Next Article in Journal
Study of Lateral Displacements and the Natural Frequency of a Pedestrian Bridge Using Low-Cost Cameras
Next Article in Special Issue
Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance
Previous Article in Journal
A Self-Organizing Fuzzy Logic Classifier for Benchmarking Robot-Aided Blasting of Ship Hulls
Previous Article in Special Issue
Gait Variability Using Waist- and Ankle-Worn Inertial Measurement Units in Healthy Older Adults
Article

Quantifying Spatiotemporal Gait Parameters with HoloLens in Healthy Adults and People with Parkinson’s Disease: Test-Retest Reliability, Concurrent Validity, and Face Validity

1
Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
2
Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
*
Author to whom correspondence should be addressed.
Sensors 2020, 20(11), 3216; https://doi.org/10.3390/s20113216
Received: 8 April 2020 / Revised: 19 May 2020 / Accepted: 2 June 2020 / Published: 5 June 2020
(This article belongs to the Special Issue Wearable Devices: Applications in Older Adults)
Microsoft’s HoloLens, a mixed-reality headset, provides, besides holograms, rich position data of the head, which can be used to quantify what the wearer is doing (e.g., walking) and to parameterize such acts (e.g., speed). The aim of the current study is to determine test-retest reliability, concurrent validity, and face validity of HoloLens 1 for quantifying spatiotemporal gait parameters. This was done in a group of 23 healthy young adults (mean age 21 years) walking at slow, comfortable, and fast speeds, as well as in a group of 24 people with Parkinson’s disease (mean age 67 years) walking at comfortable speed. Walking was concurrently measured with HoloLens 1 and a previously validated markerless reference motion-registration system. We comprehensively evaluated HoloLens 1 for parameterizing walking (i.e., walking speed, step length and cadence) in terms of test-retest reliability (i.e., consistency over repetitions) and concurrent validity (i.e., between-systems agreement), using the intraclass correlation coefficient (ICC) and Bland–Altman’s bias and limits of agreement. Test-retest reliability and between-systems agreement were excellent for walking speed (ICC ≥ 0.861), step length (ICC ≥ 0.884), and cadence (ICC ≥ 0.765), with narrower between-systems than over-repetitions limits of agreement. Face validity was demonstrated with significantly different walking speeds, step lengths and cadences over walking-speed conditions. To conclude, walking speed, step length, and cadence can be reliably and validly quantified from the position data of the wearable HoloLens 1 measurement system, not only for a broad range of speeds in healthy young adults, but also for self-selected comfortable speed in people with Parkinson’s disease. View Full-Text
Keywords: HoloLens; spatiotemporal gait parameters; test-retest reliability; concurrent validity; face validity; healthy young adults; Parkinson’s disease HoloLens; spatiotemporal gait parameters; test-retest reliability; concurrent validity; face validity; healthy young adults; Parkinson’s disease
Show Figures

Figure 1

MDPI and ACS Style

Geerse, D.J.; Coolen, B.; Roerdink, M. Quantifying Spatiotemporal Gait Parameters with HoloLens in Healthy Adults and People with Parkinson’s Disease: Test-Retest Reliability, Concurrent Validity, and Face Validity. Sensors 2020, 20, 3216. https://doi.org/10.3390/s20113216

AMA Style

Geerse DJ, Coolen B, Roerdink M. Quantifying Spatiotemporal Gait Parameters with HoloLens in Healthy Adults and People with Parkinson’s Disease: Test-Retest Reliability, Concurrent Validity, and Face Validity. Sensors. 2020; 20(11):3216. https://doi.org/10.3390/s20113216

Chicago/Turabian Style

Geerse, Daphne J., Bert Coolen, and Melvyn Roerdink. 2020. "Quantifying Spatiotemporal Gait Parameters with HoloLens in Healthy Adults and People with Parkinson’s Disease: Test-Retest Reliability, Concurrent Validity, and Face Validity" Sensors 20, no. 11: 3216. https://doi.org/10.3390/s20113216

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop