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Abstract: Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across
the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance
imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly
expensive and do not support long-term continuous monitoring of patients without disrupting
their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health
monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative
to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring
based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG
provides shallow information on various cardiac activities in the form of electrical impulses only.
Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are
jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory
data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by
mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals.
In addition, separate feature points based novel approach is adopted to distinguish between normal
and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG
and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on
Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects
containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and
abnormal morphology detection methods consistently perform well and give promising results. In
addition, experimental results show that the combined analysis of ECG and SCG signals provide
more reliable cardiac health monitoring compared to the standalone use of ECG and SCG.

Keywords: cardiovascular disease (CVD); electrocardiogram (ECG); seismocardiogram (SCG);
cardiac anomalies

1. Introduction

Recent advancements in sensor technology have made it possible to use low-powered, inexpensive
sensor-based devices to monitor various physiological parameters related to human health such as
heart rate, blood pressure, body temperature etc., [1,2]. Numerous applications are becoming reality in
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the light of wearable sensor technology such as diet monitoring, drug monitoring, activity detection,
cardiac health monitoring, etc. [3]. Among the envisioned applications, designing a robust cardiac
health monitoring system to capture early signs of gradually developing cardiac anomalies using
low-cost wearable body sensors is a growing interest among medical and research communities as it
has serious consequences on human health. According to World Health Organization [4], CVD is the
leading cause of death in people across all age groups. Moreover, the recent report of the American
Heart Association [5] reveals that as high as 30% annual mortality rate is observed due to CVD in
the United States and Canada. Under such circumstances, there is a growing need for a reliable and
low-cost system that potentially aids in robust cardiac health monitoring.

Several cardiac events take place during successive heartbeats such as opening and closing
of the heart valves, blood flow into vessels, contraction–relaxation of ventricular walls, etc. For a
healthy person, cardiac events unfold at regular intervals in a predefined order. However, cardiac
abnormalities such as myocardial ischemia, infarction, arrhythmias, etc., hinder the normal functioning
of cardiac events leading to CVD. Such cardiac abnormalities may result in dizziness, nausea, chest
pain, etc., which may lead to severe consequences such as heart attacks if not detected and taken care
of in an early stage. In many instances, the irregular heartbeats known as ectopic heartbeats appear
intermittently without showing any serious symptoms. Such ectopic heartbeats are becoming quite
common among healthy population and are often getting unnoticed.

Nowadays, several clinical practices are used to monitor the cardiac abnormalities such as ECG,
magnetic resonance imaging (MRI), computerized tomography scan (CT scan), Echocardiography
(Echo), Nuclear myocardial perfusion scan etc., [6]. Among the mentioned clinical practices, ECG is a
well-established and widely adopted practice to monitor physiological activities of the heart. However,
ECG provides shallow information on the functioning of various cardiac events. Moreover, a study
conducted in [7] recommends that sole use of ECG is not reliable for the diagnosis of serious cardiac
abnormalities. On the other hand, MRI, CT scan, and Echo are reliable practices over ECG, but they are
highly expensive, time-consuming, and labor-intensive, which often require expertise to carry out [6].

Different from the aforementioned clinical practices, non-invasive acquisition of cardiac signals
such as seismocardiogram (SCG) and ballistocardiogram (BCG) are also potential low-cost alternatives
to monitor cardiac mechanical activities. SCG is an accelerometer sensor based modality that can record
ultra-low-frequency vibrations of cardiac cycle mechanics along with timings of corresponding cardiac
events [8]. Although BCG and SCG can record cardiac mechanical activities, diagnosis based on them
is still in the premature stage to be considered for clinical practices. However, recent literature [6,8–11]
show growing confidence on the applicability of SCG in clinical practices over BCG. Moreover, SCG is
a noninvasive as well as an inexpensive accelerometer-based cardiac recording method, which can
easily be carried out using wearable sensors. Hence, in this proposal, SCG is explored as an additional
measure along with the ECG to design a robust cardiac health monitoring system.

In past, it was difficult to gather a huge amount of continuous cardiac data such as ECG and SCG
to carry out comprehensive analysis. However, recent advancements in wearable technology have
made it possible to collect cardiac data in an easy and affordable manner via wearable sensors for the
longer duration. Although most cardiac abnormalities often appear only intermittently, they need to
be registered, tracked and analyzed thoroughly as time goes by. This encourages us to design an early
warning system, where continuously generated cardiac data are analyzed thoroughly to capture early
signs of cardiac abnormal behavior.

The rest of the paper is organized as follows. Section 2 describes the related works followed by
motivation and goals of the paper. The system model is presented in Section 3. Cardiological data
analysis is described in Section 4. Performance evaluation is carried out in Section 5. Results and
discussions are made in Section 6. Concluding remarks and future works are discussed in Section 7.
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2. Related Works

In the past, several efforts are made to remotely monitor various physiological parameters of
a user using affordable body sensors in a continuous manner. The LifeGuard [12] is one of the early
efforts that monitors electrocardiogram, heart rate, respiration rate, temperature and blood pressure
to alert the users. The LifeGuard equipped system transfers the health parameters to the base station
via Bluetooth-enabled cell phone and raises the buzzer alarm, whenever abnormalities are observed.
Similarly, in [13], ECG based body networks are proposed that raise an alarm if a heart attack is
detected. However, many times due to bad signal quality or intense physical activities by a user,
systems may raise false alarms under normal circumstances as well. In [14], a false arrhythmia alarm
reduction framework is proposed using machine learning. In [15], ECG-based automatic recognition
of arrhythmias is proposed for the diagnosis of heart diseases. Usually, remote monitoring of a person
becomes a challenging job, if a person is engaged in activities such as motor racing, cycling, car racing
and on field military service. The Smart Helmet is specifically designed to address the aforementioned
challenges and proposes a bio-sensors equipped embedded helmet to monitor ECG and respiration of
a user in an uninterrupted manner [16].

The another recent effort to remotely monitor cardiovascular and respiratory variables is a
mobile healthcare platform PlaIMoS [17]. The conceived PlaIMoS architectural platform typically
deals with data collection, communication, analysis and visualization of various healthcare settings.
In continuously generated large data sets of ECG patterns, it is highly challenging to visualize cardiac
health information aggregated over the period of time. Under such circumstances, easy-to-interpret
visualization facility on cardiac health information is highly desirable to distinguish between healthy
and abnormal cardiac settings. The ECG Clock Generator [18] is an attempt to provide visualization
facility of cardiac activities accumulated over the period of time using ECG patterns.

In addition to ECG, in recent times, seismocardiogram (SCG) signals are also used to monitor the
vital cardiac health parameters. In [19], authors have designed seismocardiography using tri-axial
accelerometer embedded with electrocardiogram. Recently, Di Rienzo et al. [20] have designed
accelerometer sensors based smart garment to record as well as monitor ECG, SCG, and respiratory
variables of an ambulant subject out-of-laboratory setting. SCG also has potential clinical applications
such as real-time heart rate monitoring [21] and left ventricular health monitoring [22] from wearable
SCG measurements.

The raw SCG signals are less informative unless specific peaks are identified and correlated
with underlying cardiac activities. A typical SCG cardiac cycle includes a set of nine relevant peaks,
also called as feature points such as atrial systole AS, closing of mitral valve MC, opening of aortic
valve AO, rapid systolic ejection RE, closing of aortic valve AC, opening of mitral valve MO, rapid
diastolic filling RF, isovolumic movement IM, and isovolumic contraction IC. Various hemodynamic
parameters can be estimated using SCG feature points. For example, in [23] systolic time intervals
such as pre-ejection time (PEP), left ventricle ejection time (LVET), and electromechanical systole (QS2)
are estimated by identifying SCG feature points AO, AC, IM, MO, and MC. Similarly, in [8], cardiac
time intervals PEP, LVET, systolic time (SYS), and diastolic time (DIA) are estimated by identifying
relevant SCG feature points.

In recent years, SCG shows numerous applications in real-time continuous health monitoring.
For example, SCG is employed for the detection of respiratory phases in [9] such as inhale or exhale,
which subsequently enable the estimation of systolic time intervals. In [11], the heart condition
is estimated from the learned morphology of seismocardiography. In [24], SCG based automated
detection of atrial fibrillation is demonstrated. In [25], a comparative study on pulse transit time
measurement using seismocardiography, photoplethysmography and acoustic recordings is carried
out. In [10], a cardiac early warning system using wearable ECG and SCG signals is introduced. In [6],
a multichannel SCG is employed and six location-specific feature points are identified in addition to
nine SCG feature points described previously.
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To the best of our knowledge, the state-of-art recent studies [6,8,23] exclusively focus on
separate or combined annotation of ECG and SCG or focus on the annotation based disease-specific
cardiac function monitoring [9,24]. However, mere annotation of morphologies may not provide the
powerful insight unless the comprehensive theoretical analysis is explored. Since ECG and SCG are
pseudo-accurate in nature, their exclusive usage for the cardiac health monitoring limits the scope of
the improvement. It is known that ECG signals represent only cardiac electrical activities and all heart
problems cannot be detected by analyzing these ECG signals. For example, a common heart disorder
known as angina may not usually appear in routine ECG. In addition, vulnerable plaque deposition,
which is mainly responsible for asymptomatic blockages in heart arteries, is difficult to capture by
ECG and requires detailed investigation and tests. The Seismocardiogram (SCG) can be employed
to complement the ECG as SCG represents the cardiac mechanical activities and provides in-depth
meaningful insights of the mechanical functioning of the heart. However, SCG has also few limitations
such as lack of well studied features to determine the heart conditions such as hypertensive heart
disease. Hence, feature points based beat-by-beat combined analysis of ECG and SCG is expected to
bring additional information to carry out the detail analysis for continuous cardiac health monitoring.
It is likely that joint analysis of ECG and SCG can complement to each other to produce more reliable
outcomes. The combined analysis of ECG and SCG is beneficial as the outcome of each heartbeat is
validated based on the combined knowledge of the cardiac electrical and mechanical activities.

2.1. Motivation and Goals

It is increasingly becoming important to record, monitor and investigate the intermittent cardiac
anomalies those appear due to the unhealthy lifestyle of people leading to CVD. Usually, cardiac
anomalies may occur only intermittently and they go completely unnoticed leading to a sudden death
of a cardiac patient. Moreover, ECG signals of cardiac patients also stay entirely normal on regular
basis except during those intermittent cardiac anomalies. Under such circumstances, it is highly
challenging to foresee potential cardiac health problems in the early stage using traditional in-hospital
ECG based diagnosis.

To capture intermittent cardiac anomalies, various cardiac health parameters need to be recorded
and monitored for the longer duration of time, which can be accomplished via wearable ECG and
SCG sensors. However, raw ECG and SCG signals are less informative unless signals are properly
annotated and thoroughly investigated beat by beat. The manual annotation of feature points is a
tedious, cumbersome and time-consuming process. In addition, the manual annotation is not a viable
approach to design a continuous cardiac health monitoring system. Hence, the computer-assisted
automatic annotation of ECG and SCG is highly essential. Additionally, feature points based cardiac
health monitoring methods are needed to distinguish the morphology of any cardiac cycle between
normal and abnormal. In the proposed study, by use of phrase anomalies, we mean the unusual
morphology of ECG and SCG in terms of uncommon recording of an amplitude of peaks, and duration
of waves, segments, and intervals. It is to be noted that the mere presence of uncommon recordings in
a single cardiac cycle does not mean the cardiac anomalies. For this reason, the set of cardiac cycles is
needed to be monitored to help capture developing trends for the cardiac early warnings.

Since cardiac health monitoring is a very broad area, we limit the scope of our investigation only
to jointly monitor the normal vs. abnormal behavior of cardiac cycles in simultaneous ECG and SCG
recordings. The main objective is to present the viability of joint investigation of ECG and SCG for
long-term cardiac health monitoring. In the future, the study can be extended to accommodate the
urgency of the abnormality. The goals of our study are listed as follows:

1. Design a body sensor network to collect the simultaneous ECG and SCG signals;
2. Design automatic feature point delineation algorithm for annotation of ECG and

SCG signals;
3. Design abnormal morphology detection method for ECG signals;
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4. Design abnormal morphology detection method for SCG signals;
5. Design combined analysis model for ECG and SCG signals.

3. System Model

The architectural view of the proposed ECG and SCG data collection model is shown in Figure 1.
For SCG data collection, an SCG sensing module is placed at a valvular auscultation site called a
Tricuspid valve TV, and ECG data collection is carried out placing an ECG sensing module (e.g.,
electrode) at the right arm as shown in Figure 1. The high quality disposable electrode H135SG
Covidien from Bio-Medical Instruments (Clinton Township, MI, USA) [26] is used as an ECG sensing
module. The accelerometer sensor LIS331DLH from STMicroelectronics (Geneva, Switzerland) [27] is
used as a core component of SCG sensing module. The sensing ability, sensing range and gravitational
force sensitivity of SCG sensing module is set to 0.5 Hz to 1 kHz, +2 g to –2 g, and 1 mg, respectively.
The band pass filter with frequency 0.5 Hz–50 Hz is applied analogically to get the required ECG and
SCG signals at sampling frequency of 1000 Hz. The microcontroller system ADuC7020 from Analog
Devices Inc. (Cambridge, MA, USA) [28] is used for the communication from ECG/SCG sensing
modules to Analog-to-Digital convert (ADC) circuit and the PowerLab 16/35 from AD Instruments
(Dunedin, New Zealand) [29] is used as the synchronous data logger, which further amplifies and
filters the concurrent signals. The class of nonlinear filters also known as filter bank presented in [30]
is employed for the noise reduction and baseline wander removal with minimal signal distortion. It is
reported that the nonlinear filters are expected to perform better than other baseline wander removal
methods such as adaptive filters, moving average filters, etc. [30]

Figure 1. Architectural view of ECG/SCG data collection model.

The SCG signals acquired from Tricuspid valve and lead I ECG signals are used for the combined
analysis. The conventional Tricuspid valve site is chosen as the interventricular septum is located
beneath the Tricuspid valve, which provides more clear signals. During the entire data collection
process, the heart rate is monitored using Finger-clip sensor PAH8001EI-2G [31] and the respiratory
rates are monitored manually to ensure the stability and resting position of the subjects. The data
collection is performed in three sessions per subject with at least 5 min of break between the sessions.
The described data collection procedure is comprehensively verified and approved by Institutional
Review Board (IRB) of the Chang Gung Memorial Hospital (CGMH), Taoyuan, Taiwan with IRB license
number 104-6615B.
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4. Cardiological Data Analysis

In this section, we introduce various feature points of ECG and SCG along with corresponding
values to distinguish between normal and abnormal cardiological data, followed by ECG/SCG based
feature points delineations and cardiac health monitoring methods. The ECG and SCG cardiac
signals with corresponding cardiac electrical and mechanical activities are explained as shown in
Figure 2 using the normal ECG waveform aligned with the normal SCG waveform. The ventricle
depolarization, a cardiac electrical activity that takes place during the QRS complex can be represented
by the corresponding cardiac mechanical activities that take place between atrial systole AS to the
opening of aortic valve AO. Similarly, during the ventricle re-polarization (T wave) of ECG, the cardiac
mechanical activity such as rapid ejection of blood flow RE takes place until the closing of aortic valve
AC. Finally, during the atrial depolarization represented as P wave, cardiac mechanical activity known
as rapid diastolic filling RF can be observed.

Figure 2. Cardiac electrical and mechanical activities.

4.1. Differentiation between Normal and Abnormal ECG Morphology

For a normal and healthy heart, each heartbeat reflects an orderly progression of depolarization
in ECG tracing, which is helpful to know various heart functionalities. As shown in Figure 3a,
the normal ECG cycle is comprised of several cardiac electrical activities known as depolarization
and re-polarization responsible for heart muscular activities. The entire process of depolarization and
re-polarization of a cardiac cycle can be explained as follows. The ECG P wave represents the atrial
depolarization spreads from sinoatrial (SA) node throughout the atria followed by brief period of zero
voltage isoelectric representing delay at atrioventricular (AV) node. The QRS complex represents the
short duration of ventricular depolarization followed by ventricular re-polarization represented by T
wave. The ST segment between QRS complex and T wave represents the brief period of zero voltage
isoelectric, when both ventricles are completely depolarized. To define the normal and abnormal
behavior of depolarization, ECG trace is first divided into a set of heartbeat cycles. Each heartbeat
cycle is again sub-divided into various waves, segments, and interval such as P wave, QRS wave,
T wave, PR segment, ST segment, PR interval, and QT interval. The subdivision of heart beat cycle
into waves, segments, and intervals is performed based on the position and order of the ECG cardiac
feature points P, Q, R, S and T as shown in Figure 3a. In addition, RR interval duration can also be
used as a measure to decide between the normal and abnormal behavior of two consecutive heartbeats.

Table 1 shows the notations used in this paper to represent reference maximum and a minimum
value of waves, segments, and intervals observed in a normal ECG tracing. Cardiac anomalies such as
myocardial infarction, ischemia, sinus arrhythmia, sinus bradycardia, atrial/ventricular fibrillation,
etc., disturb the orderly progression of depolarization, and hence morphology of various waves,
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segments and intervals changes significantly. Figure 3b shows various prominent ECG anomalies.
For example, in ST depression, a line at ST segment significantly bends downward below the isoelectric
line due to stable/unstable angina problem of a patient. On the other hand, in ST elevation, a line at
ST segment bends significantly upward above the isoelectric line due to non-transmural ischemia.
Moreover, bradycardia, characterized by a longer RR interval, can cause symptoms such as dizziness,
fatigue, chest pain etc. Although ECG is widely used to identify various cardiac anomalies, it may lead
to the wrong diagnosis and may falsely indicate the presence of CVD in patients with minor symptoms
of negligible risk to CVD [7]. Hence, it is necessary to correlate the abnormal behaviors observed in
ECG trace with the corresponding SCG trace to ensure the reliable cardiac health monitoring. The
following section describes the process of feature points delineation for ECG and SCG traces.

Figure 3. Example of normal and abnormal ECG morphologies.

Table 1. Notations for set of referenced normal feature values (RFV).

Notation Meaning

∆Xwv Referenced maximum X wave duration
δXwv Referenced minimum X wave duration
∆Yinv Referenced maximum Y interval duration
δYinv Referenced minimum Y interval duration
∆Zseg Referenced maximum Z segment duration
δZseg Referenced minimum Z segment duration
ΩXwv Referenced maximum X wave amplitude
ωPwv Referenced minimum X wave amplitude

Here, X ∈ {P, QRS, T}, Y ∈ {RR, PR, QT}, Z ∈ {PR, ST}.

4.2. Feature Points Delineation Mechanism

In this subsection, we present two separate mechanisms, one for ECG and another for SCG,
to select the corresponding feature points. Five ECG feature points such as P, Q, R, S, and T, and
nine SCG feature points such as AS, MC, IM, AO, IC, RE, AC, MO, and RF are considered. Figure 4
shows an example normal/abnormal ECG trace along with five ECG feature points selected by using
the proposed ECG feature points delineation algorithm. Similarly, Figure 5 shows an example SCG
trace with nine SCG feature points selected by the proposed SCG feature point delineation mechanism.
However, it is expected that the proposed ECG/SCG feature point delineation mechanisms should
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select the corresponding feature points from normal as well as abnormal ECG/SCG traces, it is to note
that cardiac anomalies such as ventricular fibrillation shown in Figure 3b may result in non-detection
of few or all feature points. Here, it is assumed that ECG and SCG traces are collected in the form of
vectors of data points represented as Vecg and Vscg with known sampling rate Sr and mean heart rate Hr.
Each sampled ECG and SCG data point in Vecg and Vscg represents unique amplitude value in terms of
millivolts (mV). All of the local maximum and minimum peaks in ECG/SCG cycles are identified using
second derivatives with slope value zero to measure the corresponding ECG/SCG amplitude. The
measured amplitude represents the sensor value minus the baseline, where the baseline amplitude is
computed as zero voltage of ECG/SCG signal. For feature points’ delineation, both methodologies first
select the feature points in the first cardiac cycle and continue to select the feature points in subsequent
cardiac cycles with a minimum separation distance equivalent to the cardiac cycle length CL between
the same feature points. The sampling rate Sr and mean heart rate Hr are the known input parameters

of the experimental data sets used to estimate the cardiac cycle length represented as CL =
1

Hr
∗ Sr.

In practice, Hr is estimated continuously from the RR interval duration and updated to continuously
estimate the CL.

Figure 4. Feature points delineation in (a) normal ECG cycles; (b) abnormal ECG cycles.

Figure 5. Feature points delineation in (a) normal SCG cycles; (b) abnormal SCG cycles.
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4.2.1. ECG Feature Points Delineation Mechanism

For ECG trace, at first, the feature point R is selected and then after rest feature points Q, R,
S and T are selected with respect to R considering the referenced normal values of various waves,
intervals, and segments as reported in [32,33]. Although normal referenced values may not be the
best indicators to detect the very specific heart diseases, they can act as sufficient estimators under
quite a bit distorted morphologies for the unobtrusive cardiac health monitoring. Normally, feature
point R exhibits high amplitude, which is easy to detect. The process of feature point R detection can
be described as follows. Firstly, a unique peak ζpt exhibiting the maximum amplitude is identified
from all the cardiac cycles under consideration. Later, all the peaks in a cardiac cycle with amplitude
greater than σRpt × ζpt are chosen as candidate R peaks represented as cnRpts. Here, σRpt is a constant
between 0 and 1, which must be determined experimentally. In the current study, the σRpt = 0.7 is
obtained experimentally, which provides consistently superior performance as shown in Figure 6a.
Finally, the peak exhibiting maximum amplitude among cnRpts in a cardiac cycle is designated as
feature point R and is represented by Rpt.

Figure 6. Evaluation of delineation of ECG feature point R and SCG feature point AO.

The feature points’ delineation other than R is a non-trivial process, and therefore feature point
specific range is formulated in such a way that it maximizes the chances of respective feature point
delineation. Four ranges of data points represented as Qrg, Prg, Srg, and Trg are formulated with respect
to the feature point R to select ECG feature points Q, P, S and T, respectively. The range format for
feature points appearing before and after R is formulated as (Rpt −Y, Rpt) and (Rpt, Rpt + (Y + α)),
respectively. Here, Y represents the set of data points equivalent to the normal wave duration of the

corresponding feature point. For example, for feature point Q, Y =
∆QRSwv ∗ Sr

2
. However, to reduce

the estimation error of Y, an error margin constant α is added as a precautionary measure to get
better estimation of feature-point range Y. Here, ∆QRSwv represents the normal time duration of
the QRS wave, and Sr represents the sampling frequency. For each feature point, the corresponding
peak is identified and designated as a feature point based on the minima and maxima characteristic.
For example, the peak representing the feature point Q in ECG normally appears as minima and
therefore the minimum peak from the range is designated as Qpt. A similar process is repeated for
each feature point except R in each ECG cardiac cycle. The entire process in the form of pseudo-code is
given in Algorithm 1.

Besides delineation of ECG feature points, it is also essential to delineate end points of the
waves. The ECG end points of waves can be classified into two sets. The set of onset points
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such as {Ponset, QRSonset, Tonset}, and the set of offset points {Po f f set, QRSo f f set, To f f set} as shown
in Figure 7. In many instances, due to the cardiac abnormalities such as left/right atrial enlargement,
ST elevation/depression, and T point raise, the delineation of end points become difficult. In particular,
the delineation of end points in case of flatten/inverted T waves is painful. Hence, a simple end
point delineation mechanism is incorporated. At first, using the duration of P wave, QRS complex
and T wave observed in normal ECG cycles, the set of onset range {Prg

onset, QRSrg
onset, Trg

onset} and
the set of offset range {Prg

o f f set, QRSrg
o f f set, Trg

o f f set} are derived with respect to the feature points P,
R and T, respectively. Finally, the data point with minimum amplitude value is located within the
range Prg

onset, Trg
onset, Prg

o f f set and Trg
o f f set and annotated with Ponset, Tonset, Po f f set and To f f set, respectively.

Similarly, QRSonset and QRSo f f set are located as the maximum data points within the range QRSrg
onset

and QRSrg
o f f set, respectively.

4.2.2. SCG Feature Points Delineation Mechanism

Similar approach of ECG is adopted while selecting various feature points from the SCG trace,
where, at first, feature point AO is selected and then rest eight feature points AS, MC, IM, IC, RE, AC,
MO, and RF are selected with respect to the position of AO. One of the distinguished properties of SCG
is the unusual high amplitude of feature point AO in SCG morphology as shown in Figure 5, which
makes it easy for the delineation of AO in a cardiac cycle. However, this does not hold true in every
cardiac cycles and is valid under the specific constraints. For example, in a clear SCG morphology of a
healthy subject, AO normally exhibits high amplitude in most cycles with few exceptions. However,
in distorted SCG morphology of an unhealthy subject, the delineation of AO is more complicated and
may give poor results. Similar to selecting R in ECG feature point delineation, maximum amplitude
peak ζpt from the set of cardiac cycles is located first. Then, for each individual cardiac cycle, the set
of candidate AO peaks represented as cnAOpts are located with amplitude more than σAOpt × ζpt.
Here, σAOpt is a user-defined constant between 0 and 1, which can be obtained experimentally. In the
current study, σAOpt = 0.75 is found to give consistently superior performance as shown in Figure
6b. Finally, from the set cnAOpts, a unique peak exhibiting maximum amplitude is designated as SCG
feature point AO represented by AOpt.

SCG morphology is more complex in nature as compared to ECG and therefore it requires
significant efforts to correctly locate the feature points other than AO. Since SCG morphology is not
well studied, the normal representative value of an amplitude of various peaks and duration of waves
are not yet well defined in the literature. Hence, set of training SCG cardiac cycles from the healthy
subjects are used to estimate the distance (i.e., the window size) of various SCG feature points with
respect to AO to formulate feature point specific range. The window size calculated from the training
SCG cycles of healthy population has dual advantages: (1) it helps to estimate the normal window size
for healthy subjects; and (2) it also helps to identify the significantly varying abnormal SCG features
lying outside the normal window size (e.g., outliers), which is observed among non-healthy subjects.
For each SCG feature point, a fixed size range Xrg consisting of probable data points is formulated at the
obtained feature point specific window size SW(X), where X ∈ {AS, MC, IM, IC, RE, AC, MO, RF}.
Finally, based on the morphological maxima or minima characteristic of each feature point, a unique
peak is obtained from the Xrg and is designated as a feature point. For example, for SCG feature
point AS, range ASrg of probable data points for AS at distance SW(AS) is formulated with respect to
AO. Subsequently, the peak with maximum amplitude in the range of ASrg + α is designated as SCG
feature point ASpt. A similar approach is followed for the delineation of all other SCG feature points.
Detailed pseudo code for SCG feature points’ delineation is described in Algorithm 2.
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Algorithm 1: Delineation of ECG feature points.
Input:
Vecg : Vector of ECG data points with amplitude, Sr : ECG data sampling rate,
Hr : Heart rate, RFV : Set of referenced feature values.
Output:
Fecg = {P, Q, R, S, T} : ECG feature point set.
Notations:
ζpt: Maximum amplitude data point,
cnRpts: Candidate R points,
Xrg: Range of points to locate point X, where X ∈ {P, Q, S, T},
α: User defined error margin constant,
σRpt ∈ (0, 1): Constant to detect R points,
Fa

ecg: ECG feature point set for athcardiac cycle.
1 Initialize Fecg = null;
2 Estimate cardiac cycle length: CL = Sr

Hr
;

3 Calculate # of cardiac cycles: CCs = |Vecg |
CL ;

4 Select maximum amplitude data point: ζpt = max(V1
ecg, ..., V

|Vecg |
ecg );

5 for a = 1 to CCs do
6 Initialize Fa

ecg = null;

7 Select candidate R points: cnRpts = (V j
ecg ≥ σRpt ∗ ζpt), ∀j ∈ Vecg;

8 Rpt = max(cnRpts); // Delineation of feature point R.;
9 Fa

ecg = Fa
ecg ∪ Rpt;

10 Qrg =

(
Rpt − (

∆QRSwv ∗ Sr

2
+ α), Rpt

)
;

11 Qpt = min(V j
ecg), ∀j ∈ Qrg; // Delineation of feature point Q.;

12 Fa
ecg = Fa

ecg ∪Qpt;

13 Prg =

(
Rpt − (∆PRinv ∗ Sr + α), Rpt

)
;

14 Ppt = max(V j
ecg), ∀j ∈ Prg; // Delineation of feature point P.;

15 Fa
ecg = Fa

ecg ∪ Ppt;

16 Srg =

(
Rpt, Rpt + (

∆QRSwv ∗ Sr

2
+ α)

)
;

17 Spt = min(V j
ecg), ∀j ∈ Srg; // Delineation of feature point S.;

18 Fa
ecg = Fa

ecg ∪QRSpt;

19 Trg =

(
Rpt, Rpt + (∆QTinv ∗ Sr −

∆QRSwv ∗ Sr

2
+ α)

)
;

20 Tpt = max(V j
ecg), ∀j ∈ Trg; // Delineation of feature point T.;

21 Fa
ecg = Fa

ecg ∪ Tpt;
22 Fecg = Fecg ∪ Fa

ecg;
23 endfor
24 return Fecg ;
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Figure 7. Example of ECG feature points, onset points and offset points.

4.3. Data Analysis Methodology

In this subsection, we present mechanisms to differentiate between normal and abnormal
morphology of ECG and SCG cardiac cycles.

4.3.1. Abnormal ECG Morphology Detection

The cardiac abnormal morphology in ECG trace either appear in the form of significant variation
in amplitude of feature points P, Q, R, S, and T, or appear in the form of significant variation in the
duration of waves i.e., P, QRS, T, segments i.e., ST, PR, and intervals i.e., RR, PR, ST, and QT. In this
paper, the abnormal morphology related to P wave, QRS complex, and T wave is determined with
respect to the referenced amplitude and wave durations as suggested in [32]. It is observed that critical
cardiac anomalies in a patient normally last a little longer and affect multiple consecutive heartbeats.
Therefore, cardiac abnormalities that arise in an individual heartbeat due to occasional uncommon
amplitude and duration are ignored. Instead of monitoring cardiac cycles individually, the group
of cardiac cycles is monitored together such as 5-cycles, 10-cycles, 25-cycles, and 50-cycles, etc. The
purpose of considering the group of cardiac cycles is to ensure that robust cardiac abnormalities are
captured by the system instead of the system being misguided by occasional false abnormalities that
arise due to bad signal quality and external noises.

The cardiac abnormal morphology count is maintained, which is increased each time by one,
whenever amplitude, wave duration, or both vary substantially with respect to their corresponding
reference values. Finally, at the completion of the group of cardiac cycles, a feature point with
a maximum number of cardiac abnormalities is considered as the abnormal feature point. The
pseudo-code for abnormal morphology detection in ECG trace for the group of k-cycles is shown in
Algorithm 3, where k is a user-defined constant. Here, it is assumed that ECG signals are available in
the form of vector Vi

ecg, where i = {1, 2, ..., |Vecg|} represents set of data points sampled with sampling
rate Sr.
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Algorithm 2: Delineation of SCG feature points.
Input:
Vscg : Vector of SCG data points with amplitude, Sr : SCG data sampling rate, Hr : Heart rate.
Output:
Fscg = {AS, MC, IM, AO, IC, RE, AC, MO, RF} : SCG feature point set.;
Notations:
ζpt: Maximum amplitude data point, cnAOpts: Candidate AO points, Xrg: Range of points to
locate point X, where X ∈ {AS, MC, IM, IC, RE, AC, MO, RF},
SW(X) = Range of probable data points in sliding window of SCG feature point X,
Φ: Set of manually annotated normal training SCG cycles, α: User defined error margin
constant, σAOpt ∈ (0, 1): Constant to detect AO points, Fa

scg: SCG feature point set for
athcardiac cycle.

1 Initialize Φ as training data set ;
2 Estimate SW(X) with respect to AO for each training cycle in Φ ;
3 Initialize Fscg = null;
4 Estimate cardiac cycle length: CL = Sr

Hr
;

5 Calculate # of cardiac cycles: CCs = |Vscg |
CL ;

6 Select maximum amplitude data point: ζpt = max(V1
scg, ..., V

|Vscg |
scg );

7 for a = 1 to CCs do
8 Initialize Fa

scg = null;

9 Select candidate AO points: cnAOpts = (V j
scg ≥ σAOpt ∗ ζpt), ∀j ∈ Vscg;

10 AOpt = max(cnAOpts); // Delineation of feature point AO.;
11 Fa

scg = Fa
scg ∪ AOpt;

12 endfor
13 Load SCG testing dataset Vscg ;
14 for a = 1 to CCs do
15 foreach AO− AO duration do
16 Initialize Fa

scg = null;
17 ASrg = SW(AS)± α ;

18 ASpt = max(V j
scg), ∀j ∈ ASrg // Delineation of feature point AS.;

19 MCrg = SW(MC)± α ;

20 MCpt = max(V j
scg), ∀j ∈ MCrg // Delineation of feature point MC.;

21 IMrg = SW(IM)± α ;

22 IMpt = min(V j
scg), ∀j ∈ IMrg // Delineation of feature point IM.;

23 ICrg = SW(IC)± α ;

24 ICpt = min(V j
scg), ∀j ∈ ICrg // Delineation of feature point IC.;

25 RErg = SW(RE)± α ;

26 REpt = max(V j
scg), ∀j ∈ RErg // Delineation of feature point RE.;

27 ACrg = SW(AC)± α ;

28 ACpt = max(V j
scg), ∀j ∈ ACrg // Delineation of feature point AC.;

29 MOrg = SW(MO)± α ;

30 MOpt = min(V j
scg), ∀j ∈ MOrg // Delineation of feature point MO.;

31 RFrg = SW(RF)± α ;

32 RFpt = max(V j
scg), ∀j ∈ RFrg // Delineation of feature point RF.;

33 Fa
scg = Fa

scg ∪ ASpt ∪MCpt ∪ IMpt ∪ ICpt ∪ REpt ∪ ACpt ∪MOpt ∪ RFpt;
34 end
35 Fscg = Fscg ∪ Fa

scg;
36 endfor
37 return Fscg ;
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Algorithm 3: Abnormal ECG morphology detection
Input:
Vecg : Vector of ECG data points with amplitude, Sr : ECG data sampling rate,
Hr : Heart rate, RFV : Set of referenced feature values, k : User defined constant to group
k-cycles.
Output: Detection of abnormal morphologies
Notations:
θXwv: Measured amplitude of X wave,
ψXwv: Measured duration of X wave,
cXwv: Counter for X wave abnormal morphologies, where X ∈ {P, QRS, T},
cRRinv: Counter for RR interval abnormal morphologies,
ψRRinv: Measured duration of RR interval.

1 Initialize k;
2 Initialize cPwv = cQRSwv = cTwv = cRRinv = 0;
3 Estimate Cardiac cycle Length: CL = Sr

Hr
;

4 Calculate # of cardiac cycles: CCs = |Vecg |
CL ;

5 for i = 1 to CCs− k + 1 do
6 j=i;
7 while j ≤ (i + k) do
8 if (θPwv > ΩPwv) ∨ (θPwv < ωPwv) ∨ (ψPwv > ∆Pwv) ∨ (ψPwv < δPwv) then
9 cPwv = cPwv + 1; // P wave abnormal morphology detection

10 end
11 ;
12 if (θQRSwv > ΩQRSwv) ∨ (θQRSwv < ωQRSwv) ∨ (ψQRSwv >

∆QRSwv) ∨ (ψQRSwv < δPwv) then
13 cQRSwv = cQRSwv + 1; // QRS wave abnormal morphology detection;
14 end
15 if (θTwv > ΩTwv) ∨ (θTwv < ωTwv) ∨ (ψTwv > ∆Twv) ∨ (ψTwv < δTwv) then
16 cTwv = cTwv + 1; // T wave abnormal morphology detection;
17 end
18 if (ψRRinv > ∆RRinv) ∨ (ψRRinv < δRRinv) then
19 cRRinv = cRRinv + 1; // RRinv interval abnormal morphology detection;
20 end
21 end
22 endfor

At first, from the past studies [32,33], a set of reference values RFV is formulated. The RFV
consists of reference normal values corresponding to an amplitude of feature points and duration
of waves, segments, and intervals. The set RFV represents the reference normal values within two
standard deviations from the mean with percentile range of 2% through 98% of healthy subjects.
Table 1 defines the notations that are used to represent the reference values used in Algorithm 3.
Vi

ecg, Sr, Hr, and a set RFV are considered as input to Algorithm 3 to detect the cardiac abnormal
cycles in ECG trace. In each cardiac cycle, the current measured value of amplitude, wave, segment,
and interval duration of each feature point is compared with the corresponding reference normal
values. As shown in Algorithm 3, in cardiac abnormality detection of P, the current measured value of
amplitude θPwv and wave duration ψPwv are compared with the reference minimum and maximum
value of amplitude (i.e., ΩPwv and ωPwv) and wave duration (i.e., ∆Pwv and δPwv), respectively. The P
wave cardiac abnormal morphology counter cPwv is maintained, which is increased by one in each
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time, either measured amplitude θPwv or wave duration ψPwv lies outside the reference normal values.
The similar approach is followed to detect the abnormal morphology of QRSwv, Twv and RRinv.

4.3.2. Abnormal SCG Morphology Detection

As far as our knowledge is concerned, there exists no well-studied method to detect the abnormal
morphology of SCG cardiac cycles. The existing literature mainly focuses on the delineation of
SCG feature points [6,8,23] or focuses on the applicability of SCG in the diagnosis of cardiac health
problems [20,23–25]. In this subsection, a process to identify abnormal morphologies in an SCG cardiac
cycle is described. Since SCG is employed as an additional measure to complement the performance
of ECG based monitoring, the SCG feature points’ delineation and designing of feature-variables
are made independent from the ECG to avoid any sorts of performance influence on SCG. Six SCG
feature variables are designed to detect morphological abnormalities in SCG cardiac cycles such as
ΠMC,AO, ΠAO,AC, ΠMC,MO, ΠAC,MO, ΠRBE, and ΠRBF. These six SCG feature-variables represent the
duration of various cardiac mechanical activities that take place in a cardiac cycle. The notation of
SCG feature-variables along with their corresponding cardiac mechanical activities are described in
Table 2. Due to the sensitive nature of SCG accelerometer sensors, the amplitude behavior of various
SCG feature points is observed highly fluctuating. Therefore, the only parameter considered important
to design SCG feature-variables is the duration of cardiac mechanical activities ignoring the amplitude
parameter. In this paper, an SCG cardiac mechanical activity is considered abnormal, whenever
significant variation is observed in the duration of corresponding SCG feature-variable with respect to
the normal duration. Figure 8 shows the derivation of SCG feature-variables from the SCG signal.

Table 2. Notation of SCG feature-variables.

Notation Meaning

ΠMC,AO Time Duration from closing of mitral to opening
of aortic.

ΠAO,AC Time duration between opening and closing of
aortic.

ΠMC,MO Time duration between closing and opening of
mitral.

ΠAC,MO Time duration from closing of aortic to opening
of mitral.

ΠRBE Time duration of ventricle blood ejection.
ΠRBF Time duration of diastolic blood filling.

FVscg = {ΠMC,AO, ΠAO,AC , ΠMC,MO, ΠAC,MO, ΠRBE, ΠRBF}.

Figure 8. Feature-variables derived from SCG Tricuspid valve site.
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In contrast to ECG, SCG does not have predefined referenced values to detect the abnormal
behavior of feature-variables. Therefore, the reference value of each SCG feature-variable is first
estimated from η number of initial SCG cardiac cycles from a set of five subjects. It is to be noted
that the estimation of SCG reference values is the mean representation of five subjects. For a given
subject and heart rate, these reference time intervals are first normalized and then the customized
subject-specific set of reference time intervals is obtained. Later, the estimated value of feature-variables
is used to measure the significant variation of feature-variables for a given subject. Here, η can be
defined experimentally and it varies from one data set to another. The smaller the value of η, the more
premature the estimation is observed and the higher the value of η, the more error propagation is
observed. Hence, a trade-off needs to be balanced for optimum estimation of η. In this paper, the value
of η is kept to 20 cardiac cycles, which consistently performs better to estimate the feature-variables
with reasonable accuracy. The first η number of cardiac cycles is considered as an estimation phase,
during which a cardiac abnormality detection process is not initiated; rather, duration of various
feature-variables is estimated.

In the estimation phase, time series analysis of data is performed to smoothen out short-term
fluctuations and to capture the long-term trend of feature-variables. Moreover, behavioral changes
such as respirations and body movements are also accommodated in time-series signal analysis by
assigning weights to the cardiac cycles in the decreasing order. The weighted moving average duration
WavgDi and weighted moving standard deviation duration WstdDi are calculated for each individual
feature-variable-i, where i ∈ FVscg. At the end of the η number of cardiac cycles, the value of WavgDi
and WstdDi are used as the decision values to detect the cardiac abnormalities in the duration of
feature-variables in subsequent cardiac cycles.

In estimation phase, WavgDk
i is calculated using Equation (1) and WstdDk

i is calculated using
Equations (2) and (3) for η number of cardiac cycles, where i represents the ith feature-variable and k
represents the kth cardiac cycle. Here, Dk

i represents the measured time duration of ith feature-variable
in kth cardiac cycle, where i ∈ FVscg:

WavgDk
i =



Dk
i , i f k < η,

∑
η
k=1 k× Dk

i

∑
η
k=1 k

, i f k = η,

WavgDk−1
i +

η

∑
η
j=1 j

(Dk
i −WavgDk−1

i ), i f k > η.

(1)

To calculate WstdDk
i , continuous variance Sk

i is first calculated using Equation (2). The method to
calculate Sk

i is inspired from B. P. Welford’s method [34], which is an accurate and guaranteed way to
generate the non-negative variance under floating point calculations:

Sk
i =



0, i f k = 1,

1

∑
η
k=1 k

∑
η
k=1

(
k× (Dk

i )
2 −WavgDk

i

)
, i f k = η,

Sk−1
i + k× (Dk

i −WavgDk−1
i ) ∗ (Dk

i −WavgDk
i ), i f k > η.

(2)

From variance Sk
i , weighted moving standard deviation duration WstdDk

i is calculated as shown
in Equation (3):
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WstdDk
i =

√
Sk

i
(k− 1)

f or k > η. (3)

Once the estimation phase is concluded and decision values WavgDk
i and WstdDk

i are obtained,
evaluation phase is initiated. During each cycle in the evaluation phase, the value of each feature-variable
Dk

i , where i ∈ FVscg and k > η is inspected against the range (WavgDk
i +WstdDk

i , WavgDk
i −WstdDk

i )

of corresponding feature-variable. If value of any feature-variable Dk
i is found lying outside the range

(WavgDk
i + WstdDk

i , WavgDk
i −WstdDk

i ), then the corresponding feature-variable is considered as
potential outlier and it is marked as abnormal. Since the distribution of value of feature-variables
with respect to the mean of corresponding feature-variable can be considered as Gaussian distribution,
we used Chauvenet’s criterion [35] to identify outliers in each cycle of the evaluation phase. In order
to identify the outliers, deviation devDi and tolerance tolDi for each feature variable-i is calculated
using Equations (4) and (5), respectively:

devDi =

∣∣∣∣Dk
i −WavgDk−1

i

∣∣∣∣
WstdDk−1

i

f or η ≤ k ≤ CCs, (4)

tolDi =

∣∣∣∣NORM.S.INV(
1

4 ∗ k
).
∣∣∣∣ f or η ≤ k ≤ CCs. (5)

Here, NORM.S.INV indicates the inverse of standard normal cumulative distribution and CCs
represents the total number of cardiac cycles. According to the empirical rule of statistics, in Gaussian
distribution, 95% of data lies within two standard deviations from the mean and hence as per the
thumb rule, one should consider no more than 5% of data as outliers. Hence, the value of tolerance
tolDi is calculated in such a way that for those feature-variables whose duration value deviates more
than two standard deviations from the mean of the corresponding feature variable is considered
as outliers.

4.4. Combined Analysis of ECG and SCG Signals

Once the detection of the various types of abnormal morphologies is concluded from ECG
and SCG signals. The next step is to ascertain that the cardiac cycle under consideration is indeed
abnormal. Since, mere the detection of abnormal morphologies does not mean the abnormal behavior
of the cardiac cycle, a Naïve Bayes probabilistic model is designed to know how likely the cardiac
cycle under consideration is to be abnormal. For the probabilistic model design, ECG feature set
consisting of seven features is used, which is represented as FVecg = {ΘXwv, ψXwv, ψRRinv}. Here,
X ∈ {P, QRS, T}, and Θ and ψ represents measured wave amplitude, and duration, respectively.
Similarly, SCG feature set consisting of six features is used, which is represented as FVscg =

{ΠMC,AO, ΠAO,AC, ΠMC,MO, ΠAC,MO, ΠRBE, ΠRBF}.
The conditional Naïve Bayes probability model is designed to classify each cardiac cycle into

class normal or abnormal. Let us say that for the kth ECG cardiac cycle with feature set FVk
ecg =

{ΘXk
wv, ψXk

wv, ψRRk
inv}, the conditional probability for a cardiac cycle to be normal or abnormal can be

defined as shown in Equation (6):

p(ϕl |FVk
ecg) =

p(ϕl)× p(FVk
ecg|ϕl)

p(FVk
ecg)

, where l ∈ {1, 2}. (6)

Here, ϕl=1 and ϕl=2 represents output class normal and abnormal, respectively. The p(ϕl=1|FVk
ecg)

and p(ϕl=2|FVk
ecg) represents the probability of kth cardiac cycle to be normal and abnormal,
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respectively, for a given ECG feature set FVk
ecg. The p(ϕl |FVk

ecg) can be rewritten as shown in
Equation (7):

p(ϕl |FVk
ecg) = p(ϕl |ΘXk

wv, ψXk
wv, ψRRk

inv). (7)

Under the Naïve Bayes conditional independence assumption, each feature xi ∈ FVk
ecg is assumed

conditionally independent to every other features xj ∈ FVk
ecg for j 6= i. Hence, Equation (7) can be

simplified as follows:

p(ϕl |ΘXk
wv, ψXk

wv, ψRRk
inv) ∝ p(ϕl , ΘXk

wv, ψXk
wv, ψRRk

inv)

∝ p(ϕl)× p(ΘXk
wv|ϕl)× p(ψXk

wv|ϕl)× p(ψRRk
inv|ϕl)

∝ p(ϕl)×
i=6

∏
i=1

p(xi|ϕl), where xi ∈ FVk
ecg

= Ξ× p(ϕl)×
i=6

∏
i=1

p(xi|ϕl), Here, Ξ is a constant. (8)

The Naïve Bayes conditional probability model defined in Equation (8) can be transformed into
classifier using the maximum a posteriori decision rule as follows:

Γecg = arg max
l∈{1,2}

p(ϕl)×
i=6

∏
i=1

p(xi|ϕl), where xi ∈ FVk
ecg. (9)

Similarly, the Naïve Bayes conditional probability classifier as shown in Equation (10) can be
constructed for SCG using a set of seven SCG features:

Γscg = arg max
l∈{1,2}

p(ϕl)×
i=7

∏
i=1

p(yi|ϕl), where yi ∈ FVk
scg. (10)

Here, Γecg and Γscg is assigned with class label ϕl for some l based on the maximum a posteriori
probability. Using the probabilistic outcome of Γecg and Γscg, each ECG and SCG cardiac cycle is
marked as normal (i.e., binary ’0’) or abnormal (i.e., binary ’1’):

Joutcome = CCk
ecg ∧ CCk

scg, (11)

CAI =
# o f abnormal CCs in a group

Total # o f CCs in a group
. (12)

As mentioned in earlier sections, abnormalities in ECG cycles do not necessarily indicate the
underlying abnormal cardiac activities and therefore we look for the abnormalities in corresponding
SCG cardiac cycles as well. For an ECG and corresponding SCG cardiac cycle, if only one of them is
detected abnormal (e.g., binary ’1’) by proposed Naïve Bayes probabilistic classifier, then a conclusion
is drawn that the cardiac cycle under consideration is more likely to be normal in nature (e.g., binary
’0’) and observed abnormal morphology in either ECG or SCG cardiac cycle is due to the external
reasons such as noise. However, if both ECG as well as corresponding SCG cardiac cycles are
simultaneously detected with abnormal morphology, then a conclusion is drawn that the cardiac
cycle under consideration is indeed abnormal. Equation (11) acts as an additional measure to generate
reliable outcomes in the presence of signal artifacts. For example, if one of the modalities (let us say
ECG) outputs the abnormal cardiac cycle (e.g., binary 1) due to external signal artifacts, and the other
one (let us say SCG) outputs as entirely normal (e.g., binary 0), then the concerned cardiac cycle is
treated as normal ( e.g., 1 ∧ 0 = 0) to reduce the false positives and to avoid the mis-interpretation of
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results. The outcome of the combined analysis of ECG and SCG cardiac cycle can be calculated as
shown in Equation (11). Here, CCk

ecg and CCk
scg represent individual outcomes of kth cardiac cycle of

ECG and SCG, respectively. The Joutcome represents the combined outcome. In addition, Table 3 shows
all possibilities that arise in Equation (11). A new parameter called Cardiac Abnormality Index (CAI)
is defined to represent the intensity of cardiac abnormal behavior. The CAI is defined as the number of
abnormal cardiac cycles out of the total number of cardiac cycles in a group as shown in Equation (12).
The higher the value of CAI, the higher the risk of CVD and vice versa. If CAI increases gradually
over the period of time and crosses the predefined threshold value δ, an alert warning may be issued
to the user to consult the cardiologist. It is to note that the value of δ can be determined in consultation
with the cardiologists.

Table 3. Combined analysis outcomes of ECG and SCG cardiac cycles.

CCk
ecg CCk

scg Joutcome

0 0 0
0 1 0
1 0 0
1 1 1

Here, 0 = normal, 1 = abnormal.

5. Performance Evaluation

In this section, first, we describe the methodology that we have adopted to evaluate the
performance of proposed ECG and SCG feature point delineation mechanisms followed by
corresponding results. Since our proposed combined cardiac anomaly detection mechanism is based on
the investigation of various feature points of ECG and SCG signals, first we need to verify the accuracy
of the proposed ECG and SCG feature point delineation mechanisms. Performance evaluation is carried
out on 12,000 cardiac cycles of ECG and SCG collected from three normal (N) and two abnormal (AN)
real subjects using our IRB license as described in Section 2.1.

5.1. Demographic Information

For each subject, an individual data file comprised of ECG and SCG signals in the form of sampled
data points is generated as an output as part of data collection process. Total 20 subjects are recruited for
the data collection purpose with an equal number of male and female subjects, i.e., 10 subjects per gender.
The demographic information of the subjects is summarized in Table 4. The average age of the subjects
is 24.45 years and the age ranges from 21 through 30 years. The data collection for all the subjects is
carried out in supine posture as presented in Figure 1. Out of 20 subjects, 12 subjects are found as
normal and eight subjects are considered as abnormal due to their sedentary lifestyle. The average
height, weight, and BMI (Body Mass Index) of subjects is 1.52 (m), 59 (kg) and 22.9, respectively. In
addition, Table 4 shows an example of value of amplitude in mV out of thousands/millions of mV
measurements for the reference purpose only. The inclusion criteria are presumably healthy adult
subjects with no known cardiac conditions, equal number of male and female subjects with age ≥ 18;
whereas the exclusion criteria are the inability to provide written consents, sample size less than 20
subjects. For each subject, data collection is carried out for total 15 min consisting of three sessions of
5 min each with 5 min of a break between the successive sessions. It is to be noted that the entire data
collection process is thoroughly verified by approved by an ethical committee of Institution Review
Board (IRB) of Gung Memorial Hospital (CGMH), Taiwan with IRB license number 104-6615B.

All of the 20 subjects are chosen for experiment purposes. Since manual annotation is a highly
laborious process, we present results based on the case study of 20 subjects. However, without losing
the generality, it is to be noted that 12,000 cardiac cycles in total are considered from the selected
subjects for joint investigation, which are statistically sufficient enough to interpret the trend and to
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draw a conclusion. The sample traces are prepared by extracting 10 min of ECG and SCG recording
from the total available recording of 15 min for each subject. During data collection, the signals are
obtained from each subject in three intervals of 5 min each. Out of three intervals, the first two intervals
of 5 min are taken for data analysis purpose. Since a big enough number of cardiac cycles are obtained
from 10 min of recording, the analysis is carried out on two sets of 5 min recordings only. Table 5
presents the observed number of cardiac cycles (OCCs) of five subjects for reference purposes.

Table 4. Demographic information of the subjects.

Subject No. Gender Age Height Weight BMI Posture Lifestyle ECG SCG Tricuspid
(m) (Kg) (mV) (mV)

1 Female 28 1.69 66 23.1 Supine Healthy 0.33 −4.98
2 Male 24 1.8 78 24.1 Supine Sedentary 0.62 −6.49
3 Female 27 1.66 57 20.7 Supine Healthy 0.22 −8.63
... ... ... ... ... ... ... ... ... ...
20 Male 23 1.71 62 21.2 Supine Healthy 0.23 −1.08

Table 5. Sample ECG and SCG trace of five subjects with observed number of cardiac cycles (OCCs).

Type Subject No OCCs

N Subject-1 (A1) 825
N Subject-2 (A2) 638
N Subject-3 (A3) 712

AN Subject-4 (A4) 541
AN Subject-5 (A5) 527

N = Normal, AN = Abnormal.

5.2. Performance Metrics and Outputs

In order to investigate the effectiveness of the proposed automatic ECG and SCG feature points
mechanisms, first we need to generate reliable ECG and SCG reference feature points. To comply with
the scientific evidence and for the rigorous and reliable evaluation, a laborious manual annotation
approach is adopted. A cardiologist is involved in the study to generate the highly reliable reference
feature points. In the case of conflicted opinions among the annotators, the feature points are
either accepted or rejected based on the majority opinions (i.e., 2 out 3). To confirm the reliability
of manual annotation, the Kohen’s kappa coefficient (κ) is calculated to statistically measure the
inter-annotator agreement. The high value of κ = 0.73 shows the substantial agreement. The manually
annotated feature points are considered as candidate feature points represented as ManFeaturePts.
These ManFeaturePts act as a reference and are compared with feature points selected by proposed
mechanisms. The same sample traces are considered as input and processed using proposed ECG and
SCG feature points delineation mechanisms for automatic annotation. Popular evaluation methods
are used such as Precision, Recall and F−measure for performance evaluation purpose, as defined in
Equations (13)–(15), respectively. Here, parameter ManFeaturePts represents the set of feature points
that are manually annotated by expert cardiologists and parameter AutoFeaturePts represents the set
of feature points that are automatically annotated by the proposed mechanisms. It is to be noted that
the SCG signals are obtained from the Tricuspid valve site. Although the morphology of SCG signals
obtained from different sites slightly varies from each other, the number of feature points, i.e., nine in a
cardiac cycle remains same. The minor morphology specific changes in algorithms may ensure the
similar results of feature point delineation and abnormality detection for a given patient:

Precision =
|{ManFeaturePts} ∩ {AutoFeaturePts}|

|{AutoFeaturePts}| , (13)
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Recall =
|{ManFeaturePts} ∩ {AutoFeaturePts}|

|{ManFeaturePts}| , (14)

F−measure = 2 ∗ Precision ∗ Recall
Precision + Recall

. (15)

The resultant outputs of the ECG feature point delineation mechanism are summarized in
Tables 6 and 8, whereas the resultant outputs of SCG feature points delineation mechanism are
summarized in Tables 7 and 9. Table 6 reports the total number of automatic feature points along with
the corresponding total number of manual feature points for the ECG trace. Similarly, Table 7 reports
the total number of automatic feature points with the corresponding total number of manual feature
points of the SCG trace for different subjects. For each subject, the evaluation parameters Precision,
Recall and F−measure are calculated separately for both ECG and SCG modalities using the output
data reported in Tables 6 and 7, respectively. In addition, Table 8 reports the mean error (ms) between
the automatic and manual ECG feature points delineation along with onset and offset of waves in
terms of mean± SD, whereas Table 9 reports the mean error (ms) between the automatic and manual
SCG feature points delineation in terms of mean± SD. From Table 8, it is observed that the mean error
for the set of onset {Ponset, QRSonset, Tonset} and offset points {Po f f set, QRSo f f set, To f f set} is marginally
more compared to that of other peaks {P, Q, R, S, T}. Tables 8 and 9 show that the feature point R and
AO has the least mean delineation error, respectively.

Table 6. Sample result of ECG feature point delineation mechanisms.

ECG Feature Points
Subjects (A) Total # of Automatic Feature Points Total # of Manual Feature Points

P Q R S T Total P Q R S T Total

A1 863 839 836 835 823 4196 819 822 825 821 818 4105
A2 666 649 640 653 629 3237 631 627 630 626 621 3135
A3 701 721 715 740 719 3602 708 710 712 709 711 3550
A4 609 608 589 616 609 3031 497 503 478 523 481 2482
A5 568 593 561 593 596 2911 489 490 493 529 510 2511

Table 7. Sample result of SCG feature point delineation mechanisms.

SCG Feature Points
A Total # of Automatic Feature Points Total # of Manual Feature Points

AS MC IM AO IC RE AC MO RF Total AS MC IM AO IC RE AC MO RF Total

A1 859 874 862 851 847 845 839 840 841 7658 791 786 779 816 793 787 811 809 801 7173
A2 668 653 648 642 651 659 666 653 663 5903 599 580 597 621 608 597 594 609 612 5417
A3 751 746 742 728 748 742 758 765 754 6734 667 691 681 703 667 661 670 659 680 6079
A4 600 611 595 581 577 598 603 581 590 5336 583 590 599 610 621 597 610 598 611 5419
A5 498 519 496 502 483 490 481 500 502 4471 455 519 501 481 452 493 481 477 468 4327

Table 8. The mean error (ms) between automatic and manual ECG feature points’ delineation.

b P Q R S T Ponset Pof f set QRSonset QRSof f set Tonset Tof f set

mean 1.4 2.7 0.6 1.1 1.7 2.4 2.1 2.3 2.0 2.5 2.8
± SD 2.1 1.8 1.0 1.3 0.9 1.4 1.1 1.6 1.5 1.7 2.1
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Table 9. The mean error (ms) between automatic and manual SCG feature points’ delineation.

SCG Feature Point AS MC IM AO IC RE AC MO RF

mean 1.04 1.41 1.78 0.37 1.49 1.22 1.30 1.34 1.10
± SD 0.7 0.5 0.8 0.7 0.6 0.8 0.4 0.7 0.6

The Precision indicates the fraction of selected feature points that are relevant. In other words,
Precision is a measure of result relevancy, i.e., accuracy and it describes the ability of the algorithm to
select the relevant, i.e., correct feature points. The higher the value of Precision indicates the low false
positive rate FPR. On the other hand, Recall indicates the fraction of correct feature points that are
retrieved. The Recall shows the ability of the algorithm to return the positive results. The higher the
value of Recall indicates the low false negative rate FNR. Finally, the F−measure is a single value
performance indicator, which represents the harmonic mean of the Precision and the Recall. The higher
the value of F−measure indicates the better accuracy of the algorithm.

Performance evaluation results of ECG and SCG feature points delineation mechanisms are
shown in Table 10. From the performance results, it is clear that the proposed feature point delineation
algorithm of ECG marginally performs better as indicated by better outcome of the average Precision,
Recall and F−measure values. The results of the proposed SCG feature point delineation algorithm
also show the efficient annotation as indicated by average Precision, Recall and F − measure value.
It is to be noted that the ECG and the SCG feature point delineation mechanisms perform better for the
normal subjects as compared to the abnormal one. There are varieties of reasons behind the reduced
value of F−measure for the abnormal subjects such as missing feature points, abnormal morphology,
overlapping of waves, etc. In addition to the aforementioned reasons, the presence of external human
vibrations (noise) recorded by sensors also negatively contribute the results. The F−measure value for
SCG modality can be improved marginally by pre-processing the SCG traces using the data smoothing
techniques such as simple moving average, weighted moving average, etc.

Table 10. Performance evaluation of ECG and SCG feature points delineation mechanisms considering
all 20 subjects.

For ECG For SCG
A Precision Recall F-measure Precision Recall F-measure

A1 0.978 0.995 0.986 0.936 0.966 0.951
A2 0.968 0.982 0.975 0.917 0.943 0.93
A3 0.985 0.997 0.99 0.902 0.948 0.925
A4 0.819 0.917 0.87 0.84 0.92 0.88
A5 0.86 0.95 0.91 0.80 0.91 0.85
... ... ... ... ... ... ...
A20 0.925 0.87 0.90 0.84 0.87 0.85
Avg 0.90 0.814 0.854 0.79 0.84 0.82

In the proposed ECG and SCG feature point delineation mechanisms, firstly, feature point R and
AO is selected, respectively, in each cardiac cycle. The rest of the feature points are selected with
respect to R in the case of ECG and AO in the case of SCG. Hence, the performance evaluation of
R and AO is carried out under different values of threshold for σRpt and σAOpt, respectively. The
receiver operating curve (ROC) is obtained from the true positive rate (TPR) and false positive rate
(FPR) of the ECG and SCG feature point delineation mechanisms in selecting R and AO, respectively.
Figure 6a,b presents the output of ROC analysis for evaluation of R and AO under various threshold
limits of σRpt and σAOpt, respectively. In ROC analysis, the diagonal line shown as dotted black
line in Figure 6a,b represents the random guess, and an area below the diagonal line represents the
poor performance of the algorithm. The larger the area covered under the ROC curve, the better the



Sensors 2018, 18, 379 23 of 28

performance of the algorithm. It can be seen from Figure 6a,b that the performance of delineation of
feature point R and AO is at a maximum for σRpt = 0.7 and σAOpt = 0.75, respectively.

6. Results and Discussion

We have experimented with ECG/SCG traces of three normal and two abnormal subjects.
The experiments are performed considering cardiac cycles in the group of 5-cycles, 10-cycles, 25-cycles
and 50-cycles to verify the effectiveness of CAI. Based on our observations, CAI performs effectively
well for the small sized group of cycles such as 5-cycles and 10-cycles for patients having chronic
heart disease. In patients with chronic heart disease, abnormal cardiac cycles appear more frequently
and the distance between two abnormal cardiac cycles is expected to be less as shown in Figure 9b,c.
However, the effectiveness of CAI decreases drastically for small sized groups of cycles, in patients
with occasional heart problems. In the case of occasional heart problems, it is less likely that an
abnormal cardiac cycle appears frequently and together. Hence, most small sized groups of cardiac
cycles output lower CAI leading to conclude that patient is normal, which is misleading. On the other
hand, increasing the group size to 100-cycles and 200-cycles keeps the ratio of the number of abnormal
cycles to the total number of cycles in a group very small, which also indicates the normal functioning
of heart leading to the wrong diagnosis. Hence, in order to balance the effectiveness of CAI between
the small sized groups and large sized groups, we experimented with medium sized groups such as
25-cycles and 50-cycles.

Figure 9. Combined evaluation of ECG and SCG signals using set of five cardiac cycles.

The sample output of combined cardiac anomaly detection for ECG and SCG considering the
group of five cycles is shown in Figure 9. Three separate cases i.e., two for the normal subjects and one
for an abnormal subject are shown for the group size of 5-cycles each. The first case for the normal
subject is shown in Figure 9a, which shows the normal morphology detection in ECG as well as SCG
cycles (CAI = 0) and therefore we may conclude that there are no cardiac abnormalities in patient’s
heart functioning, and he/she can be considered as normal. The second case for the normal subject
is shown in Figure 9b, where two out of five ECG cardiac cycles are detected abnormal, one due to
R amplitude abnormality and another due to P amplitude abnormality with CAI = 0.4. However,
the corresponding SCG cardiac cycles show no abnormalities with CAI = 0 and therefore we may
conclude that detection of abnormalities in ECG might be due to external noises. The third case for
an abnormal subject is shown in Figure 9c, which shows the abnormal functioning of heart since all
of the five ECG, as well as SCG cardiac cycles, have been recorded abnormal with CAI = 1. Here,
for ECG, the amplitude of R shows the significantly abnormal behavior in each cardiac cycle leading
to the abnormality detection. On the other hand, corresponding SCG cardiac cycles also recorded as
abnormal. Since cardiac cycles of both traces have simultaneously resulted in abnormal behavior, we



Sensors 2018, 18, 379 24 of 28

may conclude that the patient has serious heart malfunctioning and he/she should immediately take
the advice of cardiac experts.

The same experiments are repeated with the same set of input data considering the group sizes of
10-cycles, 25-cycles, 50-cycles, and 200-cycles. The experimental results for the group size of 10-cycles
for normal subjects are shown in Figure 10, which shows the lower CAI values 0.1 and 0.2. In addition,
we have also recorded the Timestamp instances of various feature points of ECG as well as the SCG
traces. Table 11 shows the example Timestamp instances for the ECG feature points P, Q, R, S and
T, whereas Table 12 shows the example Timestamp instances for the SCG feature points AS, MC,
IM, AO, IC, RE, AC, MO and RF across two cardiac cycles for reference purposes only. From the
two example cardiac cycles shown in Table 11, it is observed that the difference between successive
Timestamp instances of ECG feature points are more consistent and regular for the normal subjects A1,
A2 and A3 than those observed for the abnormal subjects A4 and A5. Similarly, Table 12 reports the
consistent behavior of SCG feature points for the normal subjects A1, A2 and A3 than the abnormal
subjects A4 and A5. The aforementioned observations do not specify the general conclusions, but state
with respect to the randomly selected two examples of cardiac cycles. It is to be noted that one or
more SCG feature points may not be repeated between two heartbeats due to external noise. For
example, for subject-1 (A1) in Table 5, the reported number of cardiac cycles (defined as OCCs) is 825
and therefore the number of times AS and RF should appear is 825 times each. However, as reported
in Table 7, the total number of manual feature points AS and RF those are retrieved for subject-1 is
791 and 801 times, respectively. This confirms the non-consistent repetition of AS and RF. The similar
trend is observed for the rest of the subjects except abnormal subject 4 (A4) due to its highly distorted
morphology. Due to the aforementioned limitations, the current study has considered analyzing the
group of cardiac cycles together to capture the abnormal behavior of heart instead of a single cardiac
cycle at a time.

Figure 10. Combined evaluation of ECG and SCG signals using a set of 10 cardiac cycles.

Table 11. Delineation of ECG feature points with corresponding time instances.

ECG Feature Points
Subjects (A) Cardiac Cycle-1 Cardiac Cycle-2

P Q R S T P Q R S T

A1 0.338 0.453 0.484 0.50 0.75 1.313 1.43 1.46 1.48 1.73
A2 0.342 0.43 0.46 0.482 0.68 1.27 1.36 1.39 1.414 1.607
A3 0.46 0.58 0.61 0.631 0.854 1.3 1.421 1.45 1.472 1.701
A4 0.41 0.49 0.51 0.54 0.773 1.29 1.42 1.45 1.50 1.68
A5 0.38 0.53 0.56 0.611 0.83 1.356 1.49 1.52 1.56 1.78
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Table 12. Delineation of SCG feature points with corresponding time instances.

SCG Feature Points
A Cardiac Cycle-1 Cardiac Cycle-2

AS MC IM AO IC RE AC MO RF AS MC IM AO IC RE AC MO RF

A1 0.41 0.48 0.51 0.54 0.58 0.61 0.73 0.76 0.83 1.38 1.47 1.49 1.515 1.56 1.59 1.70 1.73 1.78
A2 0.57 0.62 0.64 0.66 0.71 0.77 0.87 0.9 0.99 1.43 1.465 1.49 1.51 1.54 1.6 1.68 1.74 1.82
A3 0.36 0.41 0.43 0.46 0.48 0.55 0.67 0.7 0.82 1.26 1.28 1.3 1.33 1.37 1.42 1.54 1.57 1.65
A4 0.52 0.593 0.622 0.655 0.701 0.73 0.87 0.9 0.99 1.58 1.651 1.68 1.713 1.767 1.8 1.941 1.97 2.06
A5 0.46 0.55 0.59 0.62 0.67 0.7 0.86 0.91 1.02 1.51 1.603 1.64 1.682 1.74 1.78 1.92 1.96 2.05

A = Set of subjects.

The performance of any cardiac health monitoring system depends on its ability to accurately
distinguish between normal and abnormal cardiac cycles. Hence, the performance of the proposed
combined analysis of ECG and SCG is compared with the standalone use of ECG and SCG. All of the
12,000 cardiac cycles are chosen and equally divided into 12 sets of 1000 cardiac cycles each. For each
set, the ability of the system to detect the number of normal and abnormal cardiac cycles is measured.
At first, the baseline reference performance output is generated by recruiting expert cardiologist,
who are tasked to manually distinguish the cardiac cycles into normal and abnormal for each set. Later,
the performance of systems such as ECG only, SCG only, and ECG and SCG are compared with the
baseline output.

Figure 11 shows the output of each of the aforementioned systems with respect to the baseline
performance. Figure 11a,b shows the comparison with respect to the ability of the proposed
mechanisms to correctly detect the percentage of normal and abnormal cardiac cycles, respectively.
As shown in Figure 11a,b, the combined analysis of ECG and SCG consistently outperforms the
ECG only and SCG only mechanism. In addition, the performance of ECG only and SCG only is
nearly identical to each other, with ECG only marginally performs better. The potential rational
behind marginal improvement of ECG over SCG is due to the preprocessing of ECG signals for
baseline wandering removal and noise reduction. The main reason behind the better performance of a
combined analysis of ECG and SCG lies in its ability to validate and re-validate the normal and abnormal
behavior of the cardiac cycle using cardiac electrical and mechanical information altogether. Figure 11c
presents the performance of the systems with respect to the overall accuracy. As shown in Figure 11c,
the combined analysis of ECG and SCG gives better overall accuracy as compared to the ECG only and
SCG only.

Figure 11. Performance comparison of ECG only, SCG only, and ECG and SCG combined analysis.

7. Conclusions

In this paper, a combined cardiac health monitoring approach is presented using concurrent
Electrocardiogram (ECG) and Seismocardiogram (SCG) signals. Each ECG and SCG cardiac cycle
is tracked, analyzed and jointly investigated to distinguish the Normal and Abnormal behavior. A
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separate delineation mechanism is designed for the automatic delineation of specific feature points of
ECG and SCG from the corresponding signal morphology followed by feature points based abnormal
morphology detection mechanisms. For the reliable beat by beat analysis, individually detected
abnormal morphologies in ECG and SCG are jointly investigated by designing a novel Naïve Bayes
conditional probability model. The effectiveness of the proposed feature point delineation mechanisms
is extensively verified against the performance metrics such as Precision, Recall, and F − measure
by acquiring 12,000 concurrent ECG and SCG cardiac cycles from 20 real subjects approved by
Institutional Review Board (IRB) of Chang Gung Memorial Hospital, Taiwan. Experimental results
show that combined analysis of ECG and SCG can mitigate the disadvantages of both modalities
up to some extent and can improve the cardiac health monitoring accuracy subject to the accurate
feature points delineation. The main objective of the current study was to show that there is a scope for
further improvement in continuous cardiac health monitoring, which can be accomplished by jointly
analyzing the mechanical and electrical aspects of the cardiac activities obtained from SCG and ECG,
respectively. The study is a step forward and needs to be continued for realizing the ultimate goal. The
results presented in this study are encouraging and provide a solid foundation to explore the benefits
of the combined investigation of ECG and SCG for future works. However, there are few limitations
of this preliminary study. The current study only covers the basic ECG and SCG features. It could
be possible that the better set of ECG and SCG features may further improve the results. In addition,
the naive approach for the ECG delineation is employed, which can be further improved by using
the proprietary algorithms designed to specifically delineate the ECG signal. The current combined
analysis of one-lead ECG signals with concurrent SCG can be further extended and improved in the
future work by engaging the two-lead ECG signals with concurrent SCG, as the two-lead ECG may
provide more redundant information. In addition, the research can also be extended in the future by
considering the non-detection of certain existing features as new features and incorporating them in
machine learning algorithms to improve the accuracy of cardiac monitoring. The future work will
include more ambulatory monitoring to test the algorithms in real conditions, i.e., with more noise
and range of activities. It is to be noted that the results are obtained under a specific in-laboratory
environment for subjects with specified demographic condition, and, therefore, results should be
interpreted accordingly.
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