Intelligent Technical Textiles Based on Fiber Bragg Gratings for Strain Monitoring †
Abstract
:1. Introduction
2. Methodology and Overall System Concept
2.1. Temperature Measurement
2.2. Strain Measurement
2.3. Design of Sensor Elements
3. Verification of the Functionality of the Designed Textile Block for Strain Measurement
4. Connection of Measurement Blocks
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
APC | Angled physical contact |
ASE | Amplified spontaneous emission |
BOTDA | Brillouin optical time-domain analysis |
CNC | Computer numerical control |
FBG | Fiber Bragg grating |
GUI | Graphical user interface |
IL | Insertion loss |
LC | Lucent connector |
OSA | Optical spectrum analyzer |
OTDR | Optical time-domain reflectometer |
POF | Plastic optical fiber |
References
- De jonckheere, J.; Narbonneau, F.; D’angelo, L.T.; Witt, J.; Paquet, B.; Kinet, D.; Kreber, K.; Logier, R. Fbg-Based Smart Textiles For Continuous Monitoring Of Respiratory Movements For Healthcare Applications. In Proceedings of the 12th IEEE International Conference on e-Health Networking, Applications and Services, Lyon, France, 1–3 July 2010; pp. 277–282. [Google Scholar]
- Coyle, S.; Diamond, D. Medical Applications of Smart Textiles. Adv. Smart Med Text. 2016, 215–237. [Google Scholar] [CrossRef]
- Dziuda, Ł.; Zieliński, P.; Baran, P.; Krej, M.; Kopka, L. A Study of the Relationship between the Level of Anxiety Declared by Mri Patients in the Stai Questionnaire and Their Respiratory Rate Acquired by a Fibre-Optic Sensor System. Sci. Rep. 2019, 9, 4341. [Google Scholar] [CrossRef] [PubMed]
- Alemohammad, H. (Ed.) Opto-Mechanical Fiber Optic Sensors: Research, Technology, and Applications in Mechanical Sensing; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Presti, D.L.; Massaroni, C.; Schena, P.S.E.; Formica, D.; Caponero, M.A.; Tomaso, G.D. Smart Textile Based On Fbg Sensors For Breath-By-Breath Respiratory Monitoring: Tests On Women. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6. [Google Scholar]
- Bremer, K.; Alwis, L.; Weigand, F.; Kuhne, M.; Zheng, Y.; Krüger, M.; Helbig, R.; Roth, B. Evaluating the Performance of Functionalized Carbon Structures with Integrated Optical Fiber Sensors under Practical Conditions. Sensors 2018, 18, 3923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedoma, J.; Kepak, S.; Fajkus, M.; Cubik, J.; Siska, P.; Martinek, R.; Krupa, P. Magnetic Resonance Imaging Compatible Non-Invasive Fibre-Optic Sensors Based on the Bragg Gratings and Interferometers in the Application of Monitoring Heart and Respiration Rate of the Human Body: A Comparative Study. Sensors 2018, 18, 3713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chethana, K.; Guru Prasad, A.S.; Omkar, S.N.; Asokan, S. Fiber Bragg Grating Sensor Based Device for Simultaneous Measurement of Respiratory and Cardiac Activities. J. Biophotonics 2017, 10, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Cheng, J.H. Research and Development of Smart Health Monitoring Clothing System. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 8231–8234. [Google Scholar]
- Post, E.R.; Orth, M. Smart Fabric, or “Wearable Clothing”. In Digest of Papers. First International Symposium on Wearable Computers; IEEE Compututer Society: Cambridge, MA, USA, 1997. [Google Scholar]
- Sadeqi, A.; Nejad, H.R.; Alaimo, F.; Yun, H.; Punjiya, M.; Sonkusale, S. Washable Smart Threads for Strain Sensing Fabrics. IEEE Sensors J. 2018, 18, 9137–9144. [Google Scholar] [CrossRef]
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, T. Electronic Textiles: Smart Fabrics and Wearable Technology; Woodhead Publishing: Sawston, Cambridge, UK, 2015. [Google Scholar]
- Kocnar, V. (Ed.) Smart Textiles for In Situ Monitoring of Composites; Woodhead Publishing: Sawston, Cambridge, UK, 2019. [Google Scholar]
- Gong, Z.; Xiang, Z.; OuYang, X.; Zhang, J.; Lau, N.; Zhou, J.; Chan, C.C. Wearable Fiber Optic Technology Based on Smart Textile: A Review. Materials 2019, 12, 3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebber, K. Current Developments in Optical Fiber Technology. In Smart Technical Textiles Based on Fiber Optic Sensors; IntechOpen: London, UK, 2013; p. 585. [Google Scholar]
- Massaroni, C.; Saccomandi, P.; Schena, E. Medical Smart Textiles Based on Fiber Optic Technology: An Overview. J. Funct. Biomater. 2015, 6, 204–221. [Google Scholar] [CrossRef] [PubMed]
- Munster, P.; Helan, R.; Sifta, R. Intelligent Non-Woven Textiles Based On Fiber Bragg Gratings For Strain And Temperature Monitoring. In Proceedings of the 2019 International Workshop on Fiber Optics in Access Networks (FOAN), Sarajevo, Bosnia and Herzegovina, 2–4 September 2019; pp. 20–22. [Google Scholar]
- Welltech Instrument Company Limited: Interrogator Readout Unit-FBG-S-121. Available online: https://bit.ly/2YGxfOZ (accessed on 8 May 2020).
- Optics11 FAZ Technology: FAZT I4-16/I4-16W Interrogators. Available online: https://bit.ly/3bcndHJ (accessed on 8 May 2020).
- AusOptic: FIBERPRO FI3100 Versatile FBG Sensing System. Available online: https://bit.ly/2SM9Vvw (accessed on 8 May 2020).
- Sylex s.r.o.: SCN-44 S-line Scan 404. Available online: https://bit.ly/2We1M53 (accessed on 8 May 2020).
- NETWORK GROUP, s.r.o. Available online: https://bit.ly/2YLmaME (accessed on 8 May 2020).
- Dassault Systemes SolidWorks Corporation. Available online: https://www.solidworks.com/ (accessed on 8 May 2020).
Producer | Type | Measurement Range [nm] | Scanning Frequency [Hz] | Number of Channels | Sensors per Channel | Resolution [pm] | Dimension (W×D×H) [mm] |
---|---|---|---|---|---|---|---|
Welltech | FBG-S-121-32 | 41 | 1 | 4–32 | 18 | 1 | 360×300×100 |
Optics11 FAZ Technology | FAZT I4-16 | 39.2 | 1 | up to 30 | 16 | 1 | 324×276×116 |
Ausoptics | FI3100 | 35 | 10 | 1–2 | 12 | 1 | 170×280×95 |
Sylex | SCN-44 S-line Scan 404 | 40 | 0.5 | 4 | NA | 1 | 300×200×84 |
Network Group | Static | 7 | 0.3 | 4 | 4 | 0.1 | 230×115×80 |
Network Group | Complex | 80 | 10 | 1–32 | 20 | 1 | TBA |
Connection No. | Fiber 1 IL (dB) | Fiber 2 IL (dB) |
---|---|---|
1 | 5.3 | 4.9 |
2 | 5.7 | 5.1 |
3 | 5.1 | 5.6 |
4 | 5.4 | 5.2 |
5 | 5.6 | 5.3 |
6 | 5.1 | 5.1 |
7 | 5.2 | 5.6 |
8 | 5.7 | 5.7 |
9 | 5.6 | 5.2 |
10 | 5.3 | 5.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munster, P.; Horvath, T. Intelligent Technical Textiles Based on Fiber Bragg Gratings for Strain Monitoring . Sensors 2020, 20, 2951. https://doi.org/10.3390/s20102951
Munster P, Horvath T. Intelligent Technical Textiles Based on Fiber Bragg Gratings for Strain Monitoring . Sensors. 2020; 20(10):2951. https://doi.org/10.3390/s20102951
Chicago/Turabian StyleMunster, Petr, and Tomas Horvath. 2020. "Intelligent Technical Textiles Based on Fiber Bragg Gratings for Strain Monitoring " Sensors 20, no. 10: 2951. https://doi.org/10.3390/s20102951
APA StyleMunster, P., & Horvath, T. (2020). Intelligent Technical Textiles Based on Fiber Bragg Gratings for Strain Monitoring . Sensors, 20(10), 2951. https://doi.org/10.3390/s20102951