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Abstract: Digital markers of behavior can be continuously created, in everyday settings, using time 
series data collected by ambient sensors. The goal of this work was to perform individual- and 
population-level behavior analysis from such time series sensor data. In this paper, we introduce a 
novel algorithm—Resident Relative Entropy-Inverse Reinforcement Learning (RRE-IRL)—to 
perform an analysis of a single smart home resident or a group of residents, using inverse 
reinforcement learning. By employing this method, we learnt an individual’s behavioral routine 
preferences. We then analyzed daily routines for an individual and for eight smart home residents 
grouped by health diagnoses. We observed that the behavioral routine preferences changed over 
time. Specifically, the probability that the observed behavior was the same at the beginning of data 
collection as it was at the end (months later) was lower for residents experiencing cognitive decline 
than for cognitively healthy residents. When comparing aggregated behavior between groups of 
residents from the two diagnosis groups, the behavioral difference was even greater. Furthermore, 
the behavior preferences were used by a random forest classifier to predict a resident’s cognitive 
health diagnosis, with an accuracy of 0.84.  

Keywords: smart homes; ambient sensors; activity recognition; behavior analysis; inverse 
reinforcement learning 

 

1. Introduction 

Humans have long sought to understand their own behavior and the influence of a person’s 
behavior on themselves, those nearby, and society. In response to this need, theories have arisen from 
psychology, sociology, and anthropology to explain the complexities of behavior and the factors that 
drive it [1–3]. Such theories have relied on self-reporting. However, these sources of information are 
prone to error due to retrospective memory limitations [4] and unintended experimenter bias [5]. 
Over the past decade, sensors have become small, low-power, low-cost, high-capacity, and easily 
integrated into everyday settings [6–10]. As a result, we now have the ability to perform automated 
behavior monitoring and analysis. 

1.1. Background 

The long-term goal of this research is to perform population-level analyses of behavior from 
ambient sensor data. By modeling the behavior of an individual or a group from sensor data, we 
introduce a method to quantitatively link the health status with behavior, providing a foundation for 
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automated health assessment and the design of behavior-driven interventions. Assessing and 
promoting health are challenging tasks at the best of times because health care providers must make 
decisions based on a typical 20 min visit with a patient [11], aided by complex, often-noisy laboratory 
tests. The ability to provide real-time, accurate assessments is particularly timely because, as the 
population ages, older adults will likely outnumber children for the first time in US history [12], 
creating a discrepancy between the number of persons needing care and those capable of providing 
it [12–16]. As a result, chronic illness rates and healthcare expenditures are both increasing [15,16]. 
The early detection of cognitive health changes with the close monitoring of chronic conditions has 
been identified as a national priority [17,18] because this supports more effective treatment and 
significantly improves the quality of care while reducing health care costs [19,20]. However, clinic-
based assessment is infeasible for many who live in remote areas or remain in their homes due to 
COVID-19 or travel restrictions. Additionally, spending a few minutes in a doctor’s office or clinic 
does not provide the same insights that can be gleaned from the continuous monitoring of relevant 
behavioral and physiological data. 

Because a strong relationship exists between behavioral habits and a person’s health status, we 
hypothesize that a health diagnosis can be inferred based on sensor-observed behavior patterns. 
Furthermore, we postulate that behavior patterns can be gleaned from machine learning methods 
and that these same methods can be used to differentiate behavior between points in time for a single 
individual, between multiple individuals, and between groups of people representing diverse health 
diagnosis groups. 

To model human behavior from ambient sensor data, we propose an approach that is based on 
inverse reinforcement learning (IRL). IRL is a machine learning technique that mimics observed 
behavior. In this paper, our proposed algorithm—Resident Relative Entropy-Inverse Reinforcement 
Learning (RRE-IRL)—mimics the behavior of a smart home resident based on sensor-observed 
navigation patterns within a home environment. Unlike other IRL research, which learns from 
imitation to recreate expert actions, we learn from mimicry to capture and analyze a model of human 
behavior. We describe a method for modeling navigation patterns as a Markov decision process. 
Next, we learn a behavior strategy, or policy, that is consistent with the observed movement patterns. 
Finally, we use the created framework to analyze behavior patterns and behavioral differences for 
residents living in eight actual smart homes. 

1.2. Related Work 

With the increasing ability to collect a massive amount of sensor data on subjects in an 
unobtrusive manner, we can now design data mining methods to better understand human behavior. 
Researchers employ computational techniques to understand the relationship between behavioral 
habits and one’s health status [21–25]. Previous work has also considered the quantification of 
behavioral change while a person is experiencing health events, although this was only considered 
for individuals and not for groups [26]. Previously, studies have constructed formal models of human 
dynamics from digitally-derived information. As examples, formal methods have modeled a single 
spatial or temporal feature, such as the inter-arrival time of two successive events (e.g., the time delay 
between two occurrences of the same activity), as Poisson processes and heavy-tailed distributions 
[27–32]. Another prior approach analyzes spatio-temporal human processes with Markov models 
[33–36]. 

When data are combined from multiple sources, such as multiple heterogeneous features, a 
challenge arises in creating a model that can include all available information. For our analysis, we 
wanted to construct a model that combines resident temporal and spatial information. The selected 
model also had to be able to learn behavior preferences and distinguish behavior strategies between 
individuals and population groups. 

One data-driven approach to behavior modeling that meets these constraints is inverse 
reinforcement learning (IRL) [37]. IRL is effective at imitating the observed actions of another agent 
or person. IRL learns a reward that reflects the observed agent’s actions, and traditional 
reinforcement learning can then formulate a policy of actions that are consistent with that reward. 
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The end result is an artificial agent that tackles a problem in a manner similar to the observed person. 
This person may be an expert in the problem domain or, as in our work, an individual whose behavior 
we want to better understand. Because researchers realize the value of IRL for training artificial 
agents in solving difficult problems, researchers have introduced several IRL variations, including 
Maximum Entropy [38,39], Relative Entropy [40,41], and Bayesian IRL [42,43]. Existing techniques 
can be broadly categorized into model-based approaches [39] and model-free approaches [41,44]. The 
former assume that prior knowledge of system dynamics is provided, while the latter work on the 
assumption that such prior information is unknown. For many real-world problems, such as smart 
home behavior, reliable priors are not provided. Therefore, we adopted a model-free approach. This 
approach is common for complex real-world applications, including analyzing taxi driver movement 
patterns [45] and routine commuting patterns for other workers [46], assessing a person’s mental 
health [46], and modeling clinical rehabilitation stimulation motions [43].  

2. Materials and Methods 

The goal of this research was to analyze and compare human behavior from ambient sensor 
data. Our study offers a unique contribution to IRL by analyzing ambient sensor-based human 
routine behavior in home settings using inverse reinforcement learning. To describe our methods, we 
first formalize the IRL problem, and then describe the smart home sensor data collection environment 
and characterize the IRL strategy for this problem. The culmination of this process is a new 
algorithm—RRE-IRL—which we used to analyze smart home behavior patterns. 

2.1. Inverse Reinforcement Learning 

Designing a reinforcement learning or inverse reinforcement learning solution to a problem 
relies on first defining a representation for the problem’s state space and a set of possible actions. To 
accomplish this, we modeled a smart home resident’s sequential decision-making space as a Markov 
Decision Process. Based on this model, we learnt a resident’s behavioral routine via relative entropy 
inverse reinforcement learning. 

2.1.1. Markov Decision Process 

A Markov Decision Process (MDP) is a discrete-time control process in which the outcomes of 
actions are probabilistic. An MDP can be characterized by the tuple (S, A, T, γ, D, R) [47]. In this 
characterization, S represents the set of possible states; A is a set of actions the agent can perform; 
and T represents the set of state transition probabilities, where T = {P(sj|si,ai)} is the probability that 
the agent will be in state sj after executing action ai, while in state si, ∀sj, si ∈ S, ai ∈ A. Additionally, 
R(si, ai) is a function specifying the reward that an agent will receive for executing action ai from state 
si [48]. Because the reward may accumulate over multiple actions in a sequence, γ ∈ [0,1] represents 
the discount factor that is applied to the reward, thus avoiding collecting arbitrarily large rewards 
for arbitrarily-long sequences of actions. Finally, D represents a distribution over possible start states, 
s0. For convenience, we let MDP\R denote an MDP that does not utilize a reward function, or a tuple 
(S, A, T, D). 

2.1.2. Reinforcement Learning 

An MDP assumes that an agent can navigate to any destination state based on a sequence of 
actions that is suggested by a corresponding strategy. This strategy, or policy π, guides an agent in 
selecting an action from any given state. Given the large space of potential policies, an agent ideally 
wants to select an optimal policy, which is one that maximizes the total discounted rewards of 
executing the policy. Because randomness is inherent in an MDP (e.g., the initial state distribution 
and the transition probabilities), maximizing the accumulated rewards is adjusted to instead 
maximize the expected accumulated rewards. The goal of reinforcement learning (RL) is to find an 
optimal policy, π, that maximizes the expected sum of discounted rewards [49], as shown in Equation 
(1). 
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π = arg max஠  E ൥෍ γ୧R(s୧, a୧)ஶ
୧ୀ଴ อ π൩ , ∀s୧ ∈ S, a୧ ∈ A (1) 

2.1.3. RRE-IRL  

In the case of an MDP\R problem, one RL challenge is to find an optimal policy when the 
rewards are unknown. This is where inverse reinforcement learning plays an important role, because 
IRL extracts a reward function given the observations of an agent executing actions [50]. Often, IRL 
learns a reward function from observing an agent perform a plan. If the agent is an expert in the 
problem domain, this process allows IRL to learn the reward that is consistent with the expert’s 
reward function. RL can learn a policy consistent with the reward, thus allowing the agent to imitate 
the expert’s strategy. In this way, an automated agent can imitate the strategy of the expert. For our 
proposed work, we consider learning a reward function of a smart home resident. The goal is not to 
optimize the performance of actions within a smart home by imitating an expert, but to model and 
analyze the reward function that drives behavior [51] for a particular smart home resident. 

Figure 1 illustrates our analysis process. Our proposed RRE-IRL algorithm accepts a set of 
trajectories observed over time for a smart home resident as the input. The trajectories are consistent 
with the resident’s behavior patterns, or policy π, that govern their choice of actions for each state 
(place and time). Inverse reinforcement learning processes this information, together with the 
floorplan MDP\R, to generate a corresponding reward function. Finally, the reward function is 
decomposed into constituent pieces that can be used to analyze a person’s behavioral strategies and 
distinguish the behavior policies between individuals and groups. 

 

Figure 1. Resident Relative Entropy-Inverse Reinforcement Learning (RRE-IRL) analysis of smart 
home sensor data. 

We assumed that the “true” reward function, R, exists, and that it can be expressed as a linear 
combination of a feature vector φ with a corresponding weight vector, θ, 𝑅(𝑠௜, 𝑎௜) = 𝜃 ∙ 𝜙(𝑠௜, 𝑎௜), for ∀(𝑠௜, 𝑎௜) ∈ 𝑆 ൈ 𝐴. For our study, vector φ indicates desiderata of a resident when spending time in 
their home, such as whether they prefer staying in the bedroom or office room, whether they 
frequently visit the kitchen sink, and so on. The unknown vector θ specifies the relative weight, or 
preference, between these desiderata. Learning the reward function can be specified as an 
optimization problem. Specifically, Equation (1) can be rewritten as shown in Equation (2). 
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𝜋 = arg 𝑚𝑎𝑥గ  𝐸 ൥෍ 𝛾௜𝜃 ∙ 𝜙(𝑠௜, 𝑎௜)ஶ
௜ୀ଴ อ 𝜋൩ 

=  arg 𝑚𝑎𝑥గ 𝜃 ∙ 𝐸 ൥෍ 𝛾௜ ∙ 𝜙(𝑠௜, 𝑎௜)ஶ
௜ୀ଴ อ 𝜋൩ , ∀𝑠௜ ∈ 𝑆, 𝑎௜ ∈ 𝐴 

(2) 

Given Equation (2), we can define 𝜇(𝜋) as the feature expectations, or the vector of expected 
discounted feature values for a policy 𝜋. The vector can be expressed as shown in Equation (3). 

𝜇(𝜋) = 𝐸 ൥෍ 𝛾௜ ∙ 𝜙(𝑠௜, 𝑎௜)|𝜋ஶ
௜ୀ଴ ൩ (3) 

When we substitute 𝜇(𝜋) back into Equation (2), we yield Equation (4). 𝜋 = arg 𝑚𝑎𝑥గ  𝜃 ∙ 𝜇(𝜋)  (4) 

Here, the feature expectation, 𝜇(𝜋), determines the expected sum of rewards. That is, to find an 
optimal policy in an MDP\R problem where rewards are unknown, we find the maximum value of 
feature expectations instead of the maximum value of the expected sum of rewards. 

2.2. CASAS Smart Home 

The human behavior analysis work described in this paper processes sensor events recorded in 
eight CASAS smart homes. The smart homes, designed at the Center for Advanced Studies in 
Adaptive Systems (CASAS), are equipped with passive ambient sensors that provide an indication 
of the resident’s location within the home. The ambient sensors include passive infrared motion 
sensors. Several of these are placed on the ceiling in each major room of the house. They are 
positioned over functional areas, such as the kitchen sink, refrigerator, dining room table, living room 
couch, office desk, bathroom sink and shower, and the bed. Each of the motion sensor cases also 
houses an ambient light sensor. Additionally, the homes contain magnetic door sensors. These are 
placed on all external doors, as well as key cabinets, such as the ones that contain medicine. Each of 
the magnetic door sensor cases further houses an ambient temperature sensor. All of the sensors are 
discrete events—they report an “event” when there is a change in state. Figure 2 shows the layout of 
one example smart home—the one that represents our on-campus testbed. 
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Figure 2. Floor plan and sensor locations for an on-campus smart home testbed. Motion/light sensor 
locations are indicated with red squares and door/temperature sensor locations are indicated with 
green squares. Purple squares indicate the locations of items that are tagged with additional sensors. 

Table 1 shows a series of sensor messages, or events, that were recorded at the on-campus smart 
apartment. Each sensor event is a three-tuple containing the message timestamp, the sensor identifier, 
and the message content. The ambient sensor data that were used for our analysis are available from 
the CASAS web site at casas.wsu.edu. This study was approved by the Washington State University 
Institutional Review Board. 

Table 1. An example of sensor messages recorded from the on-campus smart home testbed. Each 
sensor message contains the message date/time, the sensor ID, and the sensor message. 

Timestamp Sensor ID Message 
02/06/2009 17:52:28 M025 ON 
02/06/2009 17:52:32 M025 OFF 
02/06/2009 17:52:35 M025 ON 
02/06/2009 17:52:36 M025 OFF 
02/06/2009 17:52:37 M045 ON 
02/06/2009 17:52:38 M025 ON 
02/06/2009 17:52:44 M045 OFF 
02/06/2009 17:53:31 M024 ON 
02/06/2009 17:53:32 M019 ON 
02/06/2009 17:53:33 M021 ON 
02/06/2009 17:53:33 M025 OFF 
02/06/2009 17:53:34 M021 OFF 
02/06/2009 17:53:34 M018 ON 
02/06/2009 17:53:36 M051 ON 
02/06/2009 17:53:36 M024 OFF 
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2.3. Modeling the Smart Home 

To model a smart home resident’s decision-making process, we defined an MDP\R with a finite 
set of states and a finite set of actions. For this problem, each state s ∈ S is a spatio-temporal region, 
specified by a geographical cell location and a time slot. Similarly, action a ∈ A is one of nine possible 
choices. These consist of staying in the same cell or navigating from the current cell to one of the eight 
adjacent cells. Reward R is represented by the inner product of a feature vector φ and the 
preference/weight vector θ. Figure 3 shows an example of a smart home decision space within the 
MDP\R. Here, the space is the residence floor plan, represented as a grid containing axis-aligned 
cells (indicated by dashed lines in the figure). Each cell, labeled with its corresponding row and 
column number, represents a single state in the MDP. The resident’s navigation choices, or possible 
actions, are depicted for one cell with blue arrows in the figure. 

 

Figure 3. Markov Decision Process (MDP) representation of a smart home resident’s decision-making 
process in the context of a smart home floorplan. 

In Figure 3, the resident (represented as an orange circle) is currently in state s3,4 (i.e., the middle 
of the living room). Motion sensors are located in positions marked by black rectangles and labeled 
with the sensor identifier. Sensor identifiers labeled as “Mxxx” are downward-facing passive infrared 
motion sensors configured to sense a region with a diameter of one meter, “MAxxx” are motion 
sensors configured to sense an entire room, “LSxxx” are light sensors, and “Dxxx” are 
motion/temperature sensors. Shapes indicated with green, purple, or pink lines are furniture or 
appliance items in the apartment. In this example, the resident selects the lower-right movement as 
the action that will transition the state to s4,5. After executing a sequence of actions, the resident 
eventually reaches the final state in the observed sequence—s4,9 (near the bed). 

2.3.1. Floorplan Quantization 

Our algorithm—RRE-IRL—is designed to analyze behavior patterns from ambient sensors 
embedded in smart homes. As mentioned in Section 2.3, each home is represented as a spatio-
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temporal grid. Given a home’s floorplan, we can divide the house into equal-sized grid cells and 
assign a unique identifier to each cell. We can eliminate cells that are unreachable (walls or furniture 
preventing the resident from moving there). Next, we can divide collected sensor data into daily 
trajectories, resulting in 365 total trajectories. Each spatio-temporal region r is thus a pair containing 
the grid cell s and time t. In this way, each resident’s trajectories can be mapped onto sequences of 
spatio-temporal regions. 

In our smart homes, not all grid cells are monitored by sensors. As a result, the residents’ indoor 
trajectories may not be continuous in the MDP. Consider the home depicted in Figure 2. For one 
trajectory in this home, motion sensor M007 (located in cell (3,2)) was triggered. The next sensor event 
was reported by motion sensor M004 (located in cell (2,4)). The path from (3,2) to (2,4) is ambiguous. 
This uncertainty increases the difficulty of modeling and analyzing indoor trajectories using an MDP. 

To resolve this problem, we can impute the missing trajectory steps by finding the cell x that has 
a minimum summed Euclidean distance from the current state to x and from x to the next observed 
cell. Only cells that that can be traversed are considered (i.e., no furniture or walls are blocking the 
path). For our example, cell (2,3) is selected as the next state from cell (3,2) en route to location (2,4). 
We can repeat this process as needed to form continuous resident trajectories. 

2.3.2. Feature Extraction 

Individuals make numerous movement-based decisions throughout the day (e.g., when to get 
out of bed and move to the bathroom, and when to move from the office back to the bedroom at the 
end of the day). To make such decisions, smart home residents instinctively evaluate multiple factors, 
or features, related to their current state, s. These may include the priority of tasks on their to-do list 
and their current location in the home (e.g., the current spatio-temporal region, r). We designed 14 
features—φ=(φ1,.., φ14)—to represent factors that may impact a resident’s decision making. These 
features are categorized into two groups: The duration that the resident stays at a location (feature 
names prefixed by “d_”) and the overall activity/movement level at a location (feature names 
prefixed by “o_”). The feature vector thus contains the set of features listed in Table 2. We assume 
that trajectory rewards are a linear combination of features and their weights (preference vector). 
Given observed feature values, we can thus calculate the corresponding preference vector using RRE-
IRL, described in the next section. 

Table 2. Set of features guiding smart home movement decisions. 

d_Toilet d_Bathroom_sink d_Livingroom_chair d_kitchen_Sink 
d_bedroom d_kitchen d_livingroom d_hallway 

d_stove d_office_chair o_toilet o_livingroom_chair 
o_kitchen_sink o_office_chair   

2.4. Relative Entropy IRL 

Explicitly learning indoor human movement dynamics is a very challenging problem. Because 
of the inherent complexity involved in formally modeling the dynamics, we employed a model-free 
IRL based on Relative Entropy to understand a smart home resident’s behavior based on observed 
in-home movement trajectories. A smart home resident selects actions based on their own internal 
policy. If we wanted to learn such a policy, we would attempt to maximize the expected sum of 
rewards. Alternatively, in the case of an MDP\R where the rewards are unknown, we could 
determine the optimal policy by maximizing the feature expectation that is extracted from the action 
sequences (in our case, the resident’s movement trajectories). In our study, our goal was not to learn 
a policy, but to analyze a person’s routine behavior and determine the differences in behavior 
between population groups. As a result, we compared resident trajectories. To obtain multiple 
trajectories from which we could build a model, we considered each day’s worth of sensor events, or 
movement-based actions, as a separate action sequence to model. 
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We defined our MDP\R with a finite horizon h, implying that the number of time steps to be 
modeled is finite. In our study, the horizon h was a single day, from the beginning of a day (00:00:00) 
to the end of the same day (23:59:59). We defined a resident’s indoor behavior for one day as a single 
trajectory, τ. Correspondingly, the set of resident daily trajectories is denoted as 𝛵 (𝜏 ∈ 𝛵). Let P(τ) 
represent a probability distribution over resident trajectories 𝛵 and Q(τ) denote the distribution that 
is inducted by a baseline policy (e.g., one where Q(τ) is a uniform distribution). In this case, Relative 
Entropy IRL (RelEnt-IRL) minimizes the relative entropy, or Kullback–Leibler divergence [52], 
between P(τ) and Q(τ). This is shown in Equation (5). 𝑚𝑖𝑛௉ ෍ 𝑃(𝜏)𝑙𝑛 𝑃(𝜏)𝑄(𝜏)ఛ∈஋  

 

𝒔. 𝒕. อ ෍ 𝑷(𝝉|𝜽) ∙ 𝝓𝒊𝝉𝝉∈𝚻 − 𝝁𝒊(𝝉)อ ≤ 𝜺𝒊, ∀𝒊 ∈ 𝟏, . . , 𝒌 

(5) 

෍ 𝑃(𝜏|𝜃) = 1ఛ∈஋  

 𝑃(𝜏|𝜃) ≥ 0 
 

 

In Equation (5), k is the number of features, 𝜙௜ఛ is the ith feature in vector 𝜙ఛ that is extracted 
from trajectory τ, 𝝁𝒊(𝝉)  is the ith feature expectation in μ(τ), and 𝜺𝒊  is a threshold based on 
Hoeffding’s bound [41]. This constrained optimization problem can be solved in two steps: By 
introducing Lagrangian multipliers L and solving the Lagrange dual function g. Using this approach, 
P can be defined as a function of τ and θ, as shown in Equation (6): 𝑃(𝜏|𝜃) = 𝑄(𝜏)exp (𝜃 ∙ 𝜙ఛ)∑ 𝑄(𝜏)exp (𝜃 ∙ 𝜙ఛ)ఛ∈஋  (6) 

= 1𝑍(𝜃) 𝑄(𝜏) exp(𝜃 ∙ 𝜙ఛ) , ∀𝜏 ∈ 𝑇,  

where Z(θ) = 𝑄(𝜏)exp (𝜃 ∙ 𝜙ఛ). The corresponding dual function is shown in Equation (7): 𝑔(𝜃) = 𝜃 ∙ 𝜇 = ln 𝑍(𝜃) − |𝜃| ∙ 𝜀, (7) 

where |θ| is the absolute value of each element in the weight vector |θ| = (|θ1|,..., |θk|), 𝜺 =(𝜀ଵ, . . , 𝜀௞) is a vector of 𝜀௜, and k is the number of features. The gradient of the dual function is shown 
in Equation (8): 𝝏𝝏𝜽𝒊 𝒈(𝜽) = 𝝁𝒊 − ෍ 𝑷(𝝉|𝜽) ∙ 𝝓𝒊𝝉 − 𝜶𝒊 ∙ 𝜺𝒊,𝝉∈𝚻  (8) 

where 𝛼௜ = 1 if 𝜃௜ ≥ 1; otherwise, 𝛼௜ = −1. 
To efficiently approximate the gradient in Equation (8), an importance sampling method is used 

for a set of N trajectories, 𝑇ேఛ, while executing policy π. The term ∑ 𝑃(𝜏|𝜃) ∙ 𝜙௜ఛఛ∈஋ can be estimated for 
any 𝝉 ∈ 𝑻𝑵𝝉 . We can assume that Q(τ), representing the distribution of trajectories from a base policy 
in Equation (5), can be decomposed into the expression 𝑄(𝜏) = 𝑆௧௥௔௡(𝜏) ∙ 𝐴௧௥௔௡(𝜏), where 𝑆௧௥௔௡(𝜏) =𝐷(𝑠଴) ∏ 𝑇(𝑠௜, 𝑎௜, 𝑠௜ାଵ)ு௜ୀଵ  is the joint probability of the state transitions in a trajectory τ given the initial 
state distribution 𝐷(𝑠଴) and 𝐴௧௥௔௡(𝜏) is the joint probability of the actions executed on states in τ. 
Based on this formulation, the sample-based gradient can be approximated as shown in Equation 9: 𝜕𝜕𝜃௜ 𝑔(𝜃) = 𝜇௜ − ෍ 𝑃(𝜏|𝜃) ∙ 𝜙௜ఛ − 𝛼௜ ∙ 𝜀௜.ఛ∈஋  (9) 

Algorithm 1—Resident Relative Entropy IRL (RRE-IRL)—summarizes the Relative Entropy IRL 
procedure for determining a smart home resident’s reward function (preference/weight vector) based 
on observed indoor movement trajectories. 
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Algorithm 1: Resident Relative Entropy IRL 
input: set of trajectories T 
 set of sample trajectories TN (TN⊂T) 
 policy π approximated by TN 
 threshold vector ε 
 learning rate vector α 
 N×k feature matrix Ф  # N=number of trajectories, k=number of features 
output: preference/weight vector θ 
initialize: weight vector θ with random numbers and feature expectation μ 
  
while ( 𝝏𝝏𝜽𝒊 𝒈(𝜽) >  𝜺𝒊) do 

 calculate 𝝏𝝏𝜽𝒊 𝒈(𝜽) using Equation (9) 

 update 𝜽𝒊 = 𝜽𝒊 + 𝜶𝒊 ∙ 𝝏𝝏𝜽𝒊 𝒈(𝜽) 

end  
  
return θ 

3. Results 

Once we had defined the Resident Relative Entropy IRL algorithm (RRE-IRL), we used this 
algorithm to quantify and characterize differences in behavior patterns. In particular, we performed 
the following experiments: 

• Experiment 1: Analyze and compare smart home behavior patterns for a single resident 
at two points in time. Determining whether the learned preference/weight vectors are 
significantly different gives us an indication of whether a person’s behavior is changing 
over time due to influences such as seasonal changes, changes in the environment, or 
changes in health; 
 

• Experiment 2: Quantify change in smart home behavior patterns for multiple smart 
home residents within the same diagnosis group. We hypothesized that the amount of 
change we would observe in the behavior patterns, as defined by the learned 
preference/weight vectors, would be greater between different individuals than for one 
individual at different time points. We hypothesized that this would be particularly true 
when multiple individuals were drawn from the same health diagnosis sub-population; 
 

• Experiment 3: Quantify change in smart home behavior patterns for multiple smart 
home residents from different diagnosis groups. We hypothesized that the amount of 
change we would observe in behavior patterns would be greater between individuals 
from different diagnosis groups than for either Experiment 1 or Experiment (2); 

 
• Experiment 4: Characterize the nature of behavioral change that is observed between 

smart home residents from different diagnosis groups. We analyzed the 
preference/weight vectors that were learned for different smart home residents to 
determine the nature of the change that was observed between individuals who were 
healthy and those who were experiencing cognitive decline. We also used the preference 
vectors to predict the diagnosis group for an individual smart home resident. 

3.1. Experimental Conditions 
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We analyzed movement-based behavior data collected in eight smart homes. To facilitate a 
comparative analysis of population sub-groups, we selected four homes with older adult residents 
who had been diagnosed as cognitively healthy and four homes with older adult residents who were 
experiencing cognitive decline. A summary of the eight homes is provided in Table 3. Floorplans for 
the corresponding homes are shown in Figure 4. 
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Figure 4. Smart home floorplans. Left column from top to bottom: Home 1, Home 2, Home 3, and 
Home 4. Right column from top to bottom: Home 5, Home 6, Home 7, and Home 8. 

Table 3. Summary of information for eight smart home residents. 

Group ID 
Health 

Diagnosis #Sensors 
Duration of 
Data 
Collection 

Number 
of Month-
Long 
Samples 

Total 
Number 
of Sensor 
Events 

Cognitive 
decline 

Home 
1 

Mild 
Cognitive 

Impairment 
(MCI) 

21 downward-
facing motion 

(motion); 
2 motion area 

(ma) 

843 days 26 4,785,969 

Home 
2 

MCI 19 motion;   2 
ma 

223 days 7 876,303 

Home 
3 

MCI 26 motion;   0 
ma 

682 days 22 5,167,574 

Home 
4 

MCI,      
early 

dementia 

11 motion;   2 
ma 149 days 5 24,948 

Cognitively 
healthy 

Home 
5 

Healthy 13 motion;    
1 temperature 

1788 days 56 5,761,601 

Home 
6 

Healthy 13 motion 1591 days 49 4,850,970 

Home 
7 

Healthy 18 motion; 
2 ma 

379 days 12 2,292,312 

Home 
8 

Healthy 10 motion;   1 
ma 

969 days 31 1,853,637 

3.2. Within-Home Analysis 

We began by analyzing data within each home separately. By examining the learned preference 
vectors, we can observe how a smart home resident behaves on a regular basis. Based on the features 
that we designed, we analyzed how long they spent at locations throughout the house and how active 
they were at the locations. Different feature specifications would have allowed us to analyze 
alternative aspects of resident behavior. For example, in future work, we can introduce a feature such 
as the walking speed, quantified as the normalized rate of moving from one region of the home to 
another. Applying RRE-IRL to such a feature would allow us to assess the relationship between 
cognitive health and the walking gait. Researchers have indicated that brain health and walking 
speed often decline together [53]. They have provided evidence for this hypothesis by performing 
clinical cognitive assessment, together with scoring a scripted gait speed task. In contrast, the type of 
analysis we propose can provide an ecologically-valid method of validating this hypothesis. 

Table 4 summarizes the feature vectors for the eight analyzed homes. As Liu et al. suggest, the 
preference values (i.e., reward weights) can be interpreted as the importance of features to the 
corresponding individual [54]. The preference values for all subjects, both those who were cognitively 
healthy and those with cognitive decline, are shown in Figure 5. Overall, the subjects, all of whom 
are older adults, show a preference for time spent in a favorite living room chair and in the hallway 
connecting regions of the home. Time spent in the office chair or at the kitchen sink has much less of 
an influence on their routine. The two population subgroups—cognitively healthy and cognitive 
decline groups—differ most greatly in terms of time spent in the bedroom, at the kitchen sink and 
stove, and in the living room. Subjects with cognitive decline showed a stronger preference for time 
in the bedroom, while cognitively healthy subjects exhibited preference for time in the living room 
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and kitchen. Additionally, cognitively healthy subjects showed a stronger preference for overall 
activity in the monitored areas. 

Table 4. Smart home normalized preference vectors. 

Home 
ID d_Toilet 

d_Bath-
Room 
Sink 

d_Livingroo
m Chair 

d_Kitchen 
Sink 

d_Bedroo
m d_Kitchen 

d_Living-
Room 

1 0.631 0.631 0.224 0.000 1.000 0.073 0.096 
2 0.059 0.061 0.057 0.000 0.847 0.445 0.047 
3 0.377 0.379 1.000 0.000 0.319 0.133 0.892 
4 0.824 0.777 0.836 0.836 1.000 0.340 0.329 
5 0.382 0.405 0.435 0.407 0.615 0.603 0.429 
6 0.988 0.988 0.998 1.000 0.292 0.995 0.999 
7 0.308 0.308 0.745 0.318 0.000 0.379 0.745 
8 0.246 0.246 0.770 0.000 0.743 0.545 0.770 

Home 
ID d_Hallway d_Stove d_Office   

Chair o_Toilet 
o_Living-

Room 
Chair 

o_Kitchen 
Sink 

o_Office 
Chair 

1 0.302 0.326 0.401 0.666 0.262 0.292 0.281 
2 1.000 0.049 0.048 0.060 0.047 0.000 0.046 
3 0.467 0.001 0.123 0.524 0.711 0.486 0.313 
4 0.871 0.855 0.000 0.725 0.797 0.719 0.689 
5 0.917 0.661 0.000 0.381 0.539 1.000 0.854 
6 0.993 0.992 0.000 0.996 0.990 0.993 0.767 
7 0.068 0.318 0.252 1.000 0.594 0.652 0.893 
8 0.464 0.578 0.580 0.246 0.413 0.538 1.000 

Figure 5. Weights of location-based duration (d) and activity level (a) features learned using the 
RRE-IRL algorithm. 

Additionally, we analyzed the impact of time on behavioral changes within each home; that is, 
given the behavior preference vector of a smart home resident for the first two months of data 
collection (e.g., ு௢௠௘ଵଵ,ଶ ), we compared the vector with a vector learned from the same home over a 
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second month-long time period (e.g., compared ு௢௠௘ଵଵ,ଶ  with ு௢௠௘ଵ௡ିଵ,௡ ). We wanted to quantify the 
amount of behavioral change that occurs for a single person over time and determine if the change is 
statistically significant. To quantify change within a home over time, we applied a paired t-test to the 
individual-day preference values for the time frames. We repeated this computation for each of the 
individual features in the preference vector.  

The results are summarized in Table 5 for the duration features, because these resulted in lower 
probabilities. We also report the per-home mean probability over all features and over just the 
duration features. The mean overall probability for homes with residents experiencing cognitive 
decline is 0.40 and for cognitively healthy residents is 0.43. Considering only duration features, the 
mean probability for residents with cognitive decline is 0.35 and the mean probability for cognitively 
healthy residents is 0.45. 

Table 5. Paired t-test results for within-home behavior comparisons. (* = Result is statistically 
significant (p < 0.05).). 

ID 
d_Toil

et 

d_Bat
h-

Room 
Sink 

d_Livin
g-Room 

Chair 

d_Kit-
Chen 
Sink 

d_Bed-
Room 

d_Kit-
Chen 

d_Livi
ng-

Room 

d_Hall-
way 

d_Stov
e 

d_Offi
ce-

Chair 

Dura-
tion 

Mean 

Overall 
Mean 

1 0.39 0.39 0.10 0.35 0.07 0.30 0.35 0.40 0.25 0.96 0.36 0.40 
2 0.45 0.38 0.33 0.27 0.04* 0.02* 0.03* 0.02* 0.29 0.07 0.19 0.29 
3 0.74 0.74 0.37 0.55 0.46 0.47 0.54 0.47 0.55 0.48 0.54 0.54 
4 0.46 0.40 0.32 0.28 0.35 0.09 0.84 0.12 0.30 0.09 0.33 0.39 
5 0.42 0.87 0.28 0.56 0.54 0.65 0.28 0.81 0.73 0.37 0.55 0.51 
6 0.56 0.03* 0.08 0.58 0.92 0.16 0.83 0.09 0.55 0.29 0.41 0.46 
7 0.14 0.14 0.31 0.49 0.17 0.55 0.31 0.15 0.49 0.76 0.35 0.33 
8 0.91 0.22 0.06 0.78 0.57 0.61 0.06 0.66 0.66 0.49 0.50 0.44 

 
We note that the probability that the samples collected at different time points belong to the 

same distribution is lower for individuals experiencing cognitive decline than for cognitively healthy 
participants. The observation holds for duration features, as well as for the entire feature vector. This 
is consistent with the literature, which indicates that day-to-day variability in behavior is an indicator 
of a change in cognitive health [55]. One smart home resident in particular, the resident living in 
Home 2, exhibited changes in behavior that were statistically significant. These changes were 
reflected in the time that the resident spent in the bedroom, kitchen, living room, and hallway. The 
change is more dramatic given the fact that Home 2 was one of the shorter data collection periods. In 
contrast, Home 5, with the longest data collection period, exhibited a very small amount of change in 
preference vectors from the beginning to end of data collection. 

We further note that there are few changes that are statistically significant. There are several 
possible explanations for this. First, not all individuals actually dramatically change their behavior 
over time. Particularly for older adults, behavior becomes very structured and many do not change 
much, even as they experience changes in their health status. Second, some changes in behavior may 
not be reflected in coarse-granularity ambient sensor data. For example, cognitive tasks may take 
more effort for individuals experiencing cognitive decline, but these changes may not result in 
substantially-different movement trajectories. Third, a limitation of this study is the relatively small 
sample size. Future work may expand the number of homes considered and address this current 
limitation. 

3.3. Between-Person Analysis Within the Same Diagnosis Group 

Next, we are interested in quantifying behavioral differences for multiple individuals within the 
same diagnosis group. We hypothesized that between-person differences would be greater 
(correspondingly, the p values would be smaller) for between-person differences than single-person 
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between-time differences. We quantified the differences by performing an ANOVA calculation over 
the learned preference vectors for each month within the analyzed smart homes. 

We can make several observations based on the ANOVA results summarized in Table 6. First, 
the overall differences between individuals are greater (the p values are smaller) for the cognitively 
healthy participants than for those with cognitive decline. Second, the differences between 
individuals experiencing cognitive decline are comparable to over-time differences for individuals 
within this diagnosis category. Since most of these participants transitioned to greater cognitive 
impairment over time, this result is not surprising. Third, the between-person differences for 
cognitively healthy participants are greater than the within-person, over-time differences. 
Specifically, we can see that this group differs significantly (p < 0.05) in terms of time spent in the 
living room, as well as the kitchen sink and the office chair. These differences may reflect lifestyle 
differences, balancing time spent cooking, working, and relaxing. For the participants experiencing 
cognitive decline, the greatest difference occurs in time spent at the toilet, which exhibits a statistically 
significant difference. 

Table 6. One-way ANOVA results for between-home behavior comparisons within the same 
diagnosis group. Entries in blue with a standard font indicate the duration in a location, and entries 
in green with an italic font indicate the activity level in a location. (* = Result is statistically significant 
(p < 0.05).). 

Cognitive  
Decline 

 

d_Toilet 
d_Bath-
Room 
Sink 

d_Living-
Room 
Chair 

d_Kitchen 
Sink 

d_Bed-
Room 

d_Kitche
n 

d_Living-
Room 

d_Hall-
way 

0.29 0.29 0.29 0.24 0.67 0.56 0.79 0.62 

d_Stove 
d_Office 

Chair o_Toilet 
o_Living-

Room 
Chair 

o_Kitchen 
Sink 

o_Office 
Chair Overall Mean 

0.85 0.78 0.00 * 0.12 0.10 0.35 0.42 

Cognitively 
Healthy 

d_Toilet 
d_Bath-
Room 
Sink 

d_Living-
Room 
Chair 

d_Kitchen 
Sink 

d_Bed-
Room 

d_Kitche
n 

d_Living-
Room 

d_Hall-
way 

0.10 0.10 0.02 * 0.62 0.99 0.62 0.02 * 0.58 

d_Stove 
d_Office 

Chair o_Toilet 
o_Living-

Room 
Chair 

o_Kitchen 
Sink 

o_Office 
Chair Overall Mean 

0.58 0.95 0.17 0.26 0.00 * 0.00 * 0.32 
 
Similar to the within-home analysis results, not every difference between homes is statistically 

significant. The impact of the sample size on these results can be explored further as part of our future 
work. Additionally, finer-grained sensors (e.g., wearable accelerometers) can be integrated into the 
data collection to increase the sensitivity of behavior monitoring for features that may be impacted 
by the health status, such as gait characteristics. 

3.4. Between-Group Analysis 

Finally, we investigated the differences between diagnosis groups. Here, we expected that the 
differences would be large (small p values). We hypothesized that the differences would be greater 
than for the within-home comparison or the between-person, within-group comparison. As before, 
we quantified differences by performing an ANOVA calculation over the learned preference vectors 
for each month. In this experiment, we aggregated data from the four homes whose residents were 
experiencing cognitive decline into one group. Similarly, we aggregated data from the four homes 
with cognitively healthy participants into one group. The results are summarized in Table 7. 
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Table 7. One-way ANOVA results for between-group behavior comparisons. Entries in blue indicate 
the duration in a location, and entries in green indicate the activity level in a location. (* = Result is 
statistically significant (p < 0.05).). 

d_Toilet 
d_Bathroo

m Sink 
d_Livingroo

m Chair 
d_Kitchen 

Sink 
d_Bedroo

m d_Kitchen 
d_Living-

Room 
d_Hallwa

y 
0.10 0.10 0.02 * 0.62 0.99 0.62 0.02 * 0.58 

d_Stove 
d_Office 

Chair o_Toilet 
o_Livingroo

m Chair 
o_Kitchen 

Sink 
o_Office 

Chair Overall Mean 

0.95 0.17 0.26 0.00 * 0.00 * 0.01 * 0.32 
 
As can be seen from the results, the overall mean is smaller than all previous experiments, except 

for between-person differences for the cognitively healthy group. This table also shows the greatest 
number of features that exhibit a statistically significant difference, including time spent at the living 
room chair (and the general living room area), kitchen sink, and office chair. 

3.5. Characterizing Behavioral Change for Automated Health Assessment 

Based on the results in the previous section, we know that significant differences exist between 
preference vectors, and thus behavior patterns, for different health diagnosis groups. We therefore 
hypothesized that we can predict a person’s diagnosis group based solely on these learned preference 
vectors. To validate this hypothesis, we performed a leave-one-out classification experiment using a 
random forest model with 100 trees, each formed using the entropy measure. The results are shown 
in Table 8 and indicate that the preference vectors do provide a basis for predicting a cognitive health 
diagnosis from sensor-observed longitudinal behavior. 

Table 8. Health diagnosis prediction results. Here, cognitive decline represents the positive class. 

Accuracy Precision Recall F1 Score 

0.84 0.88 0.90 0.89 

3.6. Determining Behavior Indicators that Distinguish Population Subgroups 

When a classification algorithm is applied to learned preference vectors to distinguish health 
diagnosis groups, the results can also provide insights on specific behaviors that are consistent with 
different health statuses. As an example, Figure 6 shows one of the decision trees that was learned 
from our dataset to distinguish cognitively healthy smart home residents from residents who are 
experiencing cognitive decline. The tree indicates that the activity level near the toilet is a primary 
indicator of cognitive health in this dataset (an observation that is consistent with our earlier 
experiments). Other indicators are the activity level (movement level) near the office chair and 
amount of time spent near the toilet and in the bedroom and kitchen. 
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Figure 6. One of the learned decision trees (based on non-normalized values) used to predict whether 
a smart home resident is cognitively healthy (value = 1.0) or is experiencing cognitive decline (value 
= −1.0). 

Additionally, we performed feature-importance selection from the training data. The results, 
summarized in Table 9, are consistent with the preference vectors summarized in Table 4. 
Specifically, the time spent near the office chair and near the kitchen sink has little influence on the 
overall routine, while areas such as the bedroom, bathroom, and living room exhibit a greater 
influence. All of the participants in this study were over the age of 65. These preferences may be 
consistent with this demographic. In future work, we would like to analyze data for a greater age 
range, which may highlight stronger behavioral influences for time in the office chair working and at 
the kitchen sink cooking or washing dishes. Two of the largest distinctions between the two health 
groups are the activity level near the toilet and amount of time spent near the toilet. Some of the 
individuals in the cognitive decline group also dealt with additional health and mobility challenges 
that may have resulted in a greater bathroom time and more work required to get to and from the 
bathroom, particularly in the middle of the night. The findings in this work may help clinicians and 
engineers to improve assessment measures of health based on behavior. Automating such assessment 
assists with designing treatments and extending functional independence. 

Table 9. Decision tree-based importance for each feature in distinguishing cognitively healthy and 
cognitive decline subjects based on behavior routines. 

o_Toilet d_Toilet d_Hallway d_Livingroom o_Office  
Chair 

d_Bathroom 
Sink 

o_Living-
Room Chair 

0.33 0.22 0.10 0.06 0.06 0.04 0.04 
d_Living-

Room Chair 
d_Bedroom d_Kitchen d_Stove d_Office 

Chair 
o_Kitchen 

Sink 
d_Kitchen 

Sink 
0.03 0.02 0.02 0.02 0.02 0.02 0.01 
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4. Discussion and Conclusions 

By analyzing ambient sensor data using our proposed RRE-IRL algorithm, we were able to 
extract preference vectors that indicate and quantify aspects of a person’s routine behavior. By using 
these tools, we were able to compare changes in behavioral norms over time. We also compared 
differences in behavior for individuals in the same health diagnosis group and across groups. We 
found that changes in behavior occurred over time for all of the study participants. The probability 
that behavior preferences remained the same (were drawn from the same distribution) was lower 
than 0.55 for all eight of the smart home residents. The probability was lower for residents 
experiencing cognitive decline (0.40) than for cognitively healthy residents (0.43). This difference may 
be due to the ways in which residents adapt to their changing health status, such as using memory-
compensatory behavior (e.g., reminder notes) or new behavior that may accompany cognitive decline 
(e.g., perseveration and wandering). 

We also found that behavior was more varied between individuals in the cognitively healthy 
group (probability that observations are drawn from the same distribution is differences in behavior) 
were quantitatively larger between residents in the cognitively healthy group (probability that 
behavior preferences are drawn from the same distribution is 0.32) than the cognitive decline group 
(probability is 0.42). The difference between health groups was also quantified. When comparing 
aggregated behavior between groups of residents from the two diagnosis groups, the probability that 
the observed behavior was drawn from the same distribution was 0.32. These measures provide 
insight on behavior patterns. Changes in these measures also help us quantify the extent of behavioral 
change that occurs over time, between different people, and between diagnosis groups. 

By feeding these measures, or behavior preferences, into a classification algorithm, we offer a 
basis for automating the detection of cognitive health decline. For these eight smart homes, a random 
forest classifier was able to predict the health diagnosis group with an accuracy of 0.84.  

This work introduces a tool for quantifying and assessing observed behavior for an indoor 
environment. While the data did support a comparison of behavior between health diagnosis groups, 
there are limitations of the current analysis. One limitation is the participant sample size. Our 
analyses were based on a large set of data collected over many days from actual smart homes. 
However, data for only eight participants were considered. Collecting and analyzing data from a 
larger population of individuals with different health statuses may allow us to generate additional 
findings and yield more robust health prediction results. 

A second limitation is the coarse granularity of the information that is provided by ambient 
sensors. These sensors provide information on resident navigation patterns within homes. As a result, 
the captured features also indicate movement patterns, such as the time spent in regions of the home 
and activity level in those regions. Including data from other types of sensors can increase the 
diversity of information that we analyze. For example, wearable sensors may provide insights on a 
person’s gait that are useful for detecting changes in their health status. In future work, we will 
investigate methods for predicting health change based on changes in a person’s desiderata. The 
results may provide timely and informed interventions to prevent and help with a variety of health 
challenges. 
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