Ethanol Sensors Based on Porous In2O3 Nanosheet-Assembled Micro-Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Porous In2O3 Nanosheet-Assembled Micro-Flowers
2.3. Characterization
2.4. Gas Test System
3. Results and Discussions
3.1. Characterization
3.2. Gas Sensitivity Test of the In2O3 Gas Sensor
3.3. Gas Sensing Mechanism of the In2O3-8 h Gas Sensor
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meng, F.-L.; Li, H.-H.; Kong, L.-T.; Liu, J.-Y.; Jin, Z.; Li, W.; Jia, Y.; Liu, J.-H.; Huang, X.-J. Parts per billion-level detection of benzene using SnO2/graphene nanocomposite composed of sub-6 nm SnO2 nanoparticles. Anal. Chim. Acta 2012, 736, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Zhao, J.; Meng, F.; Qin, W.; Chen, Y.; Yang, M.; Ibrahim, M.; Zhao, Y. Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sensing properties to volatile organic compounds. J. Alloy Compd. 2019, 793, 24–30. [Google Scholar] [CrossRef]
- Li, X.; Nguyen, L.V.; Becker, M.; Ebendorff-Heidepriem, H.; Pham, D.; Warren-Smith, S.C. Simultaneous Measurement of Temperature and Refractive Index Using an Exposed Core Microstructured Optical Fiber. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Cui, H.; Ai, F.; Jiang, L.; Kong, J.; Zhu, X. Terminated nanotubes: Evidence against the dissolution equilibrium theory. Electrochem. Commun. 2018, 86, 80–84. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, R.; Meng, F.; Zhang, J.; Zuo, K.; Han, E. Approaches to Enhancing Gas Sensing Properties: A Review. Sensors 2019, 19, 1495. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Zhang, J.; Meng, F.; Li, Y.; Li, R.; Chang, Y.; Zhao, J.; Han, E.; Wang, S.; Wang, S. Highly Sensitive Ammonia Sensors Based on Ag-Decorated WO3 Nanorods. IEEE Trans. Nanotechnol. 2018, 17, 1252–1258. [Google Scholar] [CrossRef]
- Li, B.; Li, M.; Meng, F.; Liu, J. Highly sensitive ethylene sensors using Pd nanoparticles and rGO modified flower-like hierarchical porous α-Fe2O3. Sens. Actuators B Chem. 2019, 290, 396–405. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Wei, Y.; Du, Z.; Sun, F.; Ji, Y.; Yang, X.; Liu, C. In situ, portable and robust laser sensor for simultaneous measurement of ammonia, water vapor and temperature in denitrification processes of coal fired power plants. Sens. Actuators B Chem. 2020, 305, 127533. [Google Scholar] [CrossRef]
- Han, Y.; Li, H.; Zhang, M.; Fu, Y.; Liu, Y.; Yang, Y.; Xu, J.; Geng, Y.; Wang, L. Self-supported Co(CO3)0.5(OH)·0.11H2O nanoneedles coated with CoSe2-Ni3Se2 nanoparticles as highly active bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2019, 495, 495. [Google Scholar] [CrossRef]
- Papamatthaiou, S.; Argyropoulos, D.-P.; Farmakis, F.; Georgoulas, N. Investigation of the H2O Sensing Mechanism of DC-Operated Chemiresistors Based on Graphene Oxide and Thermally Reduced Graphene Oxide. IEEE Sens. J. 2019, 19, 7841–7848. [Google Scholar] [CrossRef]
- Cong, J.; Duan, P.; Zhong, F.; Luo, Y.; Zheng, Y.; Cai, G.; Xiao, Y.; Jiang, L. Gas sensing properties of amperometric NH3 sensors based on Sm2Zr2O7 solid electrolyte and SrM2O4 (M = Sm, La, Gd, Y) sensing electrodes. Sens. Actuators B Chem. 2020, 303, 127220. [Google Scholar] [CrossRef]
- Meng, F.; Zheng, H.; Sun, Y.; Li, M.; Liu, J. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets. Sensors 2017, 17, 1478. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Han, E.; Meng, F.; Zuo, K. Detection and Identification of Volatile Organic Compounds based on Temperature-Modulated ZnO Sensors. IEEE Trans. Instrum. Meas. 2019, 69, 4533–4544. [Google Scholar] [CrossRef]
- Meng, F.; Chang, Y.; Qin, W.; Yuan, Z.; Zhao, J.; Zhang, J.; Han, E.; Wang, S.; Yang, M.; Shen, Y.; et al. ZnO-Reduced Graphene Oxide Composites Sensitized with Graphitic Carbon Nitride Nanosheets for Ethanol Sensing. ACS Appl. Nano Mater. 2019, 2, 2734–2742. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, N.; Luo, D.; Li, Y.; Wu, P.; Dang, Z.; Hu, X. The Role of Oxalic Acid in the Leaching System for Recovering Indium from Waste Liquid Crystal Display Panels. ACS Sustain. Chem. Eng. 2019, 7, 3849–3857. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Z.; Hwang, H.-L. Short-circuit current density and fill factor improvement by optimizing In2O3:H and metal back reflector layers for p-i-n a-SiGe: H thin film solar cells. J. Mater. Sci. Mater. Electron. 2019, 30, 17759–17764. [Google Scholar] [CrossRef]
- Li, Z.; Yan, S.; Sun, M.; Li, H.; Wu, Z.; Wang, J.; Shen, W.; Fu, Y.Q. Significantly enhanced temperature-dependent selectivity for NO2 and H2S detection based on In2O3 nano-cubes prepared by CTAB assisted solvothermal process. J. Alloy Compd. 2020, 816, 152518. [Google Scholar] [CrossRef]
- Cui, P.; Schito, G.; Cui, Q. VOC emissions from asphalt pavement and health risks to construction workers. J. Clean. Prod. 2020, 244, 118757. [Google Scholar] [CrossRef]
- Çelebi, U.B.; Vardar, N. Investigation of VOC emissions from indoor and outdoor painting processes in shipyards. Atmos. Environ. 2008, 42, 5685–5695. [Google Scholar] [CrossRef]
- Lerner, J.C.; Sanchez, E.; Sambeth, J.; Porta, A. Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmos. Environ. 2012, 55, 440–447. [Google Scholar] [CrossRef]
- Jamt, R.E.G.; Gjerde, H.; Romeo, G.; Bogstrand, S.T. Association between alcohol and drug use and arrest for driving under the influence after crash involvement in a rural area of Norway: A case–control study. BMJ Open 2019, 9, e023563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchi, P.S.; Roshan, H.; Sheikhi, M. A novel room temperature ethanol sensor based on PbS:SnS2 nanocomposite with enhanced ethanol sensing properties. J. Alloy Compd. 2020, 816, 152666. [Google Scholar] [CrossRef]
- Xu, K.; Zhao, W.; Yu, X.; Duan, S.; Zen, W. Enhanced ethanol sensing performance using Co3O4–ZnSnO3 arrays prepared on alumina substrates. Phys. E Low Dimens. Syst. Nanostruct. 2020, 117, 113825. [Google Scholar] [CrossRef]
- Rahman, M.M. Efficient formaldehyde sensor development based on Cu-codoped ZnO nanomaterial by an electrochemical approach. Sens. Actuators B Chem. 2020, 305, 127541. [Google Scholar] [CrossRef]
- Li, M.; Li, B.; Meng, F.; Liu, J.; Yuan, Z.; Wang, C.; Liu, J. Highly sensitive and selective butanol sensors using the intermediate state nanocomposites converted from beta-FeOOH to alpha-Fe2O3. Sens. Actuators B Chem. 2018, 273, 543–551. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, L.; Liu, Y.; Liu, F.; Liang, X.; Liu, F.; Gao, Y.; Yan, X.; Lu, G. UV-activated ultrasensitive and fast reversible ppb NO2 sensing based on ZnO nanorod modified by constructing interfacial electric field with In2O3 nanoparticles. Sens. Actuators B Chem. 2020, 305, 127498. [Google Scholar] [CrossRef]
- Cho, H.-J.; Choi, S.-J.; Kim, N.-H.; Kim, I.-D. Porosity controlled 3D SnO2 spheres via electrostatic spray: Selective acetone sensors. Sens. Actuators B Chem. 2020, 304, 127350. [Google Scholar] [CrossRef]
- Chang, X.; Li, X.; Qiao, X.; Li, K.; Xiong, Y.; Li, X.; Guo, T.; Zhu, L.; Xue, Q. Metal-organic frameworks derived ZnO@MoS2 nanosheets core/shell heterojunctions for ppb-level acetone detection: Ultra-fast response and recovery. Sens. Actuators B Chem. 2020, 304, 127430. [Google Scholar] [CrossRef]
- Bagolini, A.; Gaiardo, A.; Crivellari, M.; Demenev, E.; Bartali, R.; Picciotto, A.; Valt, M.; Ficorella, F.; Guidi, V.; Bellutti, P. Development of MEMS MOS gas sensors with CMOS compatible PECVD inter-metal passivation. Sens. Actuators B Chem. 2019, 292, 225–232. [Google Scholar] [CrossRef]
- Peng, R.; Li, Y.; Liu, T.; Si, P.; Feng, J.; Suhr, J.; Ci, L. Boron-doped graphene coated Au@SnO2 for high-performance triethylamine gas detection. Mater. Chem. Phys. 2020, 239, 239. [Google Scholar] [CrossRef]
- Meng, D.; Liu, D.; Wang, G.; Shen, Y.; San, X.; Li, M.; Meng, F. Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets. Sens. Actuators B Chem. 2018, 273, 418–428. [Google Scholar] [CrossRef]
- Cao, P.-J.; Li, M.; Rao, C.N.; Han, S.; Xu, W.-Y.; Fang, M.; Liu, X.-K.; Zeng, Y.-X.; Liu, W.-J.; Zhu, D.-L.; et al. High Sensitivity NO₂ Gas Sensor Based on 3D WO₃ Microflowers Assembled by Numerous Nanoplates. J. Nanosci. Nanotechnol. 2020, 20, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jung, H.S.; Kim, D.-H.; Kim, S.-H.; Park, S.-G. 3D nanoporous plasmonic chips for extremely sensitive NO2 detection. Analyst 2019, 144, 7162–7167. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Turner, S.; Yan, A.; Xu, H.; Jang, M.; Carraro, C.; Maboudiancd, R.; Zettl, A. Plasma assisted formation of 3D highly porous nanostructured metal oxide network on microheater platform for Low power gas sensing. Sens. Actuators B Chem. 2019, 301, 127067. [Google Scholar] [CrossRef]
- Meng, F.; Qin, W.; Li, B.; Zhang, H.; Wang, S.; Chang, Y.; Li, M.; Yuan, Z. Synthesis of Au Nanoparticle-Modified Spindle Shaped α-Fe2O3 Nanorods and Their Gas Sensing Properties to N-Butanol. IEEE Trans. Nanotechnol. 2019, 18, 911–920. [Google Scholar] [CrossRef]
- Xiao, H.; Xue, C.; Song, P.; Li, J.; Wang, Q. Preparation of porous LaFeO3 microspheres and their gas-sensing property. Appl. Surf. Sci. 2015, 337, 65–71. [Google Scholar] [CrossRef]
- Chen, X.; Deng, N.; Zhang, X.; Yang, Y.; Li, J.; Hong, B.; Fang, J.; Xu, J.; Jin, D.; Peng, X.; et al. Preparation of Fe-doped In2O3 gas sensing semiconductor by one-step impregnation with enhanced ethanol sensing. Chem. Phys. Lett. 2019, 722, 96–103. [Google Scholar] [CrossRef]
- Ko, H.; Park, S.; An, S.; Lee, C. Enhanced ethanol sensing properties of TeO2/In2O3 core-shell nanorod sensors. Curr. Appl. Phys. 2013, 13, 919–924. [Google Scholar] [CrossRef]
- Zheng, W.; Lu, X.; Wang, W.; Li, Z.; Zhang, H.; Wang, Y.; Wang, Z.; Wang, C. A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers. Sens. Actuators B Chem. 2009, 142, 61–65. [Google Scholar] [CrossRef]
- Zhang, S.; Song, P.; Yan, H.; Yang, Z.; Wang, Q. A simple large-scale synthesis of mesoporous In2O3 for gas sensing applications. Appl. Surf. Sci. 2016, 378, 443–450. [Google Scholar] [CrossRef]
- Sun, G.-J.; Kheel, H.; Ko, T.-G.; Kim, H.W.; Lee, C. Prominent ethanol sensing with Cr2O3 nanoparticle-decorated ZnS nanorods sensors. J. Korean Phys. Soc. 2016, 69, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Ma, S.Y.; Xu, X.L.; Jiao, H.Y.; Zhang, G.H.; Liu, L.W.; Wang, P.Y.; Gengzang, D.J.; Yao, H.H. Optimization ethanol detection performance manifested by gas sensor based on In2O3/ZnS rough microspheres. Sens. Actuators B Chem. 2018, 264, 263–278. [Google Scholar] [CrossRef]
- Tao, K.; Han, X.; Yin, Q.; Wang, X.; Han, L.; Chen, L. Metal-Organic Frameworks-Derived Porous In2O3 Hollow Nanorod for High-Performance Ethanol Gas Sensor. Chemistryselect 2017, 2, 10918–10925. [Google Scholar] [CrossRef]
- Han, D.; Song, P.; Zhang, H.; Yan, H.; Xu, Q.; Yang, Z.; Wang, Q. Flower-like In2O3 hierarchical nanostructures: Synthesis, characterization, and gas sensing properties. RSC Adv. 2014, 4, 50241–50248. [Google Scholar] [CrossRef]
- Tang, W.; Liu, H.; Li, C.; Zhang, Y.; Sun, H.; Peng, T.; Huo, J.; Li, C. Facile synthesis of LaNi1−xTixO3 nanoparticles and enhanced ethanol-sensing characteristics. J. Phys. Chem. Solids 2019, 134, 5–13. [Google Scholar] [CrossRef]
- Cao, P.; Yang, Z.; Navale, S.; Han, S.; Liu, X.; Liu, W.; Lu, Y.; Stadler, F.J.; Zhu, D. Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sens. Actuators B Chem. 2019, 298, 126850. [Google Scholar] [CrossRef]
- Meng, F.; Zheng, H.; Chang, Y.; Zhao, Y.; Li, M.H.; Wang, C.; Sun, Y.; Liu, J. One-Step Synthesis of Au/SnO2/RGO Nanocomposites and Their VOC Sensing Properties. IEEE Trans. Nanotechnol. 2018, 17, 212–219. [Google Scholar] [CrossRef]
- Bao, H.-F.; Yue, T.-T.; Zhang, X.-X.; Dong, Z.; Yan, Y.; Feng, W. Enhanced Ethanol-Sensing Properties Based on Modified NiO-ZnO p-n Heterojunction Nanotubes. J. Nanosci. Nanotechnol. 2020, 20, 731–740. [Google Scholar] [CrossRef]
- Cao, P.; Gui, X.; Navale, S.; Han, S.; Xu, W.; Fang, M.; Liu, X.; Zeng, Y.; Liu, W.; Zhu, D.; et al. Design of flower-like V2O5 hierarchical nanostructures by hydrothermal strategy for the selective and sensitive detection of xylene. J. Alloy Compd. 2020, 815, 152378. [Google Scholar] [CrossRef]
- Jia, X.H.; Cheng, C.D.; Yu, S.W.; Yang, J.; Li, Y.; Song, H.J. Preparation and enhanced acetone sensing properties of flower-like alpha-Fe2O3/multi-walled carbon nanotube nanocomposites. Sens. Actuators B Chem. 2019, 300, 127012. [Google Scholar] [CrossRef]
Sensing Material | Concentration (ppm) | Temperature (°C) | Response (Ra/Rg) | Response Time (s)/Recovery Time (s) | Detection Limits | Ref. |
---|---|---|---|---|---|---|
Fe-doped In2O3 nanospheres | 100 | 350 | 133 | 15/55 | 5 ppm | [37] |
TeO2/In2O3 nanorods | 50 | 300 | 2.28 | 160/200 | 50 ppm | [38] |
In2O3 nanofibers | 100 | 300 | 14.3 | 2/5 | 1 ppm | [39] |
In2O3 nanostructures | 100 | 320 | 20 | 11/4 | 20 ppm | [40] |
Cr2O3/ZnS nanorods | 200 | 300 | 13.84 | 23/20 | 5 ppm | [41] |
In2O3/ZnS rough microspheres | 100 | 260 | 11.7 | 21/34 | 10 ppm | [42] |
In2O3 hollow nanorod | 100 | 200 | 38.6 | 8/6 | 5 ppm | [43] |
Flower-like In2O3 | 100 | 320 | 27.6 | 18/9 | 2 ppm | [44] |
LaNi1-xTixO3 nanoparticles | 200 | 300 | 0.5 | 24/44 | 50 ppm | [45] |
Pd-nanoparticles decorated ZnO-nanorod | 500 | 260 | 5.12 | 6/95 | 100 ppm | [46] |
In2O3 nanoflower | 100 | 270 | 66 | 12.4/10.4 | 0.5 ppm | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, W.; Yuan, Z.; Gao, H.; Meng, F. Ethanol Sensors Based on Porous In2O3 Nanosheet-Assembled Micro-Flowers. Sensors 2020, 20, 3353. https://doi.org/10.3390/s20123353
Qin W, Yuan Z, Gao H, Meng F. Ethanol Sensors Based on Porous In2O3 Nanosheet-Assembled Micro-Flowers. Sensors. 2020; 20(12):3353. https://doi.org/10.3390/s20123353
Chicago/Turabian StyleQin, Wenbo, Zhenyu Yuan, Hongliang Gao, and Fanli Meng. 2020. "Ethanol Sensors Based on Porous In2O3 Nanosheet-Assembled Micro-Flowers" Sensors 20, no. 12: 3353. https://doi.org/10.3390/s20123353
APA StyleQin, W., Yuan, Z., Gao, H., & Meng, F. (2020). Ethanol Sensors Based on Porous In2O3 Nanosheet-Assembled Micro-Flowers. Sensors, 20(12), 3353. https://doi.org/10.3390/s20123353