Microcontroller Implementation of Support Vector Machine for Detecting Blood Glucose Levels Using Breath Volatile Organic Compounds
Abstract
1. Introduction
2. Design of Experiments
3. Support Vector Machine
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
VOC | Volatile Organic Compound |
SVM | Support Vector Machine |
ppm | Parts-Per-Million |
ppb | Parts-Per-Billion |
BG | Blood Glucose |
References
- Center for Disease Control and Prevention. 2017 Statistics on Diabetes. Available online: http://www.cdc.gov/diabetes/statistics/prev/national/gifpersons.htm (accessed on 4 August 2017).
- CDC Featres—Diabetes Latest. 2017. Available online: https://www.cdc.gov/features/diabetesfactsheet (accessed on 4 August 2017).
- Rowley, W.; Bezold, C.; Arikan, Y.; Byrne, E.; Krohe, S. Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Popul. Health Manag. 2017, 20, 6–12. [Google Scholar] [CrossRef]
- Islam, M.T.; Hoque, A.; Almutairi, A.F.; Asmin, N. Left-Handed Metamaterial-Inspired Unit Cell for S-Band Glucose Sensing Application. Sensors 2019, 19, 169. [Google Scholar] [CrossRef]
- Spada, L.L.; Spooner, C.; Haq, S.; Hao, Y. Curvilinear MetaSurfaces for Surface Wave Manipulation. Sci. Rep. 2019, 9, 3107. [Google Scholar] [CrossRef]
- Liberal, I.; Li, Y.; Engheta, N. Reconfigurable Epsilon-Near-Zero Metasurfaces via Photonic Doping. Nanophotonics 2018, 7, 1117–1127. [Google Scholar] [CrossRef]
- Vakil, A.; Engheta, N. Transformation Optics Using Graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Samadi, S.; Turksoy, K.; Hajizadeh, I.; Feng, J.; Sevil, M.; Cinar, A. Meal Detection and Carbohydrate Estimation Using Continuous Glucose Sensor Data. IEEE J. Biomed. Heath Inform. 2017, 21, 619–627. [Google Scholar] [CrossRef]
- Olarte, O.; Chilo, J.; Pelegri-Sebastia, J. Glucose Detection in Human Sweat Using and Electronic Nose. In Proceedings of the 35th Annual International Conference of the IEEE EMBS, Osaka, Japan, 3–7 July 2013; Universiteit Brussels: Brussels, Belgium, 2013; pp. 1462–1465. [Google Scholar]
- Shichiri, M.; Yamasaki, Y.; Kawamori, R.; Hakui, N.; Abe, H. Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor. Lancet 1982, 320, 1129–1131. [Google Scholar] [CrossRef]
- Rydosz, A. A Negative Correlation between Blood Glucose and Acetone Measured in Healthy and Type 1 Diabetes Mellitus Patient Breath. J. Diabetes Sci. Technol. 2015, 9, 881–884. [Google Scholar] [CrossRef]
- Righettoni, M.; Schmid, A.; Amann, A.; Pratsinis, S. Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. J. Breath Res. 2013, 7, 037110. [Google Scholar] [CrossRef]
- Gardner, J.; Shin, H.; Hines, E. An electronic nose system to diagnose illness. Sens. Actuators B Chem. 2000, 70, 19–24. [Google Scholar] [CrossRef]
- Peng, G.; Hakim, M.; Broza, Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef]
- Mazzone, P.; Hammel, J.; Dweik, R.; Na, J.; Czich, C.; Laskowski, D.; Mekhail, T. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 2007, 62, 565–568. [Google Scholar] [CrossRef]
- Li, C.; Krewer, G.; Ji, P.; Scherm, H.; Kays, S. Gas sensor array for blueberry fruit disease detection and classification. Postharvest Biol. Technol. 2010, 55, 144–149. [Google Scholar] [CrossRef]
- Minh, T.; Oliver, S.; Ngo, J.; Flores, R.; Midyett, J.; Meinardi, S.; Carlson, M.; Rowland, F.; Blake, D.; Galassetti, P. Nonivasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects. AJP Endocrinol. Metab. 2011, 300, E1166–E1175. [Google Scholar] [CrossRef]
- Furey, T.; Cristianini, N.; Duffy, N.; Bednarski, D.; Schummer, M.; Haussler, D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16, 906–914. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Turner, C.; Walton, C.; Hoashi, S.; Evans, M. Breath in Type I diabetes mellitus patients during hypoglycaemic clamps. J. Breath Res. 2009, 3, 046004. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mbi, A.; Shepherd, M. A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone with Blood Glucose and Glycohemogloving A1C. IEEE Sens. J. 2010, 10, 54–63. [Google Scholar] [CrossRef]
- Galassetti, P.; Novak, B.; Nemet, D.; Rose-Gottron, C.; Cooper, D.; Meinardi, S.; Newcomb, R.; Zaldivar, F.; Blake, D. Breath Ethanol and Acetone as Indicators of Serum Glucose Levels: An Initial Report. Diabetes Technol. Ther. 2005, 7, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Anal. Chem. 2010, 82, 3581–3587. [Google Scholar] [CrossRef]
- Choi, S.-J.; Lee, I.; Jang, B.-H.; Youn, D.-Y.; Ryu, W.-H.; Park, C.O.; Kim, I.-D. Selective Diagnosis of Diabetes Using Pt-Functionalized WO3 Hemitube Networks as a Sensing Layer of Acetone in Exhaled Breath. Anal. Chem. 2012, 85, 1792–1796. [Google Scholar] [CrossRef]
- Salehia, S.; Nikan, E.; Khodadadi, A.A.; Mortazavi, Y. Highly Sensitive Carbon Nanotubes–SnO2 Nanocomposite Sensor for Acetone Detection in Diabetes Mellitus Breath. Sens. Actuators B Chem. 2014, 205, 261–267. [Google Scholar] [CrossRef]
- Shin, J.; Choi, S.-J.; Lee, I.; Youn, D.-Y.; Park, C.O.; Lee, J.-H.; Tuller, H.L.; Kim, I.-D. Thin-Wall Assembled SnO2 Fibers Functionalized by Catalytic Pt Nanoparticles and Their Superior Exhaled-Breath-Sensing Properties for the Diagnosis of Diabetes. Adv. Funct. Mater. 2012, 23, 2357–2367. [Google Scholar] [CrossRef]
- Daneshkhah, A.; Shrestha, S.; Siegel, A.; Varahramyan, K.; Agarwal, M. Cross-Selectivity Enhancement of Poly(Vinylidene Fluoride-Hexafluoropropylene)-Based Sensor-Array for detecting Acetone and Ethanol. Sensors 2017, 17, 595. [Google Scholar] [CrossRef]
- Abate, P.; Rodriguez, V.; Macchi, R. Evaporation of solvent in one-bottle adhesives. J. Dent. 2000, 28, 437–440. [Google Scholar] [CrossRef]
- Li, H.; Zhan, H.; Fu, S.; Liu, M.; Chai, X. Rapid determination of mathanol in black liquors by full evaporation headspace gas chromatography. J. Chromatogr. A 2007, 1175, 133–136. [Google Scholar] [CrossRef]
- Netchaev, A.D. Selective Detection of Volatile Organic Compounds Using Metal Oxide Sensor Arrays. Ph.D. Thesis, The University of Southern Mississippi, Hattiesburg, MS, USA, May 2015. [Google Scholar]
- Itoh, T.; Akamatsu, T.; Tsuruta, A.; Shin, W. Selective Detection of Target Volatile Organic Compounds in Contaminated Humid Air Using a Sensor Array with Principal Component Analysis. Sensors 2017, 17, 1662. [Google Scholar]
- Chen, Y.-T.; Shrestha, S. Source Classification of Indoor Air Pollutants Using Principal Component Analysis for Smart Home Monitoring Applications. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; pp. 129–133. [Google Scholar]
- Chen, Y.-T.; Samborsky, Z.; Shrestha, S. Electronic Nose for Ambient Detection and Monitoring. In Proceedings of the SPIE Commercial + Scientific Sensing and Imaging, Anaheim, CA, USA, 26–30 April 2017; Volume 10251, pp. 1–9. [Google Scholar]
- Hsu, M.; A Practical Guide to Support Vector Machines. Department of Computer Science, National Taipei, Taiwan. June 2016. Available online: https://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf (accessed on 20 June 2017).
- Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Belousov, A.; Verzakov, S.; von Frese, J. Applicational aspects of support vector machines. J. Chemom. 2002, 16, 482–489. [Google Scholar] [CrossRef]
- Iovine, R.; Spada, L.L.; Vegni, L. Optical Properties of Modified Nanorod Particles for Biomedical Sensing. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Engheta, N. Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials. Science 2007, 317, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hao, Y.; Li, K.; Gong, S. Radar Cross Section Reduction of a Microstrip Antenna Based on Polarization Conversion Metamaterial. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 80–83. [Google Scholar] [CrossRef]
- Spada, L.L. Metasurfaces for Advanced Sensing and Diagnostics. Sensors 2019, 19, 355. [Google Scholar] [CrossRef]
- Github. radzilu/Arduino-SVM. 2017. Available online: https://github.com/radzilu/Arduino-SVM (accessed on 19 August 2017).
- Ghang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. Available online: http://www.csie.ntu.edu.tw/cjlin/libsvm (accessed on 20 June 2017).
Compound | Low BG Level | High BG Level |
---|---|---|
Acetone | 1–3 ppm | 5–7 ppm |
Methyl Nitrate | 1 ppm | 3 ppm |
Ethanol | 0–20 ppb | 35–50 ppb |
Methanol | 0 ppb | 1 ppb |
Time (min) | Action | Air Flow Rate |
---|---|---|
t = 0–5 | Clean System | 1.5 L/min |
t = 5–6 | Introduce Chem. | 0 L/min |
t = 6–6:45 | Blow Chem. to Sensor | 0.5 L/min |
t = 6:45–12 | Steady State Response | 0 L/min |
t = 12–15 | Clear System | 1.5 L/min |
Feature | Time Segment (s) |
---|---|
Baseline | 0–50 |
Rise | 65–85 |
Steady State | 150–400 |
Fall | 450–500 |
Late Fall | 500–600 |
Acetone | = | = | = | = | = |
---|---|---|---|---|---|
C = | 100% | 82% | 64% | 50% | 50% |
C = | 82% | 82% | 63% | 50% | 50% |
C = | 59% | 50% | 50% | 50% | 50% |
C = | 68% | 59% | 50% | 50% | 50% |
C = | 68% | 59% | 50% | 50% | 50% |
C = | 68% | 59% | 50% | 50% | 50% |
Acetone | Baseline | Rise | Steady State | Fall | Late Fall |
---|---|---|---|---|---|
C | |||||
Accuracy | 100% | 73% | 100% | 77% | 78% |
Acetone | Baseline | Rise | Steady State | Fall | Late Fall |
---|---|---|---|---|---|
C | |||||
Accuracy | 100% | 60% | 100% | 100% | 100% |
Acetone | Baseline | Rise | Steady State | Fall | Late Fall |
---|---|---|---|---|---|
C | |||||
Accuracy | 64% | 60% | 100% | 100% | 76% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boubin, M.; Shrestha, S. Microcontroller Implementation of Support Vector Machine for Detecting Blood Glucose Levels Using Breath Volatile Organic Compounds. Sensors 2019, 19, 2283. https://doi.org/10.3390/s19102283
Boubin M, Shrestha S. Microcontroller Implementation of Support Vector Machine for Detecting Blood Glucose Levels Using Breath Volatile Organic Compounds. Sensors. 2019; 19(10):2283. https://doi.org/10.3390/s19102283
Chicago/Turabian StyleBoubin, Matthew, and Sudhir Shrestha. 2019. "Microcontroller Implementation of Support Vector Machine for Detecting Blood Glucose Levels Using Breath Volatile Organic Compounds" Sensors 19, no. 10: 2283. https://doi.org/10.3390/s19102283
APA StyleBoubin, M., & Shrestha, S. (2019). Microcontroller Implementation of Support Vector Machine for Detecting Blood Glucose Levels Using Breath Volatile Organic Compounds. Sensors, 19(10), 2283. https://doi.org/10.3390/s19102283