Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication
Abstract
:1. Introduction
2. System Model
2.1. IBFD-UWA Communication System
2.2. The model of Nonlinear Distortion
2.3. The model of Nonlinear Distortion
3. Digital Cancelation for the IBFD-UWA Communication System
3.1. OPRLS for Asynchronous IBFD-UWA Communication System
3.2. OPRLS with Sparse Constraint
4. Simulation and Experimental Results
4.1. Simulation Results
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Santos, R.; Orozco, J.; Micheletto, M.; Ochoa, S.; Meseguer, R.; Millan, P.; Molina, C. Real-Time Communication Support for Underwater Acoustic Sensor Networks. Sensors 2017, 17, 1629. [Google Scholar] [CrossRef] [PubMed]
- Kilfoyle, D.B.; Baggeroer, B. The state of the art in underwater acoustic telemetry. Ocean. Eng. IEEE J. 2000, 25, 24–27. [Google Scholar] [CrossRef]
- Stojanovic, M.; Proakis, J.G.; Catipovic, J.A. Phase-coherent digital communications for underwater acoustic channels. Ocean. Eng. IEEE J. 1994, 19, 100–111. [Google Scholar] [CrossRef]
- Liu, S.; Ma, T.; Qiao, G. Biologically inspired covert underwater acoustic communication by mimicking dolphin whistles. Appl. Acoust. 2017, 120, 120–128. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, S.; Qiao, G.; Liu, S.; Zhou, F. Superposition Coding for Downlink Underwater Acoustic OFDM. Ocean. Eng. IEEE J. 2017, 42, 175–187. [Google Scholar] [CrossRef]
- Yang, G.; Yin, J.; Huang, D.; Jin, L.; Zhou, H. A Kalman Filter-Based Blind Adaptive Multi-User Detection Algorithm for Underwater Acoustic Networks. Sens. IEEE J. 2016, 16, 4023–4033. [Google Scholar] [CrossRef]
- Yin, J.; Du, P.; Yang, G.; Zhou, H. Space-division multiple access for CDMA multiuser underwater acoustic communications. J. Syst. Eng. Electron. 2015, 26, 1184–1190. [Google Scholar] [CrossRef]
- Machado, R.; Uchôa-Filho, B.F.; Duman, T.M. Performance Analysis of a Full-Duplex Cooperative Diversity Scheme with Partial Channel Knowledge at the Cooperating Nodes. J. Commun. and Inf. Syst. 2009, 24, 30–39. [Google Scholar] [CrossRef]
- Qiao, G.; Liu, S.; Sun, Z.; Zhou, F. Full-duplex, multi-user and parameter reconfigurable underwater acoustic communication modem. In Proceedings of the 2013 OCEANS-San Diego, San Diego, CA, USA, 23–27 September 2013. [Google Scholar]
- Zhang, Z.; Long, K.; Vasilakos, A.V.; Lajos, H. Full-Duplex Wireless Communications: Challenges, Solutions, and Future Research Directions. Proc. IEEE 2016, 104, 1369–1409. [Google Scholar] [CrossRef]
- Quan, X.; Liu, Y.; Pan, W.; Tang, Y.; Kang, K. A Two-Stage Analog Cancellation Architecture for Self-Interference Suppression in Full-Duplex Communications. In Proceedings of the 2017 IEEE MTT-S International Conference, Honololu, HI, USA, 4–9 June 2017. [Google Scholar]
- Bharadia, D.; McMilin, E.; Katti, S. Full Duplex Radios. In Proceedings of the ACM SIGCOMM Conference on SIGCOMM, Hong Kong, China, 12–16 August 2013. [Google Scholar]
- Korpi, D.; Riihonen, T.; Syrjala, V.; Anttila, L.; Valkama, M.; Wichman, R. Full-duplex transceiver system calculations: Analysis of ADC and linearity challenges. IEEE Trans. Wirel. Commun. 2014, 13, 3821–3836. [Google Scholar] [CrossRef]
- Everett, E.; Sahai, A.; Sabharwal, A. Passive self-interference suppression for full-duplex infrastructure nodes. IEEE Trans. Wirel. Commun. 2014, 13, 680–694. [Google Scholar] [CrossRef]
- Syrjala, V.; Valkama, M.; Anttila, L.; Riihonen, T.; Korpi, D. Analysis of oscillator phase-noise effects on self-interference cancellation in full-duplex ofdm radio transceivers. IEEE Trans. Wirel. Commun. 2014, 13, 2977–2990. [Google Scholar] [CrossRef]
- Korpi, D.; Heino, M.; Icheln, C.; Haneda, K.; Valkama, M. Compact inband full-duplex relays with beyond 100 dB self-interference suppression: Enabling techniques and field measurements. IEEE Trans. Antennas Propag. 2017, 65, 960–965. [Google Scholar] [CrossRef]
- Korpi, D.; Anttila, L.; Syrjala, V.; Valkama, M. Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver. IEEE J. Sel. Areas Commun. 2013, 12, 1674–1687. [Google Scholar] [CrossRef]
- Ahmed, E.; Eltawil, A.M.; Sabharwal, A. Rate gain region and design tradeoffs for full-duplex wireless communications. IEEE Trans. Wirel. Commun. 2013, 12, 3556–3665. [Google Scholar] [CrossRef]
- Bliss, D.W.; Hancock, T.M.; Schniter, P. Hardware phenomenological effects on cochannel full-duplex MIMO relay performance. In Proceedings of the Signals, Systems and Computers(Asilomar) Conference, Pacific Grove, CA, USA, 4–7 November 2012. [Google Scholar]
- Ku, H.; Mckinley, M.D.; Kenney, J.S. Quantifying Memory Effects in RF Power Amplifiers. IEEE Trans Microw. Theory Tech. 2002, 50, 2843–2849. [Google Scholar] [CrossRef]
- Masmoudi, A.; Le-Ngoc, T. Channel Estimation and Self-Interference Cancelation in Full-Duplex Communication Systems. IEEE Trans. Veh. Technol. 2017, 66, 321–334. [Google Scholar]
- Ahmed, E.; Eltawil, A.M.; Sabharwal, A. Self-Interference Cancellation with Nonlinear Distortion Suppression for Full-Duplex Systems. In Proceedings of the 2013 Signals, Systems and Computers (Asilomar) Conference, Pacific Grove, CA, USA, 3–6 November 2013. [Google Scholar]
- Lee, W.; Jeon, J.H.; Park, S.J. Micro-modem for short-range underwater communication systems. In Proceedings of the Ocean, St. John’s, NL, Canada, 14–19 September 2014. [Google Scholar]
- Li, B.; Zhou, S.; Stojanovic, M.; Freitag, L. Pilot-tone based ZP-OFDM demodulation for an underwater acoustic channel. In Proceedings of the Ocean, Boston, MA, USA, 18–21 September 2006. [Google Scholar]
- Stojanovic, M. Low Complexity OFDM Detector for Underwater Acoustic Channels. In Proceedings of the Ocean, Boston, MA, USA, 18–21 September 2006. [Google Scholar]
Parameter | Value |
---|---|
Constellation | QPSK |
Center frequency | 12 kHz |
Bandwidth | 6 kHz |
Number of subcarriers | 1024 |
ADC resolution | 16 bits |
Sample frequency | 48 kHz |
Pilot spacing | 3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, G.; Gan, S.; Liu, S.; Ma, L.; Sun, Z. Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication. Sensors 2018, 18, 1700. https://doi.org/10.3390/s18061700
Qiao G, Gan S, Liu S, Ma L, Sun Z. Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication. Sensors. 2018; 18(6):1700. https://doi.org/10.3390/s18061700
Chicago/Turabian StyleQiao, Gang, Shuwei Gan, Songzuo Liu, Lu Ma, and Zongxin Sun. 2018. "Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication" Sensors 18, no. 6: 1700. https://doi.org/10.3390/s18061700
APA StyleQiao, G., Gan, S., Liu, S., Ma, L., & Sun, Z. (2018). Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication. Sensors, 18(6), 1700. https://doi.org/10.3390/s18061700