Neuro-Sliding Control for Underwater ROV’s Subject to Unknown Disturbances
Abstract
:1. Introduction
2. Mathematical Model
3. Control Design
3.1. Second Order Sliding Mode Control (2nd-SMC)
3.1.1. Nominal Reference
3.1.2. Sliding Mode Control
3.2. Self-Tuning Backpropagation Neural Network Control
4. Experimental Results
4.1. Mini-ROV Architecture
4.1.1. Mechanical Architecture
4.1.2. Electronic Architecture
4.2. Experiment Design
- (a)
- Set-point. The mini-ROV was required to reach a desired fixed depth, .
- (b)
- Trajectory tracking. The vehicle was required to follow a sinusoidal trajectory:
4.3. Results
4.3.1. Position Regulation ()
4.3.2. Tracking Trajectory ()
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, M.; Chu, Z. Adaptive sliding mode control based on local recurrent neural networks for underwater robot. Ocean Eng. 2012, 45, 56–62. [Google Scholar] [CrossRef]
- Sun, B.; Zhu, D.; Ding, F.; Yang, S. A novel tracking control approach for unmanned underwater vehicles based on bio-inspired neurodynamics. J. Mar. Sci Technol. 2013, 18, 63–74. [Google Scholar] [CrossRef]
- Gao, J.; Proctor, A.; Bradley, C. Adaptive neural network visual servo control for dynamic positioning of underwater vehicles. Neurocomput. 2015, 167, 604–613. [Google Scholar] [CrossRef]
- Cui, R.; Zhang, X.; Cui, D. Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities. Ocean Eng. 2016, 123, 45–54. [Google Scholar] [CrossRef]
- Yang, J.; Feng, J.; Qi, D.; Li, Y. Longitudinal motion control of underwater vehicle based on fast smooth second order sliding mode. Optik 2016, 127, 9118–9130. [Google Scholar] [CrossRef]
- Guo, X.; Yan, W.; Cui, R. Neural network-based nonlinear sliding-mode control for an AUV without velocity measurements. Int. J. Control 2017, 92, 1–16. [Google Scholar] [CrossRef]
- Gao, J.; Wu, P.; Yang, B.; Xia, F. Adaptive neural network control for visual servoing of underwater vehicles with pose estimation. J. Mar. Sci. Technol. 2017, 22, 470–478. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Wang, N. Robust adaptive self-organizing neuro-fuzzy tracking control of UUV with system uncertainties and unknown dead-zone nonlinearity. Nonlinear Dyn. 2017, 89, 1397–1414. [Google Scholar] [CrossRef]
- Gao, J.; An, X.; Proctor, A.; Bradley, C. Sliding mode adaptive neural network control for hybrid visual servoing of underwater vehicles. Ocean. Eng. 2017, 142, 666–675. [Google Scholar] [CrossRef]
- Elmokadem, T.; Zribi, M.; Youcef-Toumi, K. Terminal sliding mode control for the trajectory tracking of underactuated Autonomous Underwater Vehicles. Ocean. Eng. 2017, 129, 613–625. [Google Scholar] [CrossRef]
- Londhe, P.S.; Dhadekar, D.D.; Patre, B.M.; Waghmare, L.M. Uncertainty and disturbance estimator based sliding mode control of an autonomous underwater vehicle. Int. J. Dyn. Control 2017, 5, 1122–1138. [Google Scholar] [CrossRef]
- García-Valdovinos, L.; Salgado-Jiménez, T.; Bandala-Sánchez, M.; Nava-Balanzar, L.; Hernández-Alvarado, R.; Cruz-Ledesma, J. Modeling, Design and Robust Control of a Remotely Operated Underwater Vehicle. Int. J. Adv. Robot. Syst. 2014, 11, 1–16. [Google Scholar] [CrossRef]
- Hernández-Alvarado, R.; García-Valdovinos, L.; Salgado-Jiménez, T.; Gómez-Espinosa, A.; Fonseca-Navarro, F. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles. Sensors 2016, 16, 1429. [Google Scholar] [CrossRef] [PubMed]
- García-Valdovinos, L.; Salgado-Jiménez, T. On the Dynamic Positioning Control of Underwater Vehicles subject to Ocean Currents. In Proceedings of the 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, Merida City, México, 26–28 October 2011. [Google Scholar]
- Fossen, T.I. Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles; Marine Cybernetics: Trondheim, Norway, 2002. [Google Scholar]
- Cui, X.; Shih, K. Direct Control and Coordination Using Neural Networks. IEEE Trans.Syst. Man Cybern. 1993, 23, 686–697. [Google Scholar]
Gain | Value | Gain | Value |
---|---|---|---|
15 | 43 | ||
43 | 0.7 |
Control Law | Control Signal (%) | Test #1 | Test #5 | |||
---|---|---|---|---|---|---|
2nd-SMC | NN | SME [cm] | RMS [volts] | SME [cm] | RMS [volts] | |
2nd-SMC | 100 | - | 2.7 | 8.51 | 2.6 | 8.5 |
BP-NN | - | 100 | 10.28 | 7.8 | 4.09 | 8.19 |
NSC | 20 | 80 | 10.32 | 8.18 | 2.59 | 8.05 |
NSC | 50 | 50 | 7.09 | 8.31 | 4.5 | 8.09 |
NSC | 80 | 20 | 3.75 | 8.27 | 3.42 | 8.57 |
Control Law | Control Signal (%) | Test #1 | Test #5 | |||
---|---|---|---|---|---|---|
SMC | NN | SME [cm] | RMS [volts] | SME [cm] | RMS [volts] | |
2nd-SMC | 100 | - | 2.51 | 8.36 | 2.51 | 8.36 |
BP-NN | - | 100 | 10.78 | 7.56 | 1.82 | 8.0 |
NSC | 20 | 80 | 10.22 | 7.83 | 2.2 | 8.15 |
NSC | 50 | 50 | 8.0 | 8.52 | 5.34 | 8.69 |
NSC | 80 | 20 | 7.0 | 8.45 | 3.53 | 8.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Valdovinos, L.G.; Fonseca-Navarro, F.; Aizpuru-Zinkunegi, J.; Salgado-Jiménez, T.; Gómez-Espinosa, A.; Cruz-Ledesma, J.A. Neuro-Sliding Control for Underwater ROV’s Subject to Unknown Disturbances. Sensors 2019, 19, 2943. https://doi.org/10.3390/s19132943
García-Valdovinos LG, Fonseca-Navarro F, Aizpuru-Zinkunegi J, Salgado-Jiménez T, Gómez-Espinosa A, Cruz-Ledesma JA. Neuro-Sliding Control for Underwater ROV’s Subject to Unknown Disturbances. Sensors. 2019; 19(13):2943. https://doi.org/10.3390/s19132943
Chicago/Turabian StyleGarcía-Valdovinos, Luis Govinda, Fernando Fonseca-Navarro, Joanes Aizpuru-Zinkunegi, Tomas Salgado-Jiménez, Alfonso Gómez-Espinosa, and José Antonio Cruz-Ledesma. 2019. "Neuro-Sliding Control for Underwater ROV’s Subject to Unknown Disturbances" Sensors 19, no. 13: 2943. https://doi.org/10.3390/s19132943
APA StyleGarcía-Valdovinos, L. G., Fonseca-Navarro, F., Aizpuru-Zinkunegi, J., Salgado-Jiménez, T., Gómez-Espinosa, A., & Cruz-Ledesma, J. A. (2019). Neuro-Sliding Control for Underwater ROV’s Subject to Unknown Disturbances. Sensors, 19(13), 2943. https://doi.org/10.3390/s19132943