Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance
Abstract
1. Introduction
2. Modeling
3. Genetic Optimization
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Löfås, S.; Malmqvist, M.; Rönnberg, I.; Stenberg, E.; Bo, L.; Lundström, I. Bioanalysis with surface plasmon resonance. Sens. Actuators B 1991, 5, 79–84. [Google Scholar] [CrossRef]
- Ritchie, R.H. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106, 874–881. [Google Scholar] [CrossRef]
- Shankaran, D.R.; Gobi, K.V.; Miura, N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuators B Chem. 2007, 121, 158–177. [Google Scholar] [CrossRef]
- Yanase, Y.; Hiragun, T.; Ishii, K.; Kawaguchi, T.; Yanase, T.; Kawai, M.; Sakamoto, K.; Hide, M. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis. Sensors 2014, 14, 4948–4959. [Google Scholar] [CrossRef] [PubMed]
- Yakes, B.J.; Deeds, J.; White, K.; Degrasse, S.L. Evaluation of surface plasmon resonance biosensors for detection of tetrodotoxin in food matrices and comparison to analytical methods. J. Agric. Food Chem. 2011, 59, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.N.; Srivastava, R.; Groger, H.; Lo, P.; Luo, S.F. A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors. Sens. Actuators A Phys. 1995, 51, 211–217. [Google Scholar] [CrossRef]
- Healy, D.A.; Hayes, C.J.; Leonard, P.; McKenna, L.; O’Kennedy, R. Biosensor developments: Application to prostate-specific antigen detection. Trends Biotechnol. 2007, 25, 125–131. [Google Scholar] [CrossRef]
- Salamon, Z.; Macleod, H.A.; Tollin, G. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. Biochim. Biophys. Acta (Bba) Rev. Biomembr. 1997, 1331, 117–129. [Google Scholar] [CrossRef]
- Zynio, S.A.; Samoylov, A.V.; Surovtseva, E.R.; Mirsky, V.M.; Shirshov, Y.M. Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2002, 2, 62–70. [Google Scholar] [CrossRef]
- Gupta, G.; Kondoh, J. Tuning and sensitivity enhancement of surface plasmon resonance sensor. Sens. Actuators B Chem. 2007, 122, 381–388. [Google Scholar] [CrossRef]
- Kim, D.; Byun, K.M.; Yoon, S.J.; Kim, S.J. Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires. Opt. Lett. 2007, 32, 1902–1904. [Google Scholar]
- Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2d materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126. [Google Scholar] [CrossRef]
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Gupta, B.D.; Jha, R. Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 2011, 160, 623–631. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zeng, S.; Jiang, L.; Hong, L.; Xu, G.; Dinh, X.Q.; et al. Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 2016, 6, 28190. [Google Scholar] [CrossRef] [PubMed]
- Maurya, J.B.; Prajapati, Y.K.; Singh, V.; Saini, J.P.; Tripathi, R. Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon. Opt. Commun. 2016, 359, 426–434. [Google Scholar] [CrossRef]
- Wu, L.; Guo, J.; Wang, Q.; Lu, S.; Dai, X.; Xiang, Y.; Fan, D. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B Chem. 2017, 249, 542–548. [Google Scholar] [CrossRef]
- Meshginqalam, B.; Barvestani, J. Performance enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridization. IEEE Sens. J. 2018, 18, 7537–7543. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, L.; Ang, Y.S. MoS2-Based Highly Sensitive Near-Infrared Surface Plasmon Resonance Refractive Index Sensor. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–7. [Google Scholar]
- Xu, Y.; Hsieh, C.Y.; Wu, L. Two-dimensional transition metal dichalcogenides mediated long range surface plasmon resonance biosensors. J. Phys. D Appl. Phys. 2018, 52, 065101. [Google Scholar] [CrossRef]
- Xu, Y.; Ang, Y.S.; Wu, L.; Ang, L.K. High Sensitivity Surface Plasmon Resonance Sensor Based on Two-Dimensional MXene and Transition Metal Dichalcogenide: A Theoretical Study. Nanomaterials 2019, 9, 165. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, F.; Maisonneuve, M.; Meunier, M.; Aitchison, J.S.; Mojahedi, M. An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance. Opt. Express 2013, 21, 20863–20872. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, G.; Mattei, G. High-performance magneto-optic surface plasmon resonance sensor design: An optimization approach. Plasmonics 2014, 9, 1457–1462. [Google Scholar] [CrossRef]
- Benazize, S.; Dibi, Z.; Benaziez, N. Optimization of the graphene-silver based surface plasmon resonance (SPR) sensor. Univ. Politeh. Buchar. Sci. Bull. Ser. B 2018, 80, 1454–2331. [Google Scholar]
- Manera, M.G.; Pellegrini, G.; Lupo, P.; De Julián Fernández, C.; Casoli, F.; Rella, S.; Malitesta, C.; Albertini, F.; Mattei, G.; Rella, R. Functional magneto-plasmonic biosensors transducers: Modelling and nanoscale analysis. Sens. Actuators B Chem. 2017, 239, 100–112. [Google Scholar] [CrossRef]
- Srinivas, M.; Patnaik, L.M. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 2002, 24, 656–667. [Google Scholar] [CrossRef]
- Srinivas, N.; Kalyanmoy, D. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2014, 2, 221–248. [Google Scholar] [CrossRef]
Type of 2D Materials | Thickness of Monolayer (nm) | Refractive Index |
---|---|---|
BP | 0.53 | 3.5 + 0.01i |
graphene | 0.34 | 3 + 1.1491i |
MoS2 | 0.65 | 5.08 + 1.1723i |
WS2 | 0.8 | 4.9 + 0.3124i |
MoSe2 | 0.7 | 4.62 + 1.0063i |
WSe2 | 0.7 | 4.55 + 0.4332i |
Type of 2D Materials | Layers (L) | Sensitivity (°/RIU) |
---|---|---|
graphene | 5 | 217 |
MoS2 | 1 | 218 |
WS2 | 1 | 237 |
MoSe2 | 2 | 229 |
WSe2 | 2 | 279 |
Sensor Structure | Ag (nm) | N | L | S (°/RIU) |
---|---|---|---|---|
Ag +N*BP+L*Graphene | 65 | 12 | 2 | 300 |
Ag +N*BP+L*MoS2 | 55 | 11 | 1 | 280 |
Ag +N*BP+L*WS2 | 56 | 11 | 1 | 340 |
Ag +N*BP+L*MoSe2 | 47 | 12 | 1 | 280 |
Ag +N*BP+L*WSe2 | 50 | 12 | 1 | 340 |
Sensor Structure | Au (nm) | N | L | Smax (°/RIU) | Save (°/RIU) |
---|---|---|---|---|---|
Au | 55 | 0 | 0 | 90 | 78 |
Au +N*BP | 49 | 13 | 0 | 190 | 144 |
Au +N*BP+L*Graphene | 50 | 12 | 1 | 183.33 | 137.33 |
Au +N*BP+L*MoS2 | 45 | 10 | 1 | 163.33 | 126 |
Au +N*BP+L*WS2 | 53 | 9 | 1 | 183.33 | 133.333 |
Au +N*BP+L*MoSe2 | 50 | 10 | 1 | 163.33 | 129.33 |
Au +N*BP+L*WSe2 | 54 | 10 | 1 | 180 | 136 |
Configuration | Silver (nm) | BP (L) | Graphene (L) | MoS2 (L) | WS2 (L) | MoSe2 (L) | WSe2 (L) | Smax | S1.330–1.355/Save | FOM1.330–1.355 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 53 | 12 | 0 | 0 | 0 | 0 | 0 | 380 | 320 | 52.46 |
2 | 49 | 12 | 0 | 0 | 0 | 0 | 0 | 400 | 308 | 49.68 |
3 | 42 | 12 | 1 | 0 | 0 | 0 | 0 | 320 | 276 | 36.32 |
4 | 52 | 9 | 1 | 1 | 0 | 0 | 0 | 260 | 236 | 26.52 |
5 | 66 | 7 | 0 | 0 | 1 | 0 | 1 | 300 | 268 | 34.81 |
6 | 50 | 7 | 0 | 0 | 1 | 1 | 0 | 280 | 244 | 28.37 |
7 | 48 | 5 | 0 | 0 | 2 | 0 | 1 | 280 | 252 | 30.00 |
8 | 54 | 1 | 3 | 1 | 1 | 1 | 1 | 200 | 192 | 17.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, G.; Zhou, C.; Jin, S.; Huang, C.; Xing, J.; Liu, Z. Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance. Sensors 2019, 19, 1198. https://doi.org/10.3390/s19051198
Xia G, Zhou C, Jin S, Huang C, Xing J, Liu Z. Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance. Sensors. 2019; 19(5):1198. https://doi.org/10.3390/s19051198
Chicago/Turabian StyleXia, Guo, Cuixia Zhou, Shiqun Jin, Chan Huang, Jinyu Xing, and Zhijian Liu. 2019. "Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance" Sensors 19, no. 5: 1198. https://doi.org/10.3390/s19051198
APA StyleXia, G., Zhou, C., Jin, S., Huang, C., Xing, J., & Liu, Z. (2019). Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance. Sensors, 19(5), 1198. https://doi.org/10.3390/s19051198