Validity and Reliability of an Inertial Device for Measuring Dynamic Weight-Bearing Ankle Dorsiflexion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Weight-Bearing Lunge Test
2.3. Instruments
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fredericson, M.; Wolf, C. Iliotibial Band Syndrome in Runners. Sports Med. 2005, 35, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Basnett, C.R.; Hanish, M.J.; Wheeler, T.J.; Miriovsky, D.J.; Danielson, E.L.; Barr, J.B.; Grindstaff, T.L. Ankle dorsiflexion range of motion influences dynamic balance in individuals with chronic ankle instability. Int. J. Sports Phys. Ther. 2013, 8, 121–128. [Google Scholar] [PubMed]
- Mason-Mackay, A.R.; Whatman, C.; Reid, D. The effect of reduced ankle dorsiflexion on lower extremity mechanics during landing: A systematic review. J. Sci. Med. Sport 2017, 20, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Wahlstedt, C.; Rasmussen-Barr, E. Anterior cruciate ligament injury and ankle dorsiflexion. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 3202–3207. [Google Scholar] [CrossRef]
- Fong, C.-M.; Blackburn, J.T.; Norcross, M.F.; McGrath, M.; Padua, D.A. Ankle-Dorsiflexion Range of Motion and Landing Biomechanics. J. Athl. Train. 2011, 46, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Riddle, D.L.; Pulisic, M.; Pidcoe, P.; Johnson, R.E. Risk factors for plantar fasciitis. J. Bone Jt. Surg. 2003, 85, 872–877. [Google Scholar] [CrossRef] [Green Version]
- Šarčević, Z. Limited ankle dorsiflexion: A predisposing factor to Morbus Osgood Schlatter? Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 726–728. [Google Scholar] [CrossRef]
- Malliaras, P.; Cook, J.L.; Kent, P. Reduced ankle dorsiflexion range may increase the risk of patellar tendon injury among volleyball players. J. Sci. Med. Sport 2006, 9, 304–309. [Google Scholar] [CrossRef]
- Backman, L.J.; Danielson, P. Low Range of Ankle Dorsiflexion Predisposes for Patellar Tendinopathy in Junior Elite Basketball Players. Am. J. Sports Med. 2011, 39, 2626–2633. [Google Scholar] [CrossRef]
- Powden, C.J.; Hoch, J.M.; Hoch, M.C. Reliability and minimal detectable change of the weight-bearing lunge test: A systematic review. Man. Ther. 2015, 20, 524–532. [Google Scholar] [CrossRef]
- Dickson, D.; Hollman-Gage, K.; Ojofeitimi, S.; Bronner, S. Comparison of Functional Ankle Motion Measures in Modern Dancers. J. Dance Med. Sci. 2012, 16, 116–125. [Google Scholar] [PubMed]
- Konor, M.M.; Morton, S.; Eckerson, J.M.; Grindstaff, T.L. Reliability of three measures of ankle dorsiflexion range of motion. Int. J. Sports Phys. Ther. 2012, 7, 279–287. [Google Scholar] [PubMed]
- Balsalobre-Fernández, C.; Romero-Franco, N.; Jiménez-Reyes, P. Concurrent validity and reliability of an iPhone app for the measurement of ankle dorsiflexion and inter-limb asymmetries. J. Sports Sci. 2019, 37, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.M.; Caserta, A.J.; Haines, T.P. The TiltMeter app is a novel and accurate measurement tool for the weight bearing lunge test. J. Sci. Med. Sport 2013, 16, 392–395. [Google Scholar] [CrossRef] [Green Version]
- Carse, B.; Meadows, B.; Bowers, R.; Rowe, P. Affordable clinical gait analysis: An assessment of the marker tracking accuracy of a new low-cost optical 3D motion analysis system. Physiotherapy 2013, 99, 347–351. [Google Scholar] [CrossRef]
- Chander, H.; Stewart, E.; Saucier, D.; Nguyen, P.; Luczak, T.; Ball, J.E.; Knight, A.C.; Smith, B.K.; Prabhu, R.K. Closing the wearable gap—Part III: Use of stretch sensors in detecting ankle kinematics during unexpected and expected slip and trip perturbations. Electronics 2019, 8, 1083. [Google Scholar] [CrossRef] [Green Version]
- Bronner, S.; Agraharasamakulam, S.; Ojofeitimi, S. Reliability and validity of a new ankle electrogoniometer. J. Med. Eng. Technol. 2010, 34, 350–355. [Google Scholar] [CrossRef]
- Fong, D.; Chan, Y.-Y. The Use of Wearable Inertial Motion Sensors in Human Lower Limb Biomechanics Studies: A Systematic Review. Sensors 2010, 10, 11556–11565. [Google Scholar] [CrossRef] [Green Version]
- Poitras, I.; Dupuis, F.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.; Roy, J.-S. Validity and Reliability of Wearable Sensors for Joint Angle Estimation: A Systematic Review. Sensors 2019, 19, 1555. [Google Scholar] [CrossRef] [Green Version]
- Peart, D.J.; Balsalobre-Fernández, C.; Shaw, M.P. Use of Mobile Applications to Collect Data in Sport, Health, and Exercise Science. J. Strength Cond. Res. 2019, 33, 1167–1177. [Google Scholar] [CrossRef]
- Dobkin, B.H.; Firestine, A.; West, M.; Saremi, K.; Woods, R. Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. Neuroimage 2004, 23, 370–381. [Google Scholar] [CrossRef] [Green Version]
- Rigoni, M.; Gill, S.; Babazadeh, S.; Elsewaisy, O.; Gillies, H.; Nguyen, N.; Pathirana, P.N.; Page, R. Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device—A Validation Study. Sensors 2019, 19, 1781. [Google Scholar] [CrossRef] [Green Version]
- Guiry, J.; van de Ven, P.; Nelson, J. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices. Sensors 2014, 14, 5687–5701. [Google Scholar] [CrossRef]
- O’Donovan, K.J.; Kamnik, R.; O’Keeffe, D.T.; Lyons, G.M. An inertial and magnetic sensor based technique for joint angle measurement. J. Biomech. 2007, 40, 2604–2611. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Luczak, T.; Saucier, D.; Burch V., R.F.; Ball, J.; Chander, H.; Knight, A.; Wei, P.; Iftekhar, T. Closing the wearable gap: Mobile systems for kinematic signal monitoring of the foot and ankle. Electronics 2018, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Awatani, T.; Enoki, T.; Morikita, I. Inter-rater reliability and validity of angle measurements using smartphone applications for weight-bearing ankle dorsiflexion range of motion measurements. Phys. Ther. Sport 2018, 34, 113–120. [Google Scholar] [CrossRef]
- Calatayud, J.; Martin, F.; Gargallo, P.; García-Redondo, J.; Colado, J.C.; Marín, P.J. The validity and reliability of a new instrumented device for measuring ankle dorsiflexion range of motion. Int. J. Sports Phys. Ther. 2015, 10, 197–202. [Google Scholar]
- Krause, D.A.; Cloud, B.A.; Forster, L.A.; Schrank, J.A.; Hollman, J.H. Measurement of Ankle Dorsiflexion: A Comparison of Active and Passive Techniques in Multiple Positions. J. Sport Rehabil. 2011, 20, 333–344. [Google Scholar] [CrossRef]
- Munteanu, S.E.; Strawhorn, A.B.; Landorf, K.B.; Bird, A.R.; Murley, G.S. A weightbearing technique for the measurement of ankle joint dorsiflexion with the knee extended is reliable. J. Sci. Med. Sport 2009, 12, 54–59. [Google Scholar] [CrossRef]
- Muyor, J.M. Validity and Reliability of a New Device (WIMU®) for Measuring Hamstring Muscle Extensibility. Int. J. Sports Med. 2017, 38, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, MI, USA, 1988; ISBN 9780805802832. [Google Scholar]
- Ludbrook, J. Statistical Techniques For Comparing Measurers and Methods Of Measurement: A Critical Review. Clin. Exp. Pharmacol. Physiol. 2002, 29, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Kleeblad, L.J.; van Bemmel, A.F.; Sierevelt, I.N.; Zuiderbaan, H.A.; Vergroesen, D.A. Validity and Reliability of the Achillometer®: An Ankle Dorsiflexion Measurement Device. J. Foot Ankle Surg. 2016, 55, 688–692. [Google Scholar] [CrossRef]
- Romero Morales, C.; Calvo Lobo, C.; Rodríguez Sanz, D.; Sanz Corbalán, I.; Ruiz Ruiz, B.B.; López López, D. The concurrent validity and reliability of the Leg Motion system for measuring ankle dorsiflexion range of motion in older adults. PeerJ 2017, 5, e2820. [Google Scholar] [CrossRef]
- Wilken, J.; Rao, S.; Estin, M.; Saltzman, C.; Yack, H.J. A New Device for Assessing Ankle Dorsiflexion Motion: Reliability and Validity. J. Orthop. Sports Phys. Ther. 2011, 41, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, G.; Nevill, A.M. Statistical Methods For Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Gatt, A.; Chockalingam, N. Validity and reliability of a new ankle dorsiflexion measurement device. Prosthet. Orthot. Int. 2013, 37, 289–297. [Google Scholar] [CrossRef]
- Hernández-Belmonte, A.; Bastida-Castillo, A.; Gómez-Carmona, C.D.; Pino-Ortega, J. Validity and reliability of an inertial device (WIMU PROTM) to quantify physical activity level through steps measurement. J. Sports Med. Phys. Fit. 2019, 59, 587–592. [Google Scholar] [CrossRef]
- Muyor, J.M.; Granero-Gil, P.; Pino-Ortega, J. Reliability and validity of a new accelerometer (Wimu®) system for measuring velocity during resistance exercises. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2018, 232, 218–224. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Latorre-Román, P.A.; Valdivieso-Ruano, F.; Balsalobre-Fernández, C.; Párraga-Montilla, J.A. Validity and reliability of the WIMU® system to measure barbell velocity during the half-squat exercise. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2019, 233, 408–415. [Google Scholar] [CrossRef]
- Pino-Ortega, J.; García-Rubio, J.; Ibáñez, S.J. Validity and reliability of the WIMU inertial device for the assessment of the vertical jump. PeerJ 2018, 6, e4709. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; García-Rubio, J.; Ibáñez, S.J.; Pino-Ortega, J. Static and dynamic reliability of WIMU PROTM accelerometers according to anatomical placement. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2019, 233, 238–248. [Google Scholar]
- Bastida-Castillo, A.; Gómez-Carmona, C.D.; de la Cruz, E.; Pino-Ortega, J. Accuracy, intra-and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time—Motion analyses in soccer. Eur. J. Sport Sci. 2018, 18, 450–457. [Google Scholar] [CrossRef]
Left Ankle | Right Ankle | |
---|---|---|
Inclinometer (°; 95% CI) | 41.33 ± 6.30 (38.19–44.47) | 41.02 ± 6.50 (37.79–44.26) |
WIMU Pro (°; 95% CI) | 41.77 ± 6.35 (38.61–44.93) | 42.80 ± 6.63 (39.50–46.10) |
Systematic bias (°) | −0.44 ± 2.47 | −1.77 ± 2.23 * |
Cohen’s d | 0.17 | 0.79 |
SEM (°) | 0.58 | 0.52 |
R2 correlation | 0.853 † | 0.888 † |
ICC (95% CI) | 0.961 † (0.898–0.985) | 0.954 † (0.766–0.986) |
Inclinometer | WIMU Pro | |||
---|---|---|---|---|
Left Ankle | Right Ankle | Left Ankle | Right Ankle | |
Test (°; 95% CI) | 40.83 ± 6.52 (37.58–44.08) | 40.61 ± 6.64 (37.30–43.91) | 41.39 ± 6.42 (38.19–44.58) | 42.06 ± 6.53 (38.80–45.30) |
Retest (°; 95% CI) | 41.83 ± 6.32 (38.68–44.98) | 41.44 ± 6.81 (38.05–44.83) | 42.17 ± 6.40 (38.98–45.35) | 43.56 ± 6.91 (40.11–46.99) |
Systematic bias (°) | −1.00 ± 2.47 | −0.83 ± 3.43 | −0.77 ± 1.73 | −1.50 ± 2.22 * |
Cohen’s d | 0.34 | 0.27 | 0.27 | 0.49 |
SEM (°) | 0.58 | 0.80 | 0.40 | 0.52 |
ICC (95% CI) | 0.958 † (0.884–0.984) | 0.930 † (0.817–0.974) | 0.979 † (0.939–0.992) | 0.961 † (0.845–0.987) |
CV (%) | 3.06 | 3.75 | 2.24 | 3.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliva-Lozano, J.M.; Martín-Fuentes, I.; Muyor, J.M. Validity and Reliability of an Inertial Device for Measuring Dynamic Weight-Bearing Ankle Dorsiflexion. Sensors 2020, 20, 399. https://doi.org/10.3390/s20020399
Oliva-Lozano JM, Martín-Fuentes I, Muyor JM. Validity and Reliability of an Inertial Device for Measuring Dynamic Weight-Bearing Ankle Dorsiflexion. Sensors. 2020; 20(2):399. https://doi.org/10.3390/s20020399
Chicago/Turabian StyleOliva-Lozano, José M., Isabel Martín-Fuentes, and José M. Muyor. 2020. "Validity and Reliability of an Inertial Device for Measuring Dynamic Weight-Bearing Ankle Dorsiflexion" Sensors 20, no. 2: 399. https://doi.org/10.3390/s20020399
APA StyleOliva-Lozano, J. M., Martín-Fuentes, I., & Muyor, J. M. (2020). Validity and Reliability of an Inertial Device for Measuring Dynamic Weight-Bearing Ankle Dorsiflexion. Sensors, 20(2), 399. https://doi.org/10.3390/s20020399