Optical Methods Based on Ultraviolet, Visible, and Near-Infrared Spectra to Estimate Fat and Protein in Raw Milk: A Review
Abstract
1. Introduction
2. Optical Properties of Milk
3. Spectroscopy Techniques
3.1. UV Techniques
3.2. VIS Techniques
3.3. IR Techniques
4. Challenges and Prospects
4.1. Costs
4.2. Embedded and Integration
4.3. Self-Calibrated Mathematical Models
4.4. Communication
5. Trends
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ragni, L.; Iaccheri, E.; Cevoli, C.; Berardinelli, A. Spectral-sensitive Pulsed Photometry to predict the fat content of commercialized milk. J. Food Eng. 2016, 171, 95–101. [Google Scholar] [CrossRef]
- Aernouts, B.; Polshin, E.; Lammertyn, J.; Saeys, W. Visible and near-infrared spectroscopic analysis of raw milk for cow health monitoring: Reflectance or transmittance? J. Dairy Sci. 2011, 94, 5315–5329. [Google Scholar] [CrossRef] [PubMed]
- Aernouts, B.; Van Beers, R.; Watté, R.; Huybrechts, T.; Lammertyn, J.; Saeys, W. Visible and near-infrared bulk optical properties of raw milk. J. Dairy Sci. 2015, 98, 6727–6738. [Google Scholar] [CrossRef] [PubMed]
- Olson, B.J.S.C.; Markwell, J. Assays for Determination of Protein Concentration. In Current Protocols in Protein Science; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 3.4.1–3.4.29. [Google Scholar]
- Fox, P.F.; Uniacke-Lowe, T.; Mcsweeney, P.L.H.; O’Mahony, J.A. Dairy Chemistry and Biochemistry, 2nd ed.; Springer: Cham, Switzerland, 2015; Volume 1542, ISBN 0412720000. [Google Scholar]
- Yin, J.; Zhang, S.; Yang, H.; Zhou, Z. Theoretical Study of the Effect of Multi-Diameter Distribution on the Mie Scattering Characteristics of Milk Fat. J. Harbin Inst. Technol. 2015, 22, 115–120. [Google Scholar] [CrossRef]
- Crofcheck, C.L.; Payne, F.A.; Mengüç, M.P. Characterization of milk properties with a radiative transfer model. Appl. Opt. 2002, 41, 2028. [Google Scholar] [CrossRef] [PubMed]
- Crofcheck, C.; Wade, J.; Swamy, J.N.; Aslan, M.M.; Mengüç, M.P. Effect of fat and casein particles in milk on the scattering of elliptically polarized light. Trans. Am. Soc. Agric. Eng. 2005, 48, 1147–1155. [Google Scholar] [CrossRef]
- Stocker, S.; Foschum, F.; Krauter, P.; Bergmann, F.; Hohmann, A.; Scalfi Happ, C.; Kienle, A. Broadband Optical Properties of Milk. Appl. Spectrosc. 2016, 0, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Regnima, G.-O.; Koffi, T.; Bagui, O.; Kouacou, A.; Kristensson, E.; Zoueu, J.; Berrocal, E. Quantitative measurements of turbid liquids via structured laser illumination planar imaging where absorption spectrophotometry fails. Appl. Opt. 2017, 56, 3929–3938. [Google Scholar] [CrossRef] [PubMed]
- Hulst, H.C.; van de Hulst, H.C. Light Scattering by Small Particles; Courier Corporation: North Chelmsford, MA, USA, 1981. [Google Scholar]
- Mäntele, W.; Deniz, E. UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 965–968. [Google Scholar]
- Xin, Q.; Ling, H.Z.; Long, T.J.; Zhu, Y. The rapid determination of fat and protein content in fresh raw milk using the laser light scattering technology. Opt. Lasers Eng. 2006, 44, 858–869. [Google Scholar] [CrossRef]
- Jenkins, F.A.; White, H.E. Fundamentals of Optics; Tata McGraw-Hill Education: New York, NY, USA, 1937. [Google Scholar]
- Swinehart, D.F. The Beer-Lambert law. J. Chem. Educ. 1962, 39, 333–335. [Google Scholar] [CrossRef]
- McCarthy, O.J. Physical and Physico-Chemical Properties of Milk. In Encyclopedia of Dairy Sciences; Elsevier: Amsterdam, The Netherlands, 2002; Volume 3, pp. 467–477. ISBN 9780123744029. [Google Scholar]
- Penner, M.H. Basic Principles of Spectroscopy. In Food Analysis; Food Science Text Series; Springer: Berlin/Heidelberg, Germany, 2017; pp. 79–88. ISBN 9783319457765. [Google Scholar]
- Nakai, S.; Le, A.C. Spectrophotometric Determination of Protein and Fat in Milk Simultaneously. J. Dairy Sci. 1969, 53, 276–278. [Google Scholar] [CrossRef]
- Kuaye, A.Y. An ultraviolet spectrophotometric method to determine milk protein content in alkaline medium. Food Chem. 1994, 49, 207–211. [Google Scholar] [CrossRef]
- Lüthi-Peng, Q.; Puhan, Z. Determination of protein and casein in milk by fourth derivative UV spectrophotometry. Anal. Chim. Acta. 1999, 393, 227–234. [Google Scholar] [CrossRef]
- IDF Standard No 20-1. Determination of Nitrogen Content—Part 1: Kjeldahl Method; International Dairy Federation: Brussels, Belgium, 2001. [Google Scholar]
- Forcato, D.O.; Carmine, M.P.; Echeverría, G.E.; Pécora, R.P.; Kivatinitz, S.C. Milk Fat Content Measurement by a Simple UV Spectrophotometric Method: An Alternative Screening Method. J. Dairy Sci. 2005, 88, 478–481. [Google Scholar] [CrossRef]
- Haugaard, G.; Pettinati, J.D. Photometric Milk Fat Determination. J. Dairy Sci. 1959, 42, 1255–1275. [Google Scholar] [CrossRef]
- Muniz, R.; Perez, M.A.; de la Torre, C.; Carleos, C.E.; Corral, N.; Baro, J. A Comparison of Principal Component Regression (Pcr) and Partial Least Square (Pls) Methods in Prediction of Raw Milk Composition by Vis-Nir Spectrometry. Application to Development of on-Line Sensors for Fat, Protein and Lactose Contents. In Proceedings of the XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal, 6–11 September 2009; pp. 2564–2638. [Google Scholar]
- Bogomolov, A.; Dietrich, S.; Boldrini, B.; Kessler, R.W. Quantitative determination of fat and total protein in milk based on visible light scatter. Food Chem. 2012, 134, 412–418. [Google Scholar] [CrossRef]
- Kucheryavskiy, S.; Melenteva, A.; Bogomolov, A. Determination of fat and total protein content in milk using conventional digital imaging. Talanta 2014, 121, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Bogomolov, A.; Melenteva, A. Scatter-based quantitative spectroscopic analysis of milk fat and total protein in the region 400–1100nm in the presence of fat globule size variability. Chemom. Intell. Lab. Syst. 2013, 126, 129–139. [Google Scholar] [CrossRef]
- Gowri, A.; Rajamani, A.S.; Ramakrishna, B.; Sai, V.V.R. U-bent plastic optical fiber probes as refractive index based fat sensor for milk quality monitoring. Opt. Fiber Technol. 2019, 47, 15–20. [Google Scholar] [CrossRef]
- Goulden, J.D.S. Analysis of milk by infra-red absorption. J. Dairy Res. 1964, 31, 273–284. [Google Scholar] [CrossRef]
- Luinge, H.J.; Hop, E.; Lutz, E.T.G.; van Hemert, J.A.; de Jong, E.A.M. Determination of the fat, protein and lactose content of milk using Fourier transform infrared spectrometry. Anal. Chim. Acta 1993, 284, 419–433. [Google Scholar] [CrossRef]
- Šašić, S.; Ozaki, Y. Short-wave near-infrared spectroscopy of biological fluids. 1. Quantitative analysis of fat, protein, and lactose in raw milk by partial least-squares regression and band assignment. Anal. Chem. 2001, 73, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.A.; Terazawa, Y.; Chen, J.Y.; Iyo, C.; Terada, F.; Kawano, S. Development of a new measurement unit (MilkSpec-1) for rapid determination of fat, lactose, and protein in raw milk using near-infrared transmittance spectroscopy. Appl. Spectrosc. 2002, 56, 599–604. [Google Scholar] [CrossRef]
- Etzion, Y.; Linker, R.; Cogan, U.; Shmulevich, I. Determination of protein concentration in raw milk by mid-infrared fourier transform infrared/attenuated total reflectance spectroscopy. J. Dairy Sci. 2004, 87, 2779–2788. [Google Scholar] [CrossRef]
- Rahmelow, K.; Hübner, W. Infrared spectroscopy in aqueous solution: Difficulties and accuracy of water subtraction. Appl. Spectrosc. 1997, 51, 160–170. [Google Scholar] [CrossRef]
- Kawamura, S.; Kawasaki, M.; Nakatsuji, H.; Natsuga, M. Near-infrared spectroscopic sensing system for online monitoring of milk quality during milking. Sens. Instrum. Food Qual. Saf. 2007, 1, 37–43. [Google Scholar] [CrossRef]
- Kawasaki, M.; Kawamura, S.; Tsukahara, M.; Morita, S.; Komiya, M.; Natsuga, M. Near-infrared spectroscopic sensing system for on-line milk quality assessment in a milking robot. Comput. Electron. Agric. 2008, 63, 22–27. [Google Scholar] [CrossRef]
- Muñoz Ossa, H.; Reyes Vera, E.E.; Causado Buelvas, J.D.; Lora Jaramillo, G.J.; Dominguez Gomez, D.M.; Torres Trujillo, P. Medición Del Porcentaje De Grasa En Leche Líquida Usando “Tapers” De Fibra Óptica. Revista Colombiana de Física 2011, 43, 873. [Google Scholar]
- Melfsen, A.; Hartung, E.; Haeussermann, A. Accuracy of in-line milk composition analysis with diffuse reflectance near-infrared spectroscopy. J. Dairy Sci. 2012, 95, 6465–6476. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Su, R.; Xu, N.; Wang, X.; Yu, A.; Zhang, H.; Cao, Y. Portable analyzer for rapid analysis of total protein, fat and lactose contents in raw milk measured by non-dispersive short-wave near-infrared spectrometry. Chem. Res. Chin. Univ. 2013, 29, 15–19. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, Z.; Qian, K.; Wang, L.; Lan, X. A rapid method for measuring fat content in milk based on W-type optical fibre sensor system. Trans. Inst. Meas. Control 2016, 38, 1471–1479. [Google Scholar] [CrossRef]
- Niero, G.; Penasa, M.; Gottardo, P.; Cassandro, M.; De Marchi, M. Short communication: Selecting the most informative mid-infrared spectra wavenumbers to improve the accuracy of prediction models for detailed milk protein content. J. Dairy Sci. 2016, 99, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huo, G.; Wang, Y.; Sun, H.; Kong, Q. Research on Rapid Detection Method of Protein and Fat in Raw Milk Based on Mid-infrared Spectrum. Int. J. Multimed. Ubiquitous Eng. 2016, 11, 131–142. [Google Scholar] [CrossRef]
- Tremblay, L.; Laporte, M.F.; Léonil, J.; Dupont, D.; Paquin, P. Quantitation of Proteins in Milk and Milk Products. In Advanced Dairy Chemistry—1 Proteins; Springer US: Boston, MA, USA, 2003; pp. 49–138. [Google Scholar]
- Dave, A.; Banwari, D.; Mansinghani, S.; Srivastava, S.; Sadistap, S. Ultrasonic Sensing System for Detecting Water Adulteration in Milk. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 2228–2231. [Google Scholar]
- Serra, P.A.; Rocchitta, G.; Bazzu, G.; Manca, A.; Puggioni, G.M.; Lowry, J.P.; O’Neill, R.D. Design and construction of a low cost single-supply embedded telemetry system for amperometric biosensor applications. Sensors Actuators B Chem. 2007, 122, 118–126. [Google Scholar] [CrossRef]
- Li, X.; Cheng, X.; Yan, K.; Gong, P. A monitoring system for vegetable greenhouses based on a wireless sensor network. Sensors 2010, 10, 8963–8980. [Google Scholar] [CrossRef] [PubMed]
- Kalomiros, J.; Lygouras, J. Design and evaluation of a hardware/software FPGA-based system for fast image processing. Microprocess. Microsyst. 2008, 32, 95–106. [Google Scholar] [CrossRef]
- Andonovic, I.; Michie, C.; Cousin, P.; Janati, A.; Pham, C.; Diop, M. Precision Livestock Farming Technologies. In Proceedings of the 2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Valle-Atilano, F.J.; Estudillo-Ayala, J.M.; Filoteo-Razo, J.D.; Hernández-García, J.C.; Jáuregui-Vázquez, D.; Sierra-Hernández, J.M.; Rojas-Laguna, R.; Mata-Chavez, R.I.; Samano-Aguilar, L.F. Generation of supercontinuum light in micro-structured fiber and polarization study at different wavelengths. In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X; International Society for Optics and Photonics: San Francisco, CA, USA, 2016; Volume 9958, p. 995817. [Google Scholar]
- Lee, C.E.; Taylor, H.F. Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source. J. lightwave Technol. 1991, 9, 129–134. [Google Scholar] [CrossRef]
- Wang, S.-N.; Lv, R.-Q.; Zhao, Y.; Qian, J. A Mach-Zehnder interferometer-based High Sensitivity Temperature sensor for human body monitoring. Opt. Fiber Technol. 2018, 45, 93–97. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.H.; Loock, H.P. Single-mode fiber refractive index sensor based on core-offset attenuators. IEEE Photonics Technol. Lett. 2008, 20, 1387–1389. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric fiber optic sensors. Sensors 2012, 12, 2467–2486. [Google Scholar] [CrossRef] [PubMed]
- Gastélum-Barrios, A.; Soto-Zarazúa, G.M.; García-Trejo, J.F.; Sierra-Hernandez, J.M.; Jauregui-Vazquez, D. A new method for total fat detection in raw milk based on dual low-coherence interferometer. Sensors 2019, 19, 4562. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart farming IoT platform based on edge and cloud computing. Biosyst. Eng. 2019, 177, 4–17. [Google Scholar] [CrossRef]
- Tao, F.; Ngadi, M. Applications of spectroscopic techniques for fat and fatty acids analysis of dairy foods. Curr. Opin. Food Sci. 2017, 17, 100–112. [Google Scholar] [CrossRef]
- Bernuy, B.; Meurens, M.; Mignolet, E.; Larondelle, Y. Performance comparison of UV and FT-raman spectroscopy in the determination of conjugated linoleic acids in cow milk fat. J. Agric. Food Chem. 2008, 56, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
Year | Acquisition Method | Component Determination | Spectral Range (nm) | Data Processing | Validation | References | ||
---|---|---|---|---|---|---|---|---|
R2 | Sensitivity | RMSEP (%) | ||||||
2019 | Reflection | Fat | 500 | 0.9763 | 616 pm/% fat | [54] | ||
Protein | 0.878 | |||||||
2019 | Absorbance | Fat | 530 | 0.15 ∆A/∆% fat | [28] | |||
2016 | Transmission | Fat | 2500–25,000 | PLS | 0.91007989 | 0.045329 | [42] | |
Protein | 0.8010929 | 0.0207505 | ||||||
2016 | Scatter | Fat | 400–1000 | PLS | 0.05 | [41] | ||
Protein | 0.03 | |||||||
2015 | Scatter | Fat | 1300–1400 | 0.975 | [3] | |||
2014 | Transmission | Fat | 400–700 | PLS | 0.973 | [26] | ||
Protein | 0.974 | |||||||
2013 | Scatter | Fat | 400–1100 | PLS | 0.952 | 0.13 | [27] | |
Protein | 0.959 | 0.04 | ||||||
2013 | Transmission | Protein | 600–1100 | PLS | 0.932 | 0.201 | [39] | |
Fat | 0.981 | 0.172 | ||||||
Lactose | 0.933 | 0.247 | ||||||
2012 | Transmission | Fat | 400–1000 | PLS | 0.915 | 0.05 | [25] | |
Protein | 0.964 | 0.03 | ||||||
2011 | Reflectance | Fat | 1000–1700 | PLS | 0.997 | 0.047 | [2] | |
Transmission | Protein | 400–1700 | 0.90 | 0.162 | ||||
Transmission | Lactose | 400–1700 | 0.883 | 0.115 | ||||
2008 | Transmission | Fat | 600–1050 | PLS | 0.95 | 0.25 | [36] | |
Lactose | 0.83 | 0.26 | ||||||
Protein | 0.72 | 0.15 | ||||||
2007 | Transmission | Fat | 600–1050 | 0.95 | 0.42 | [35] | ||
Protein | 0.91 | 0.09 | ||||||
Lactose | 0.94 | 0.05 | ||||||
2004 | Reflectance | Protein | 5800–9400 | PLS | 0.22 | [33] | ||
2002 | Transmission | Fat | 700–1100 | PLS | 0.999 | 0.06 | [32] | |
Lactose | 0.964 | 0.10 | ||||||
Protein | 0.97 | 0.10 | ||||||
2001 | Transmission | Protein | 800–1100 | PLS | 0.996 | 0.087 | [31] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gastélum-Barrios, A.; Soto-Zarazúa, G.M.; Escamilla-García, A.; Toledano-Ayala, M.; Macías-Bobadilla, G.; Jauregui-Vazquez, D. Optical Methods Based on Ultraviolet, Visible, and Near-Infrared Spectra to Estimate Fat and Protein in Raw Milk: A Review. Sensors 2020, 20, 3356. https://doi.org/10.3390/s20123356
Gastélum-Barrios A, Soto-Zarazúa GM, Escamilla-García A, Toledano-Ayala M, Macías-Bobadilla G, Jauregui-Vazquez D. Optical Methods Based on Ultraviolet, Visible, and Near-Infrared Spectra to Estimate Fat and Protein in Raw Milk: A Review. Sensors. 2020; 20(12):3356. https://doi.org/10.3390/s20123356
Chicago/Turabian StyleGastélum-Barrios, Abraham, Genaro M. Soto-Zarazúa, Axel Escamilla-García, Manuel Toledano-Ayala, Gonzalo Macías-Bobadilla, and Daniel Jauregui-Vazquez. 2020. "Optical Methods Based on Ultraviolet, Visible, and Near-Infrared Spectra to Estimate Fat and Protein in Raw Milk: A Review" Sensors 20, no. 12: 3356. https://doi.org/10.3390/s20123356
APA StyleGastélum-Barrios, A., Soto-Zarazúa, G. M., Escamilla-García, A., Toledano-Ayala, M., Macías-Bobadilla, G., & Jauregui-Vazquez, D. (2020). Optical Methods Based on Ultraviolet, Visible, and Near-Infrared Spectra to Estimate Fat and Protein in Raw Milk: A Review. Sensors, 20(12), 3356. https://doi.org/10.3390/s20123356