.; Youn, W.S.; Lee, B. Measurement of Entrance Surface Dose on an Anthropomorphic Thorax Phantom Using a Miniature Fiber-Optic Dosimeter. Sensors 2014, 14, 6305–6316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farah, J.; Cuttat, M.; Hadid, L.; Jenny, C.; Clairand, I. Patient Dosimetry in Interventional Radiology: Uncertainties Associated to Skin Dose Measurement and Exposure Correlation to Online Dose Indicators. Phys. Med. 2015, 31, e46–e47. [Google Scholar] [CrossRef]
- De Camargo Lourenco, J.C.; Paschuk, S.A.; Schelin, H.R.; Denyak, V.; Santos, C.A.C. Development of a system to estimate doses in real time. Radiat. Phys. Chem. 2020, 167, 108267. [Google Scholar] [CrossRef]
Channel Number. | ch. 1 | ch. 2 | ch. 3 | ch. 4 | Ave. | SD | CV |
---|---|---|---|---|---|---|---|
Measurements | mGy | mGy | |||||
1 | 3.88 | 4.18 | 4.27 | 3.87 | 4.05 | 0.205 | 0.051 |
2 | 3.84 | 4.16 | 4.25 | 3.82 | 4.02 | 0.220 | 0.055 |
3 | 3.85 | 4.17 | 4.25 | 3.83 | 4.03 | 0.216 | 0.054 |
4 | 3.86 | 4.17 | 4.26 | 3.84 | 4.03 | 0.214 | 0.053 |
5 | 3.86 | 4.18 | 4.26 | 3.84 | 4.04 | 0.216 | 0.054 |
6 | 3.87 | 4.18 | 4.27 | 3.85 | 4.04 | 0.214 | 0.053 |
7 | 3.87 | 4.18 | 4.26 | 3.85 | 4.04 | 0.211 | 0.052 |
8 | 3.87 | 4.17 | 4.26 | 3.86 | 4.04 | 0.205 | 0.051 |
9 | 3.87 | 4.18 | 4.27 | 3.87 | 4.05 | 0.208 | 0.051 |
10 | 3.87 | 4.18 | 4.27 | 3.87 | 4.05 | 0.208 | 0.051 |
Ave. | 3.86 | 4.18 | 4.26 | 3.85 | 4.04 | 0.212 | 0.052 |
Uniformity |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inaba, Y.; Nakamura, M.; Zuguchi, M.; Chida, K. Development of Novel Real-Time Radiation Systems Using 4-Channel Sensors. Sensors 2020, 20, 2741. https://doi.org/10.3390/s20092741
Inaba Y, Nakamura M, Zuguchi M, Chida K. Development of Novel Real-Time Radiation Systems Using 4-Channel Sensors. Sensors. 2020; 20(9):2741. https://doi.org/10.3390/s20092741
Chicago/Turabian StyleInaba, Yohei, Masaaki Nakamura, Masayuki Zuguchi, and Koichi Chida. 2020. "Development of Novel Real-Time Radiation Systems Using 4-Channel Sensors" Sensors 20, no. 9: 2741. https://doi.org/10.3390/s20092741
APA StyleInaba, Y., Nakamura, M., Zuguchi, M., & Chida, K. (2020). Development of Novel Real-Time Radiation Systems Using 4-Channel Sensors. Sensors, 20(9), 2741. https://doi.org/10.3390/s20092741