Porous Silicon Gas Sensors: The Role of the Layer Thickness and the Silicon Conductivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Porous Silicon
2.2. Metallic Electrodes
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
c-Si | Crystalline silicon |
PS | Porous silicon |
HF | Hydrofluoric acid |
EtOH | Ethanol |
Ethanol vapor flow | |
Nitrogen flow | |
Ethanol vapor pressure | |
Total pressure | |
Resistance related to the substrate resistivity | |
Resistance related to the sensor surface | |
C | Capacitor |
R | Resistance |
RC | Resistor–capacitor circuit |
References
- Comini, E.; Faglia, G.; Sberveglieri, G. Electrical-Based Gas Sensing. In Solid State Gas Sensing; Comini, E., Faglia, G., Sberveglieri, G., Eds.; Springer US: Boston, MA, USA, 2009; pp. 1–61. ISBN 978-0-387-09664-3. [Google Scholar]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B Chem. 2009, 140, 319–336. [Google Scholar] [CrossRef]
- Zakrzewska, K. Mixed oxides as gas sensors. Thin Solid Films 2001, 391, 229–238. [Google Scholar] [CrossRef]
- Sailor, M.J. Sensor applications of porous silicon. In Properties of Porous Silicon; Canham, L., Malvern, D., Eds.; IEE INSPEC: London, UK, 1997; pp. 364–370. ISBN 0852969325. [Google Scholar]
- Lazzerini, G.M.; Strambini, L.M.; Barillaro, G. Self-tuning porous silicon chemitransistor gas sensors. In Proceedings of the Sensors, Baltimore, MD, USA, 3–6 November 2013; IEEE: Baltimore, MD, USA, 2013; pp. 1–4. [Google Scholar]
- Barillaro, G.; Bruschi, P.; Lazzerini, G.M.; Strambini, L.M. Validation of the compatibility between a porous silicon-based gas sensor technology and standard microelectronic process. IEEE Sens. J. 2010, 10, 893–899. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, Y.-Y.; Lee, K.-W. Sensing characteristics of the organic vapors according to the reflectance spectrum in the porous silicon multilayer structure. Sens. Actuators A Phys. 2011, 165, 27–279. [Google Scholar] [CrossRef]
- Rittersma, Z.; Splinter, A.; Bödecker, A.; Benecke, W. A novel surface-micromachined capacitive porous silicon humidity sensor. Sens. Actuators B Chem. 2000, 68, 210–217. [Google Scholar] [CrossRef]
- Baratto, C.; Faglia, G.; Comini, E.; Sberveglieri, G.; Taroni, A.; La Ferrara, V.; Quercia, L.; Di Francia, G. A novel porous silicon sensor for detection of sub-ppm NO2 concentrations. Sens. Actuators B Chem. 2001, 77, 62–66. [Google Scholar] [CrossRef]
- Lewis, S.E.; DeBoer, J.R.; Gole, J.L.; Hesketh, P.J. Sensitive, selective, and analytical improvements to a porous silicon gas sensor. Sens. Actuators B Chem. 2005, 110, 54–65. [Google Scholar] [CrossRef]
- Levitsky, I.A. Porous silicon structures as optical gas sensors. Sensors 2015, 15, 19968–19991. [Google Scholar] [CrossRef]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.M.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the porous solids. Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Canham, L.T. Pore type, shape, size, volume and surface area in porous silicon. In Properties of Porous Silicon; Canham, L., Malvern, D., Eds.; IEE INSPEC: London, UK, 1997; pp. 83–88. ISBN 0852969325. [Google Scholar]
- Gorbanyuk, T.I.; Evtukh, A.A.; Litovchenko, V.G.; Solnsev, V.S.; Pakhlov, E.M. Porous silicon microstructure and composition characterization depending on the formation conditions. Thin Solid Films 2006, 495, 134–138. [Google Scholar] [CrossRef]
- Sailor, M.J. Characterization of Porous Silicon. In Porous Silicon in Practice; Sailor, M.J., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 133–187. [Google Scholar] [CrossRef]
- Hecini, M.; Khelifa, A.; Bouzid, B.; Drouiche, N.; Aoudj, S.; Hamitouche, H. Study of formation, stabilization and properties of porous silicon and porous silica. J. Phys. Chem. Solids 2013, 74, 1227–1234. [Google Scholar] [CrossRef]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B Chem. 2007, 21, 18–35. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. Improvement of sensor sensitivity and selectivity (short survey). Sens. Actuators B Chem. 2013, 188, 709–728. [Google Scholar] [CrossRef]
- Kern, W.; Puotinen, D.A. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev. 1970, 31, 187–206. [Google Scholar]
- Thomson, G.W. The Antoine equation for vapor-pressure data. Chem. Rev. 1946, 38, 1–39. [Google Scholar] [CrossRef]
- Dean, J.A. Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill: New York, NY, USA, 1999; ISBN 0070163847. [Google Scholar]
- García-Salgado, G.; Becerril, T.D.; Santiesteban, H.J.; Andrés, E.R. Porous silicon organic vapor sensor. Opt. Mater. 2006, 29, 51–55. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B Chem. 2014, 204, 250–272. [Google Scholar] [CrossRef]
- Archer, M.; Christophersen, M.; Fauchet, P.M. Electrical porous silicon chemical sensor for detection of organic solvents. Sens. Actuators B Chem. 2005, 106, 347–357. [Google Scholar] [CrossRef]
- Harraz, F.A. Porous silicon chemical sensors and biosensors: A review. Sensors Actuators B Chem. 2014, 202, 897–912. [Google Scholar] [CrossRef]
- Ozdemir, S.; Gole, J.L. The potential of porous silicon gas sensors. Curr. Opin. Solid State Mater. Sci. 2007, 11, 92–100. [Google Scholar] [CrossRef]
Type | Sample | Thickness (m) | Current Density (mA/cm) | Time (s) | Porosity (%) |
---|---|---|---|---|---|
N01 | 1 | 10 | 82 | 45 | |
n | N05 | 5 | 10 | 413 | 45 |
N10 | 10 | 10 | 825 | 45 | |
P01 | 1 | 13.6 | 64 | 45 | |
p | P05 | 5 | 13.6 | 321 | 45 |
P10 | 10 | 13.6 | 642 | 45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-González, F.; García-Salgado, G.; Rosendo, E.; Díaz, T.; Nieto-Caballero, F.; Coyopol, A.; Romano, R.; Luna, A.; Monfil, K.; Gastellou, E. Porous Silicon Gas Sensors: The Role of the Layer Thickness and the Silicon Conductivity. Sensors 2020, 20, 4942. https://doi.org/10.3390/s20174942
Ramírez-González F, García-Salgado G, Rosendo E, Díaz T, Nieto-Caballero F, Coyopol A, Romano R, Luna A, Monfil K, Gastellou E. Porous Silicon Gas Sensors: The Role of the Layer Thickness and the Silicon Conductivity. Sensors. 2020; 20(17):4942. https://doi.org/10.3390/s20174942
Chicago/Turabian StyleRamírez-González, Francisco, Godofredo García-Salgado, Enrique Rosendo, Tomás Díaz, Fabiola Nieto-Caballero, Antonio Coyopol, Román Romano, Alberto Luna, Karim Monfil, and Erick Gastellou. 2020. "Porous Silicon Gas Sensors: The Role of the Layer Thickness and the Silicon Conductivity" Sensors 20, no. 17: 4942. https://doi.org/10.3390/s20174942
APA StyleRamírez-González, F., García-Salgado, G., Rosendo, E., Díaz, T., Nieto-Caballero, F., Coyopol, A., Romano, R., Luna, A., Monfil, K., & Gastellou, E. (2020). Porous Silicon Gas Sensors: The Role of the Layer Thickness and the Silicon Conductivity. Sensors, 20(17), 4942. https://doi.org/10.3390/s20174942